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Abstract

We investigate a fractional diffusion/anti-diffusion edion proposed by Andrew C. Fowler to
describe the dynamics of sand dunes sheared by a fluid flokidmpaper, we prove the global-in-
time well-posedness in the neighbourhood of travelling«gssolutions of the Fowler equation.

Keywords: nonlinear and nonlocal conservation law, fractional diffissive operator, Duhamel formu-
lation, travelling-wave, global-in-time existence.

Mathematics Subject Classification:35L65, 45K05, 35G25, 35CO07.

1 Introduction

The study of mechanisms that allow the formation of striegsuch as sand dunes and ripples at the
bottom of a fluid flow plays a crucial role in the understandafgoastal dynamics. The modeling of
these phenomena is particularly complex since we must psoive the Navier-Stokes or Saint-Venant
equations with equation for sediment transport, but alke tato account the evolution of the bottom.
Instead of solving the whole system fluid flow, free surfacd fitee bottom, nonlocal models of fluid
flow interacting with the bottom were introduced in [7, 9]. Ang these models, we are interested in the
following nonlocal conservation law [7, 8]:

{atu(t,x) + 0, (%) (t,2) + T[u(t, ))(z) — 82,u(t,z) =0 ¢ e (0,T),z €R, "

u(0,2) = up(x) xz € R,

whereT is any given positive timey = u(t, x) represents the dune height (see Fig. 1)Aigla nonlocal
operator defined as follows: for any Schwartz functiog S(R) and anyx € R,

+00 1
Tlol(x) = /O €5 ( — €. @)

Equation (1) is valid for a river flow over an erodible bottait, ) with slow variation and describes
both accretion and erosion phenomena [1]. See [1, 3] for nealeesults on this equation.
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N (x,t)=z

h=n-u

Figure 1: Domain considered for the Fowler modelis the depth water; the free surface and the
seabottom.

The nonlocal tern¥ can be seen as a fractional power of org2lés of the Laplacian with the bad sign.
Indeed, it has been proved [1]

F (Zle] — ¢") (&) = ¥z(§) F () 3)

where , )
Vr(§) = 4m?E% — az|€|5 +i b€, (4)

with az, by positive constantsF denotes the Fourier transform defined in (7) &hdenotes the Euler
function. One simple way to establish this fact is the deiweof a new formula for the operatdr, see
Proposition 2.

Remark 1. For causal functions (i.e.p(z) = 0 for x < 0), this operator is up to a multiplicative
constant, the Riemann-Liouville fractional derivativeecgtor which is defined as follows [10]

"

1 +00 ) (.I _ g) B d—2/3 Y B d4/3
(2/3) /o in %= gn? @ = antle) (5)

Therefore, the Fowler model has two antagonistic termsualwdiffusion and a nonlocal fractional
anti-diffusive term of lower order. This remarkable feat@nabled to apply this model for signal pro-
cessing. Indeed, the diffusion is used to reduce the noiszeslk the nonlocal anti-diffusion is used to
enhance the contrast [4].

Recently, some results regarding this equation have beimned, namely, existence of travelling-
wavesu,(t,x) = ¢(x — ct) wherep € C}(R) ande € R represents wave velocity, the global well-
posedness fok2-initial data, the failure of the maximum principle and toeal-in-time well-posedness
in a subspace afl} [1, 2]. Notice that the travelling-waves are not necesgafilsolitary type (see [2])
and therefore may not belong I (R), the space where a global well-posedness result is awailatl
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[2], the authors prove local well-posedness in a subspacg @) but fail to obtain global existence.

An interesting topic is to know if the shape of this traveadliwave is maintained when it is perturbed. This

raises the question of the stability of travelling-wavesit Before interesting ourselves to this problem,

we have to show first the global existence of perturbationsrad these travelling-waves. Hence in this

paper, we prove the global well-posedness ir.ameighbourhood of a regular travelling-wave, namely

u = ug + v. To prove this result, we consider the following Cauchy peoh

{Btv(t, ) + 0:(% + ugv)(t, x) + Io(t, )| (z) — 82,0(t,x) =0 t € (0,T),z €R,

(6)
v(0, ) = vo(x) z € R,

wherevy € L2(R) is an initial perturbation and’ is any given positive time.

To prove the existence and uniqueness results, we begintiogircing the notion ofmild solution
(see Definition 1) based on Duhamel’'s formula (8), in which kernel K of T — 92, appears. The
use of this formula allows to prove the local-in-time exigte with the help of a contracting fixed point
theorem. The global existence is obtained thanks to an grestgnate (31). This approach is classical:
we refer for instance to [1, 6].

The plan of this paper is organised as follows. In the nexti@ecwe define the notion of mild
solution to (6) and we give some properties on the kenef Z — 92, that will be needed in the sequel.
Sections 3 and 4 are, respectively, devoted to the proofeofittiqueness and the existence of a mild
solution for (6). Section 5 contains the proof of the regtyasf the solution.

Notations.
- The norm of a measurable functigne LP(R) is written ||f||7£p(R) = [ |f(@)[P daforl < p < oco.
- We denote byF the Fourier transform of which is defined by: for alf € R

FFE) = /R &2 £ () d, @)

andF~! denotes the inverse of Fourier transform.

