
HAL Id: hal-00605109
https://hal.science/hal-00605109v1

Preprint submitted on 30 Jun 2011 (v1), last revised 3 Mar 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of a simplified model of the urine concentration
mechanism

Magali Tournus, Aurélie Edwards, Nicolas Seguin, Benoît Perthame

To cite this version:
Magali Tournus, Aurélie Edwards, Nicolas Seguin, Benoît Perthame. Analysis of a simplified model
of the urine concentration mechanism. 2011. �hal-00605109v1�

https://hal.science/hal-00605109v1
https://hal.archives-ouvertes.fr


Analysis of a simplified model of the urine concentration

mechanism

Magali Tournus ∗†‡ Aurélie Edwards §‡ Nicolas Seguin ∗¶ Benôıt Perthame ‖∗

March 16, 2011

Abstract

We study a non linear stationary system describing the transport of solutes dissolved in a fluid
circulating in a counter-current tubular architecture, which constitutes a simplified model of a kidney
nephron. We prove that for every Lipschitz and monotonic nonlinearity (which stems from active
transport across the ascending limb), the dynamic system, a PDE which we study through contraction
properties, relaxes toward the unique stationary state. A study of the linearized stationary operator
enables us, using eigenelements, to further show that under certain conditions regarding the non-
linearity, the relaxation is exponential. We also describe a finite-volume scheme which allows us to
efficiently approach the numerical solution to the stationary system. Finally, we apply this numerical
method to illustrate how the counter-current arrangement of tubes enhances the axial concentration
gradient, thereby favoring the production of highly concentrated urine.

Key-words: Countercurrent, nonlinear transport equation, ion transport, relaxation toward steady-
state, contraction property.

1 Introduction

The main role of the kidney is to maintain fluid and electrolyte homeostasis, by regulating the volume
and composition of blood so that it remains clean and chemically balanced. Kidneys receive blood from
the renal artery, filter it, and return it to the body via the renal vein while excreting unwanted substances
in the urine. The functional units of the kidney, known as nephrons, each consist of several segments
arranged in a countercurrent manner so as to maximize the production of concentrated urine.

Our purpose is to develop a simplified mathematical model predicated on a steady-state model de-
scribing solute transport in nephrons, to prove that the solution to the dynamic model we defined relaxes
toward the solution to the steady-state model, and to compute this solution. In this simplified rep-
resentation, the nephron consists of 3 water-impermeable tubes that exchange solutes via a common
interstitium, as illustrated in Figure 1. There have been other simplified models of renal function based
on similar hypotheses [Garner et al., 1978]. In the absence of water fluxes, there is no coupling between
the transport of different molecular species except if there are cotransporters or exchangers). Hence, we
only consider one generic uncharged solute (e.g., NaCl or urea).

Models that account for the presence of blood vessels usually consider at least 5 tubes (i.e., tubules
and vessels). We choose to only represent 3 here so as to keep the presentation and analysis tractable,
but the problem formulation and the mathematical methods described herein apply to any number ≥ 3.

Given the solute concentration denoted C at the inlet of tubes 1 and 2, and knowing that C3(L) =
C2(L) by continuity, our objective is to determine concentration profiles in the three tubes, as well as in
the surrounding interstitium.
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et physiopathologie rénales, Centre de Recherche des Cordeliers, 75006, Paris, France;
§Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA. Email: aure-

lie.edwards@crc.jussieu.fr
¶Email: nicolas.seguin@upmc.fr
‖Institut Universitaire de France. Email: benoit.perthame@upmc.fr

1



interstitium interstitium

x=0

x=L

Tube 1 Tube 2 Tube 3

Water flows

  Transmural solute fluxes

Q1 Q2 Q3

J1 J2 J3

Figure 1: Simplified model of a nephron: Tube 1 represents a descending vasa recta or a collecting duct,
tubes 2 and 3 represent descending and ascending limbs. Tubes are water-impermeable but can exchange
solutes with the interstitium. These exchanges are quantified by the transmural fluxes J .

In each tube i, the fluid (mostly water) is assumed to circulate at a constant flow Qi. At steady state,
conservation of solute in each tube can be expressed as





Q1 dC1(x)

dx
= J1(x), x ∈ [0, L],

Q2 dC2(x)

dx
= J2(x), x ∈ [0, L],

Q3 dC3(x)

dx
= J3(x), x ∈ [0, L],

C1(0) = C1
0 , C2(0) = C2

0 , C3(L) = C2(L),

(1)

where C1
0 and C2

0 are two given nonnegative values, Qi is the water flow in tube i and J i is the transmural
flux from the interstitium into the tube i.