- The Schwartz space of rapidly decreasing function®asdenoted byS(R).

-We writeC*(R) = {f : R — C; f, f',--- , f*) are continous oiR}.

- We denote byCy(R) the space of all bounded continuous real-valued function® avith the norm

[[llzoe = supg | f]-
- We write for anyT" > 0,

CH2((0,T) x R) := {u € C((0,T] x R); dyu, Oy, 0,u € C ((0,T] x R)}.
- We denote byD(U) the space of test functions dhandD’(U) denotes the distribution space.
Here is our main result.
Theorem 1. LetT > 0 andvy € L*(R). There exists a unique mild solutienc L> ((0,7); L*(R))

of (6) (see Definition 1) which satisfies

ve C([0,7]; L*(R)) andv(0,-) = vy almost everywhere.
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Moreover, if¢p € CZ(R) thenv € C2 ((0,7] x R) and satisfies

2
O + 0y <% + u¢v> +Z[v] - 0%,v =0,

on (0,T] x R, in the classical sense or equivalently= u, + v is a classical solution of equatiofl).

2 Duhamel formula and main properties of K

Definition 1. LetT > 0 andvy € L?(R). We say that € L>((0,T); L?(R)) is amild solution to (6)
if foranyt € (0,7):

o(t, ) = K(t,) % v — /Ot DK (t—5,-) (%2 4 u¢v> (s, ) ds, ®)

whereK (t,z) = F~1 (e7*z0)) (z) is the kernel of the operatdf — 92, and+)z is defined in4).
The expression (8) is the Duhamel formula and is obtainetgukie spatial Fourier transform.
Proposition 1 (Main properties of(, [1]). The kernelK satisfies:
1.Vt>0,K(t-) € L' (R)andK € C* ((0,00) x R),

2. Vs, t >0, K(s,")*xK(t,") =K(s+t,-),
Yug € L2 (R), limy_y0 K (t,-) * ugp = ug in L* (R),

3. VT >0,3Ky such thatVt € (0,T], |[0.K (t,") |12 < Kot=/4,

4.9T > 0,3Ky such thatVt € (0,T], [|0:K (t,-)||p1w) < K1t~ /2

1.2

-0.2

Figure 2: Evolution of the kernel K far= 0.1 (red) andt = 0.5 s (blue)



Remark 2. An interesting property for the kerné{ is the non-positivity (see Figure 2) and the main
consequence of this feature is the failure of maximum poiadil]. We use again this property to show
that the constant solutions of the Fowler equation are unist§b].

Remark 3. Using Plancherel formula, we have for any € L?(R) and anyt € (0, T']
1K (t,-) * vol L2 ry < €**l[voll2w),
whereay = — min Ret)7) > 0.

Proposition 2 (Integral formula forZ ). For all ¢ € S(R) and allz € R,

4 [0 T4 2)— ) — ¢ ()z
_ / ¢( )‘;,07(/3) pl)e ©)

Proof. The proof is based on simple integrating by parts. The reiyland the rapidly decreasing of
ensure the validity of the computations that follow. We have

/ -l e = / T @) =) e de
0 o d§ '

= 3 [T e - e -9) de

-3/ - 61745 (¢! (06 + (o = €) = ()
_ g/om p(r - &) —’,;‘07(2) + @ e

_ %/‘; oz +¢) —|;|o7(/:v3) — ()¢ .

There is no boundary term at infinity (resp. at zero) becausea rapidly decreasing function dh
(resp.p is smooth). |

Remark 4. Using integral formula9), [1, 2] proved that

F(Tlg) (€) = 4T (el 3 (—% v sgn@)) Fole).
Notice thatF (Z[y]) (€) = 4x°T'(2)(i€)*/3 which is consistent with Remark 1: up to a multiplicative

d4/3£p

constantZ|y] is <.

Proposition 3. Lets € Randy € H*(R). ThenZ[y] € H*~*/3(R) and we have

2
Zloll grs-ars(my < 4772F(§)||<P||HS(R)- (10)



Proof. For alls € R and allp € H*(R), we have, using Remark 4

1/2
WZlell rs-1rsmy = </R(1+\5!2)5_4/3!f(1[s0])(§)\2d§> ;

9 1 3 1/2
3 ( /R (1+[¢[*)* =715 — i sgr(&) - [IE1Y*| F () (€) d§> :

> g2\ v
_ wr(g)(/R () (1+I£I2)S|f(s0)(£)l2d£> |

= 471'2F(

1/2

< amr(d) [ [a~ |5|2>8|f<¢><5>|2d5} |

2
= 4772F(§)||80||HS(R)-

Remark 5. From the previous Proposition, we deduce that foralt R and all p € H*(R), Z[¢] €
H*~*/3(R). In particular, using the Sobolev embeddif/?(R) — C,(R) N L?(R), we deduce that
T: H*(R) — Cy(R) N L*(R) is a bounded linear operator.

Proposition 4 (Duhamel formula (8) is well-defined).etT > 0, vy € L?(R) andw € L*>((0,7); L' (R))+
L>=((0,T); L*(R)). Then, the function

v:te (0,7 —>K(t,-)*vo—/t&rK(t—s,-)*w(s,-)ds (11)
0

is well-defined and belongs @([0, T]; L(R)) ( being extended at= 0 by the value(0,-) = vg ).

Proof. From Proposition 1, it easy to see thats well-defined and that for any € (0,7, v(t,-) €
L?*(R). Indeedyt > 0,0, K (t,-) € L'(R) N L?(R) so by Young inequalitied, K (t, -) * w(t, ) exists
and using the estimates on the gradient (item 3 and 4 of Pitagyos) we deduce that is well-defined
andv(t,-) € L*(R).

Let us prove the continuity of. By the second item of Proposition 1, we have that the functio

t € (0,7] — K(t,-) % vo is continuous and it is extended continuously up:te= 0 by the value
v(0, -) = vo. We define the function

t
F:tel0,T] — / 0. K(t —s,-) xw(s,-)ds.
0
Now, we are going to prove thdt is uniformly continuous. For ang > 0, Young inequalities imply
t
|F(t+h,) = F(t )l < /O 10K (t+h —s,-) = 0 K(t —s,-)||i ds [[wl| oo (0,7);29)

t+h
4 / 10K (¢ + = 5, )| s d []] g (0.2 (12)
t



wherei, j € N* are such that + j = 3. Sinced, K(t,-) = F (¢ — 2inte (), the dominated
convergence theorem implies that

0. K (t — 5+ hy-) — QK (t — 5,-)|| i) — 0, ash — 0.

Moreover, using the estimates on the gradient (item 3 andRrabosition 1), we have the following
inequality

t+h
/ 10K (t — 5+ by )| o yds < 5,
t

: iy C[1y2 =1
wherec; is a positive constant and;, = 14 ifj=2
From (12), we obtain thatF'(t + h,-) — F(t,)|[z2®) — 0, ash — 0. Hence, the functior” is
continuous and this completes the proof of the continuity.of |

Remark 6. Using the semi-group property of the kern€l we have for allt, € (0,7) and allt €
[07 T — tO]’ [1]

v(t + to, ) = K(t’ ) * v(tO, ) _/0 33:K(t -5 ) * w(tO + s, ) ds.

3 Uniqueness of a solution

Let us first establish the following Lemma.
Lemmal. LetT > 0 andwvy € L?(R). Fori = 1,2, letw; € L>=((0,T); L*(R)) U L>((0,T); L?(R))
and definev; as in Proposition 4 by:

vi(t,-) = *vo—/ O, K (t )k wi(s, ) ds.
Then,

4K0T1/4| |’U)1 — w2| |Loo((07T);L1(R)) if w; € LOO((O, T), L' (R)),

V1 — U . < .
o 2”0“0”1’”(“@”—{mﬁnm—w2||Loo<<o,T>;Lz<R)> i w; € L((0,7): LA(R)).

Proof. For allt € [0, 7], we have

vi(t,-) — va(t / 0. K (t * (w1 — ws)(s,-)ds.
Hence with the help of Young inequalities, we get

f(f [0z K (t = 5, )| L2@)l|(w1 — w2)(s, )1 (w) ds

if w; € LOO((O,T);Ll(R)),
fotHawK(t—37')HL1(R)H(W1 w2) (8, )|l L2 (w) ds

i w; eL ((0,7); L*(R)).

[l (8, ) = va(t, )l 2wy <



It then follows that
Jo oK (t — 5, 2@y ds |[wi — wal| oo (o711 ()
if w; € L>°((0,7); L' (R)),

Sy 0K (t = s, )| 1wy ds ||wy — wa| oo (0.7):22(RY)
if w; € L>=((0,T); L*(R)).

(8, ) = va(t, )l 2wy <

Using again the estimates of the gradienfio{see Proposition 1), we conclude the proof of this Lemma.
|

Proposition 5. LetT > 0 andvy € L?(R). There exists at most onec L>°((0,7); L?(R)) which is a
mild solution to(6).
Proof. Let vy, vy € L>((0,7); L?(R)) be two mild solutions to (6) antl< [0,7]. Using the previous
Lemma, we get
llor = valleqogsze@y < 2Kot™*|[vf — v3ll Lo (0,501 () + 2K1 VE [ugv1 — ugval|poo (0,0, r2(R))-
Since,
|03 — 03]l oo (0,020 ) < M|v1 = v2llopo,:02®)) (13)
with M = [|v1]|c o2 ) + v2lloqom;2m)s
then
o1 = valleqogiz2my < @MKot + 2K 2| [ug|lep ) lv1 = valleo2))-
Therefore,n; = v on [0, ¢] for anyt € (0, 7] satisfying2M Kot'/* + 21"/ |ug||c3 ) < 1. Since
v1 andwvy are continuous with values ib?(R), we have that; = v, on [0, 7] whereT, is the positive
solution of the following equation

IM Kot'/* + 2K1t1/2HU¢>Hc;(R> =1

_2MK0+\/4M2K§+8K1HU¢||C; ® o
4K1HU¢||cg(R) ’
To prove that; = v, on [0, 77, let us define

ie. T = (

to := sup{t € [0,T] s.tv; = v5 [0,4]}

and we assume thay < 7'. By continuity ofv; andwvy, we have thaw, (to,-) = va(to,-). Using the
semi-group property, see Remark 6, we deducedh@h + -,-) = va(to + -, -) are mild solutions to
(6) with the same initial data; (¢o,-) = wva(to,-) which implies, from the first step of this proof, that
vi(t,-) = wva(t,-) for t € [to, Ty + to]. Finally, we get a contradiction with the definition &f and we
infer thatty = T'. This completes the proof of this proposition. |