In the absence of transversal water movement, the main driving force for solute transport is diffusion.
In some kidney tubules there is also active transport, across energy-consuming pumps that carry some
solutes against their concentration gradient. We assume the presence of such a pump in only tube 3
(which is meant to represent the thick ascending limb), so that





J1(x) = 2πR1(x)P 1(x)(Cint(x) − C1(x)),

J2(x) = 2πR2(x)P 2(x)(Cint(x) − C2(x)),

J3(x) = 2πR3(x)P 3(x)(Cint(x) − C3(x)) − F (C3(x), x),

(2)

where Ri and P i respectively denote the radius and solute permeability of tube i, Cint is the interstitial
concentration, and F (C3, x) > 0 is a nonlinear term representing active transport which is usually
described using Michaelis-Menten kinetics:

F (C3, x) = Vm(x)
C3

1 + C3
. (3)

In order to simplify the notations, we assume that the effective solute permeability of each tube
(2πRP ) is equal to 1. We also assume that the flow Q is equal to 1 in tubes 1 and 2, and −1 in tube 3
where the flow is in the reverse direction. The resulting equations can be viewed as nondimensional, in
the specific case where flows, radii, and permeabilities are taken to be constant and equal everywhere.
Summarized in Table 1 are symbol definitions.
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Table 1: Definition of frequently used symbols

Parameter Description
Ci(x) Solute concentration in tube i at depth x

Cint(x) Solute concentration in the interstitium at depth x
C1

0 , C2
0 Concentrations at the inlet of tubes 1 and 2 (assumed to be known)

J i(x) Transmural flux of solute through the wall of tube i at depth x
Qi(x) Water flow in tube i at depth x
Ri(x) Radius of tube i at depth x
P i(x) Solute permeability of the wall of tube i at depth x

Axial convection and diffusion are thought to be negligible in the renal interstitium. Since there is no
accumulation of solute therein, we have

J1(x) + J2(x) + J3(x) = 0. (4)

This condition enables us to calculate the interstitium concentration explicitly

∀x ∈ [0, L], Cint(x) =
1

3

[
C1(x) + C2(x) + C3(x) + F (C3(x), x)

]
.

The goal of the study is to analyze and solve the following nonlinear boundary value problem set for
x ∈ [0, L]





dC1(x)

dx
=

1

3

[
C1(x) + C2(x) + C3(x) + F (C3(x), x)

]
− C1(x),

dC2(x)

dx
=

1

3

[
C1(x) + C2(x) + C3(x) + F (C3(x), x)

]
− C2(x),

−
dC3(x)

dx
=

1

3

[
C1(x) + C2(x) + C3(x) + F (C3(x), x)

]
− C3(x) − F (C3(x), x),

C1(0) = C1
0 , C2(0) = C2

0 , C3(L) = C2(L).

(5)

For this purpose, we introduce the dynamic problem set for t ≥ 0 and x ∈ [0, L],





∂C1

∂t
(x, t) +

∂C1

∂x
(x, t) =

1

3

[
C1(x, t) + C2(x, t) + C3(x, t) + F (C3(x, t), x)

]
− C1(x, t),

∂C2

∂t
(x, t) +

∂C2

∂x
(x, t) =

1

3

[
C1(x, t) + C2(x, t) + C3(x, t) + F (C3(x, t), x)

]
− C2(x, t),

∂C3

∂t
(x, t) −

∂C3

∂x
(x, t) =

1

3

[
C1(x, t) + C2(x, t) + C3(x, t) + F

(
C3(x, t), x

)]
− C3(x, t) − F (C3(x, t), x),

C1(0, t) = C1
0 , C2(0, t) = C2

0 , C3(L, t) = C2(L, t),
(6)

which we complete with nonnegative initial concentrations C1(x, 0), C2(x, 0), C3(x, 0). Implicite in this
dynamic system is the assumption that the interstitium equilibrates immediately with it surrounding.
In this study, we first prove that the solution to (6) converges, as t tends to ∞, to the solution to (5)
and that, under certain conditions, the convergence is exponential. We then use a finite volume scheme
to solve (6) and thus approach the solution to (5). The numerical solution is subsequently employed to
examine the effects of the countercurrent architecture on concentration gradients.

2 Main Results

The main objective of this section is to study the long time convergence of the dynamic solution to
the stationary solution. For this purpose, we describe the mathematical structure of the dynamic and
stationary systems, state the natural properties of the dynamic solution, and infer a priori bounds for
the latter solution which are time-independent. The proofs of the theorems outlined below are given in
section 3.