4 Global-in-time existence of a mild solution

Proposition 6 (local-in-time existence)Let vy € L?*(R). There existsl, > 0 that only depends
on |[vo|[z2r) and ||u¢||C§(R) such that(6) admits a unique mild solutiom € C([0,T.]; L?(R)) N
C((0,Ty]; H'(R)). Moreover,v satisfies

sup tV/2||0,0(t, 2@y < +oo.
t€(0,T%]



Proof. Forv € C([0,T]; L?(R)) N C((0,T]; H(R)), we consider the following norm

ol = Jollogoryz@y + sup ¢2118:0(t, )| 2w (14)
t€(0,7)

and we define the affine space
X :={veC([0,T}; L*(R)) N C((0,T]; H'(R)) s.t.v(0, ) = vo and|||v||| < +oo} .

It is readily seen thaX endowed with the distance induced by the ndfm ||| is a complete metric
space. For € X, we define the function

1 t
@v:tE[O,T]%K(t,-)*vo—i/@K(t—s,) ds—/@K ) *ugv(s, ) ds.
0
From Proposition 49v € C([0,T]; L?(R)) and satisfie®uv (0, -) = vo.
First step: ©®v € X. Since

Op (K (t,-) *vg) = 0 K(t,") xvg = .7-"_1(5 > 2iﬂ§€_th(£)fvo(§)),

the dominated convergence theorem implies that fortgny 0,

/471'
R

Therefore, the function > 0 — (& — 2irée 7 Fug(€)) € L?(R) is continuous and sincg is an
isometry of .2, we deduce that> 0 — 9, K (¢,-) xvg € L*(R) is continuous. We have then established
thatt > 0 — K(t,-) xvg € H'(R) is continuous. Moreover, from Proposition 1, we have

2
2 |emtWz(&) _ omovz@)17 | Fuy (€)|2de — 0,  ast — tg.

102K (¢, ) * vo|| 2y < K1t ™2||vo|| L2 () (15)

Let w denote the function
1 t
:5/811((25—5, ds—{—/aK -) * ugv(s, -)ds.
0

Let us now prove thaty € C'((0,T]; H'(R)). We first have

/ DK (t — s,-) % vdyu(s, ds+/ DK (t — 5,°) * D (ugv) (s, -)ds.



Using Young inequalities and Proposition 1, we get

[t iy < [ 10K = 5.0 w005,y
/ 10,5 (¢ = 5.:) (g5, |2 ey,
< [ lou = s e 0o, oy
/ 10,5 (¢ = 5.} 13 sy 19 g) 5 2y s,
< HUHC([O,T];LQ(]R))/ Kot —s)3/*s712ds sup s'2(|0,v(s,.)|| 12 (w)
s€(0,T1]
b [ K= o) 2 s s 0 sn) 51
s€(0,T)

We then obtain

[|0zw(t, )|r2@) < KOI\’UHC([O,T};L2(R))T_1/4 SE(I)PT}Sl/ZHaacU(S,')HL?(R)
se (0,

+K1J sup 81/2||8x(u¢v)(5")||L2(R)’ (16)
s€(0,77]

wherel = B(3, %) andJ = B(3, 3) = =, B being the beta function defined by

1
B(z,y) ::/O t* 11 — t)vLdt.

As |||v||] < oo then

sup 31/2\]8351)( )HL2(R) < ooand sup sl/ZHB (ugv)(s ,-)HL2(R) < 0.
5€(0,T s€(0,77

We then deduce that,w(t, -) is in L? and s0d,0Ou(t, ) € L*(R) for all t € (0, 7.

Let us now prove thab,w is continuous orf0, 7] with values inL?.
Foré > 0 andt € (0,77, we define

(O w) / 0. K (t ) * Lisssy (v02v)(s, ) ds

/ 0. K (t ) * 1gs51 0z (ugpv) (s, -) ds.

Since 15-4, (v9:v)(s,-) € L>([0,T]; L'(R)) and 1y 50:(upv)(s,-) € L([0,T]; L*(R)) then
Proposition 4 implies thatd,w); : [0, T] — L?(R) is continuous. Moreover, we have for ahyg (0,7
andd < t,

é
10zw(t,-) = (Few)s(t, )2 < K’o/0 (t =)™ dslvllepo,ry:22) SHP]SWH@U(&-)HLQ

se(0,T

)
+K1/ (t—s)71/2571/2d5 sup 51/2||8x(u¢v)(5,-)||L2.
0 s€(0,7T

10



It then follows that
sup |[|0;w(t,-) — (O, w)s(t, ‘)||L2(]R) — 0asd — 0.
te(0,T

We next infer that,w € C((0,7]; L?(R)) because it is a local uniform limit of continuous functions.
Hence, we have established tigat € C([0, T); L2(R)) N C((0,T]; H*(R)). To prove thaBv € X, it
remains to show that|0Ov||| < +oc. Using (15) and (16), we have

sup t1/2]10,00(t,)||2 < Killvollze + Kol T4 sup s'2(10p0(s, )| 2l [vlleqo e
te(0,T) s€(0,T1]

+ K JTY? sup sY2)|0,(ugv)(s,-)|| 12 (17)
s€(0,T]

Finally, we have® : X — X.

Second step:We begin by considering a ball & of radius? centered at the origin
Br:={veX /|l]vl]| < R}

whereR > [|vo||r2(r) + K1l[vo||r2(r)- Takev € Br and let us now prove th& mapsBr, into itself.

We have
2

t (Y
00t Mlagey < (e ) wvallagey + [ 105G =505 (Y + g0 (5l .

By Remark 3, we get

1K (2, ) = voll 2y < €7 ||voll p2(w), (18)
whereag = —min Re(¢)7) > 0. Moreover, since|v?|| o721 (r)) = HUH%OO((QT);LQ(R)) and with
the help of Proposition 1, we get

100(t, Nlz@ < e llvollr2 @) + 2KoT* R* + 2K1T1/2H“¢>Hq}(R)R- (19)

Using (17) and (19), we deduce that
levl|l < e*[jvol|p2my + Killvollr2m) + (2 + D KoT*R? + (2 + J)RK1T1/2||U¢||C,}(R)
+EK1J||ugllop ry BT

Therefore, forT' > 0 sufficiently small such that
T [Jvo| 2y + Killvollrewy + (2 + KT R* + (2 + J)RK1T1/2||U¢||C§(R)
+K1JHu¢HC;(R)RT§R, (20)
we get that||Ov||| < R.

To finish with, we are going to prove théxis a contraction.
Forv,w € Br, we have for any € (0,7

1 t
10v(t,) = Ow(t, M@ < 5 [ 10Kt —s)l2@ll(©0® = w?)(s, )l ®)ds

t
+ . |0x K (t — s, ')HLI(R)H%(U —w)(s, ')HLQ(R)dSa

< 2Kt [v* — w?|oqo o m))

+ 2K1t1/2Hu¢Hc;(R)HU =Wl (0,17, L2(R))»

11



and since,

1v* —wllcqomney < (olleqorizzw) + wlloqomrz@)llv — wlloqom; 2wy,
< 2R|lv — wlleqor);L2R)
we get
100(t, ) — Ow(t, )2 @) < (ARKot'* + 2K1’51/2HU¢H05(R))HU — wlle(o,r):22(R))- (21)
Moreover
1/t 5
|02(©v — Ow)(t, )|2m) < 3 ; [0: K (t — s5,-) % Ox(v™ — w™)(s, )| L2(m)ds

t
] 102 K (8 = 5, ) % Or (ug (v = w))(s, )| 2wy ds,

< KoIt™"* sup 31/2\](1)8351)—w@xw)(s,-)HLl(R)
s€(0,7T
+ K1 sup sV, (ug(v —w)) (s, 2 (m)-
s€(0,7]

And since

[[(vIzv — wWOW)(L, )| L1 < |[Ozw(t,-)|[r2]|(v — w)(E, )|z + [[v(E, )| L2 |0z (v — w) (L, )] L2,
then

t2| (0000 — wdpw)(t, )| 1w = w)(t, gz ]Il + ol [0 (0 = w) (2, )22,

2R|[|v = wl].

IA A

Therefore, we obtain

10:(0v = Ow)(t, 2@ < 2Kolt™V*R[jv — wll| + K1 J|[ugllcp @) T |lJ0 — wl]|
+ KiJl[ugllop ) lllo — wl]]. (22)

Finally, using (21) and (22), we get

llev—Owlll < [(2+D2REGTY + (2 + J)ugllc gy Ki T
+ K1 T gl oy ey o — wlll

Last step: conclusion.For anyT, > 0 sufficiently small such that (20) holds true and
2+ D2RKOT ! + 2+ J)l[ugllop @y K1 T/ * + KrJ Tl Jugllon @y < 1,
O is a contraction fromBy, into itself. The Banach fixed point theorem then implies thaadmits a

unique fixed point € C ([0, T.]; L2(R)) N C((0,T.]; H'(R)) which is a mild solution to (6).
|
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Lemma 2 (RegularityH? of v(t,-)). Letvy € L*(R) and¢ € CZ(R). There existd? > 0 that only de-
pends orf|vol| 2w and||u¢||cz such that(6) admits a unique mild solution € C ([0, 77]; L*(R)) N

C((0,T7]; HQ(R)) Moreover,v satlsfies

sup '2)|00(t, )| 2@y < +o0 and  sup |02, 0(t, )| 12y < +o00.
t€(0,7] te(0,17)

Proof. To prove this result, we use again a contracting fixed poiabtm. But this time, it is the
gradient of the solutiom which is searched as a fixed point.

From Proposition 6, there exisfs. > 0 which depends offvg|[z2r) and ||ue||c1(g) such thatv €
C([0,T.]; L*(R)) N C((0, T]; H'(R)) is a mild solution to (6). Slnce € C((0,T.); H'(R)), we can
consider the gradient af(t, -) for anyt € (0,7.]. Letthenty € (0,7,) andT, € (0,7, — to]. We
consider the same complete metric spaceefined in the proof of Proposition 6 and we take the norm
|| - ||| defined in (14):

X = {w € C([0,T.]; L*(R)) N C((0, T.]; H'(R)) s.t. w(0, -) = wy and|||w]|| < +oo} ,

with the initial datawy = 9,v(to, ).
We now wish to apply the fixed point theorem at the followingdtion

Ow:tel0,T)] — Kt )*wo—/aKt—s ) * (vw) (s, -)ds
/(9K * (02 (ug)v) (s,-)ds
/8[( * (upw) (s,-)ds,

whered(t, ) := v(to + t,-). First, we leave to the reader to verify ttatmapsX into itself. The proof
is similar to the one given in Proposition 6.
For anyw € X, we have from Young inequalities and Remark 3

t
©Ow(t, 2@ < 0l o121 ) 2 /0 10,5 (¢ — 5.l 2 ds

t
+ ||u¢||c;(R)||17||c([t0,T;];H1(R))/0 [0z K (t — s, ')||L1(R)d5

t
+lugllcp @ llw]l] /0 102K (E = 5, )l L1 (r) ds

and from Proposition 1, we get

4
[Qw(t, 2 < [ e [ [
+ 260 gl ey Bl o 7y + 2T syl (23)
Differentiating©v(t, -) w.r.t the space variable, we obtain
0,0v(t,) = 0. K(t,- *wo—/ O, K(t —s,-)* 0y (vw)(s,-)ds
/8[( ) % 05 (0x (ug ds—/@K -) % Oz (ug w)(s, ) ds,

13



and developing, we get
:0u(t,-) = 0. K(t,)*wo— /Ot O K (t — s,-) * [w 0,0 + 0 Oy (s,-) ds
_ /Ot DK (t — 5,) % [02(ug) T + Oy (ug) ,7] (s, ds
- /Ot DK ( — 5,-) % [0 (1) w + s Do] (s, -) ds.

Now, from Young inequalities, we have

t
18:00(t, Ylpz < 119K ()| fwoll > + / 105K (¢ — 5, )| 2 |l B5(s, |1 ds
t
T /0 100K (¢ — 5, )12 115 Brw(s, |1 ds
t
T / 10K (¢ — 5, Y111 [182(uugs) (s, 2 + 110 () Da(s, 2] s

t
+/0 10K (t — s, )1 [102(ug) w(s, )|z + [[ug Ozw(s, -)||r2] ds.
Finally, from Proposition 1, we obtain

18:00(t, )2 < 2K lwollp + 467 Kollollegy eyl

t
+/ Ko (t—s)"%"s7 12 ds ol toiryimny  SUP s'2(|0pw(s, )|
0 e s€(0,T1]

+A R gl o210 ooy + 2 K1 872 [[ugllep 1wl

t
+/ Kl(t—s)_l/Qs_l/zds]\u¢\]02 sup sl/QHwa(s,-)HLz.
0 * se(0,11]

In other words, we have for alle (0, 7]

1/2110,00(t, Mgz < Killwollze + AT Kolloll ooy, |l
+Ko T T |[0llouoaryary el + 4 Ky T gz 10l ooy
+2 Ky 7T ([l [Jwll] + Ky T flugll oz [[[w]l] (24)
wherel = B(3, 1). Hence, using (23) and (24), we get
[1©wll] < e ||wol| L2y + Kllwoll L2y + 2K1l[ugllczwy 19lle oy @y R Th + ')
+ Clfwll|(T* + T2+ T2+ 1),

for some positive constaiit which depends o&o, K1, ||| ¢ (y.771. 11.(r)) and||u¢||cg(R).
We next leave to reader to verify that: for amy, ws € X,

0w — Ouws|l| < C'(TM* + T + T 4 T |Jwr — wy||,
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where(C" is a positive constant which depends &p, K, 0l o) 11 (r)) @D [ug o2 (m)-
Then, if T, > 0 satisfies

_ '1/2
woll L2y + Killwollz®) + 2K1lugllop @) |19l o uosr 111 ) (T5 + T %)

+CRTM + T+ TP 4 T) <R,

eaoT,ﬁ

and

oM+ T T ) <,

© : Br(X) — Bpg(X) is a contraction, wher&r(X) is ball of X of radiusR centered at the origin.
Using a contracting point fixed theorem, it exists a uniquedigoint, which we denote hy. But it is
easy to see thabd,v = 0,0 taking into account the space derivated of the Duhamel ftation (8).
Thanks to a uniqueness argument, we deduceuthatd, v and thus that € C((0, T"]; H?(R)), which
completes the proof of this lemma. [ |

Let us now prove the global-in-time existence of mild santi.

Proposition 7 (Global-in-time existence. )Letvy € L*(R), ¢ € CZ(R) andT > 0. Then, there exists
a (unique) mild solution € C([0, T]; L?(R)) N C((0,T]; H*(R)) to (6). Moreover,v satisfies the PDE
(6) in the distribution sense.

Proof. First step: v is a distribution solution. Taking the Fourier transform w.r.t the space variable in
(8), we get for allt € [0, 7] and all§ € R,

Fo(t,)©) = e O Fu(€) - /0 imge” (IO F(2(s,))(€)ds

- /t 2imee” VL) Fuyu(s,-))(€) ds. (25)
0

Define

t 7}2
G(t, &) = — /0 2irte =Wz F <3 + U¢v> (s,-)(€) ds.

Classical results on ODE imply thét is differentiable w.r.t the time with

1)2
= 7 (250 © - F @)t N ©: @9

Let us now prove that all terms in (26) are continuous witlugalinL?. Since,v € C((0,T]; H'(R))
thend, (v?), 9, (uyv) € C((0,T); L*(R)). We thus deduce thaf (am(%) andF (0, (ugsv)) are con-
tinuous with values i.?(R). Moreover, Equation (25) implies that

UrGlt,) = v (F(o(t, ) — e F o)

15



and soyz G(t,-) is continuous with values if?. Indeed,

[ieceeri = [ woceopaes [ wecopas

< sw u@PIICE g +C [ IEGEP de
R\(-1,1)

gel-1,1]
< sup [z(OPIGE, )7 g
gel-1,1]
+C [F(@0(t, ) — €26 Fuo| de,
R\(—1,1)

= s Wz (©PIIGE Iz + Cllv(t iz @)
cl—1,

+C ool Z2gy + ClIo(t, Ml zlvoll sz,

< oo,

because)r behaves at infinity as- |2 C,C are two positive constants. Hence, we have that the
functiont — 7 G(t,-) € L?(R,C) is continuous. Finally, we have proved that all the term28) @re
continuous with values in2. Therefore, from (26), we get thét € C'*([0, T]; L?(R, C)) and then

d

’l)2
H6(09) +26(0) = =F (050 ) = F Ouluso)t. ).

Moreover,t € [0, 7] — e "2 Fvy € L*(R,C) is C* with

d
- (€77 Fug) + thre ™V Fug = 0.
From Equation (25), we infer th&wv is C'* on [0, 7] with values inL? with

d

G0 = ~urF(o(e,) = F (0.C5)0) - F @ulue)t.).

SinceF is an isometry of.2, we deduce that € C'([0, T]; L?(R)) and by (3), we get

?}2
%(v(t ) = —F W F (0(t)) = Oa()(E ) = alugv) (),
2

= _I[U(t7 )] + 8§mv(t7 ) - 83{:( )(t7 ) - 8$(U¢U)(t, )

We are now going to prove thatsatisfies the PDE (6) in the distribution sense. Let us note

U2

w(t, ) 1= =Tu(t, )] + Og,0(t ) = Ou() (1) = Ou(ugv)(t, )

and let us show that
Odw=w in D(0,T) xR).

16
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By definition, we have for any € D(0,7) andy € D(R):

< O, > = / / tw x)dtdz,
_ _/0 </R (t,x)¢(z)dm>dfi—it)dt.

Therefore, it is enough to prove that

[ ([ wtam) i =— [ [ ve.ase) oo

d
pr Rv(t,x)w(m)dx:/Rw(t,w)w(ﬂf) du,

in the sense 01)/(0, T). But by (27), we have that the function
0,T) — / (t,x)Y(z)dr € R

isC' and d
o Rv(t,x)qp(:v)d:v:/]Rw(t,x)¢($)dx

in the classical sense, which proves that the mild solutiga distribution solution of (6).

Second step: A priori estimate.By the first step, we have

02
Opv + Oy ( + ugv) + Zv] — 02,0 =0

in the distribution sense. Therefore, multiplying this alify by v and integrating w.r.t the space variable,
we get:

/R v da + /R (Z[v] = vgo) v dx + /R (upv), vdz =0 (28)

because the nonlinear term is zero. Indeed, integratingalig,pve have

/8 vd:v——/—avdac———/a Jvdx.

There is no boundary term from the infinity because fort al (0, 7], v(t,-) € H?(R). Using (3) and
the fact thatf,, (Z[v] — 92,v)v dz is real, we get

2 = -1 v)vdr = v2 = v2 .
/R (T[] — 92,0y di = /R Fl (g Foyd /R | Folde /R Re(wr)|Fol’de.  (29)

Moreover, since:,v € H'(R) we have

2 2
/ (ugv), vdr = —/ UpVVy dT = —/ Ug <U—> dr = /(am%)v— dx. (30)
R R R 2 ), R 2
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Using (28), (29) and (30), we obtain

1d
stz < (a0 +Co)llvt Iz
whereay = —minRe(y7) > 0andCy = %H%Hq}- Finally, we get for allt € [0, 7] the following
estimate
[o(t, M2 @) < 6(a0+c¢)tHUOHL2(R)- (31)

Last step: global-in-time existenceUp to this point, we know thanks to Proposition 6 and Lemmaa® th
there existsl, = Ti(||vol| 2 (w), [[uollcz(r)) > 0 such thaw € C([0,T.]; L*(R)) N C((0, Ty]; H*(R))
is a mild solution of (6) or{0, 7..]. Let us define

to := sup {t > 0 / there exists a mild solution of (6) of0, ¢) with initial conditionwg} .

To prove the global-in-time existence of a mild solution, exe to prove thaty > T, whereT is any
positive constant. Assume by contradiction that< 7. With again the help of Proposition 6, there
existsT, > 0 such that for any initial datay, that satisfy

|woll L2y < el FC0|uyg|| 12y, (32)
it exists a mild solutionw on (0,77]. Using (31), we have thaty := v(ty — T./2, ) satisfies (32).
Therefore, using an argument of uniqueness, we deduce that
vty — T./2 +t,-) = w(t,-) forall t € [0,7./2). To finish with, we define’ by & = v on [0, ) and
o(tg —T./2+1t,-) = w(t,-) fort € [T,/2,T,]. Hence is a mild solution orf0, ¢y + 7., /2] with initial
datumuvg, which gives us a contradiction.

|

5 Regularity of the solution

This section is devoted to the proof of the existence of @abksolutionsv to (6).

Proposition 8 (Solution in the classical sensd)etvy € L*(R), ¢ € CZ(R) andT > 0. The unique
mild solutionv € C ([0, T]; L3(R)) N C((0,T]; H*(R)) of (6) belongs taC!2 ((0, 7] x R) and satisfies

2

O + 0, <% + u¢v> +Zv] — 92,0 =0,

on (0,77 x R in the classical sense.

Proof. First step: C2-regularity in space. Let us take any, € (0, 7 as initial time and le¥” € (0,7 —
to). Differentiating the Duhamel formulation (8) two times wthe space, we get for arye [0, 7"],

¢
aigcv(t +to,) = K(t,-)x* ngv(to, )= / O, K(t —s,-)* (u1 + u2) (to + s,) ds,
0
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whereu; := (9,v ) —|— 0020 andug := v O2uy + 2 dyuy Opv + ugy 02,v. Sincev € C((0,7]; HA(R))
thenuy € C ((0,7]; L*(R )) and from the Sobolev embeddirfg?(R) — C}(R), we get thatu; €
C((0,T); LY(R) N L2( ). Let us now define the following functions

Fi(t,x) / O K (t ) xui(to + s, -)(x) ds, fori=1,2.

For allz, y € R, we have thanks to Cauchy-Schwartz inequality
|0, K (t —s,-) % ui(to+s,-)(x) — 0 K(t — s,-) xu;(to + s, ) (y)]
< /]R |0 K (t — s, 2)| |ui(to + s, — z) — ui(to + s,y — 2)| dz,
< T(amy) (wilto +5,+)) = wi(s + to, M| 2@ 10K (¢ — 5, )|[ L2®)
whereT, ¢ denotes the translated functien— o(z + z).
Therefore, for allz,y € R and allt € [0,7"], we deduce that
|Fi(t,x) — Fi(t,y)] < /Ot Kot — )7 Tay) (uilto +5,-)) — uilto + s, N 2w ds

< 4KvOTd/4 S[gl;]”ﬁa:—y) (al(‘s?)) _ﬁi(37')HL2(R)= (33)
se[0,T"

wherei;(s,-) = u;(to + s,-). Then,w; is uniformly continuous with values i as a continuous
function on a compact s@, 7"]. Therefore, for any > 0, there exists a finite sequen@e= sy < s1 <
-+ < sy = T" such that for any € [0,7"], there existg € {0,--- , N — 1} such that

|wi(s, ) = @ilsj, )2y < e
Therefore, using (33) we have

|Fi(t,z) — Fit,y)| < AKT"* S[BII% [ T(w—y) (@ils, ) = Ta—y) (@i(s5,-)) || 2
se /

+ 4KOT,1/4{||TJ: y) (@i(s,-)) — @ilsj,)|[p2 + sup |Iﬂ¢(8,-)—ﬂz(81,-)llm}-

s€[0,T]
And sincel[ T, —y) (@i(s.-) — Tiomy) (@i, ) |l = (s, ) — (s, )|l 12 (x) We get
|Fi(t.2) = Fi(ty)l < AK T {|| Ty (@ilsg, ) — @ilsg, )l 2y + 2€} -
And since the translated function is continuoud.#{R), we have
T (w—y) (@i(s5,°)) = i(sj, )|r2@)y — 0,
as(z —y) — 0. Hence,

limsup |F;(t,z) — Fi(t,y)| < 2e.
(z—y)—0

Taking the infimum w.r.t > 0, we infer thatF; is continuous w.r.t the variable. Moreover, arguing as
the proof of Proposition 4, we get tha} € C ([0,7"]; L*(R)). From classical results, we then deduce
that F; is continuous w.r.t the couplg, =) on[0,7"] x R.
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Moreover, since(ty,-) € H?(R), we can easily check thét, z) — K(t,-) * 92,v(to,-)(x) is contin-
uous on(0, 7] x R. Finally, we get that?,v € C ([to, T] x R) and since is arbitrary in(0, T, we
conclude thad?,v € C ((0,7] x R).

Second step:C't-regularity in time. From Proposition 7, we know that the terdys and—0, (% + u¢v) +
02,v — T[v] have the same regularity. Moreover, by the first step of thiggsition, we have that
02,v € C((0,T] x R) and from Sobolev embeddings and Remark 5, we deduc@gjtl'(égi + u¢1)) and

Z[v] belong toC'((0, T] x R). Finally, we obtain thad;v € C((0, 7] xR) and thusy € C12((0, T] x R).
The proof of this Proposition is now complete. |
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