We use the notation C for the vector function (C1, C2, C3).
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2.1 Existence, uniqueness and a priori bounds

To ensure that the dynamic solution exists, we must make some assumptions regarding the nonlinear
term representing active transport. We assume that the (smooth) function F satisfies for some (smooth)
function µ(x) ≥ 0

F (C3, x) ≥ 0, F (0, x) = 0, 0 ≤ FC(C3, x) ≤ µ(x) ≤ µM . (7)

The Michaelis-Menten equation (3) which is generally used to represent active transport in the thick
ascending limb can readily be shown to satisfy these 3 assumptions. The first one means that the pump
can only transport the solute in one direction, from the lumen of the thick ascending limb toward the
interstitium. The second one describes the fact that there is no transport in the absence of solute. Lastly,
the third assumption expresses the fact that the pump can be saturated because the number of carriers
is limited.

Initial (t = 0) solute concentrations are positive. We further assume that, for i = 1, 2 or 3,

Ci(t = 0) ≥ 0, Ci(t = 0) ∈ L1(0, L),
d

dx
Ci(t = 0) ∈ L1(0, L). (8)

Another possible assumption is that the initial data are ’well-prepared’, that is to say they match the
boundary conditions

C1(0, t = 0) = C1
0 , C2(0, t = 0) = C2

0 , C3(L, t = 0) = C2(L, t = 0).

We do not use this assumption and thus handle possibly discontinuous solutions.

Theorem 1 (Existence and uniqueness of the dynamic problem solution). With assumptions (7) and
(8), there is a weak solution (defined in Appendix A) to the initial value problem (6), which lies in

BV ([0, L]×[0, T ]). For two initial data C(x, 0) and C̃(x, 0), the weak solutions satisfy the weak contraction
property and the comparison principle

∫ L

0

[
|C1− C̃1|+ |C2− C̃2|+ |C3− C̃3|

]
(x, t)dx ≤

∫ L

0

[
|C1− C̃1|+ |C2− C̃2|+ |C3− C̃3|

]
(x, 0)dx, (9)

∫ L

0

[
|C1−C̃1|++|C2−C̃2|++|C3−C̃3|+

]
(x, t)dx ≤

∫ L

0

[
|C1−C̃1|++|C2−C̃2|++|C3−C̃3|+

]
(x, 0)dx.

(10)

For the latter inequality, we can assume that C̃ is only a supersolution. The contraction property implies
the uniqueness of the solution.

Theorem 2 (Stationary supersolution). There is a family of supersolutions to (5), as large as needed,
that are continuous functions U such that





dU1(x)

dx
+

2

3
U1(x) −

1

3

[
U2(x) + U3(x)

]
−

1

3
F (U3(x), x) ≥ 0, (i)

dU2(x)

dx
+

2

3
U2(x) −

1

3

[
U1(x) + U3(x)

]
−

1

3
F (U3(x), x) ≥ 0, (ii)

−
dU3(x)

dx
+

2

3
U3(x) +

2

3
F (U3(x), x) −

1

3

[
U1(x) + U2(x)

]
≥ 0, (iii)

U1(0) ≥ C1
0 , U2(0) ≥ C2

0 , U3(L) ≥ U2(L).

(11)

For initial data Ci(x, 0) ≤ U i, then Ci(x, t) ≤ U i for all t ≥ 0.

Theorem 3 (Uniform a priori estimates). The weak solution to (6) satisfies

∫ L

0

[ |
∂

∂t
C1| + |

∂

∂t
C2| + |

∂

∂t
C3| ](x, t)dx ≤ A0, (12)

sup
0≤x≤L

[C1 + C2 + C3](x, t) ≤ A1, (13)

∫ L

0

[ |
∂

∂x
C1| + |

∂

∂x
C2| + |

∂

∂x
C3| ](x, t)dx ≤ A2, (14)

for some constants Ai depending only on the initial values Ci(0, x) and their derivatives but not on t.
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2.2 Long time behavior. Stationary problem

Our next results concern the problem of interest for us, that is the steady state and its stability. We
begin with the

Theorem 4 (Existence of the stationary problem solution). With assumptions (7), there is a unique
solution to (5) which is C1 and nonnegative.

With the uniform bounds in Theorem 3, we can study the time convergence to this steady state

Theorem 5 (Long time behavior and uniqueness of the stationary problem solution). With assumptions
(7), (8), the solution C to (6) converges to the unique solution C to (5) in L1,

‖C(x, t) − C(x)‖L1 ց
t→∞

0.

Physiologically, this means that, whatever the initial solute concentrations, the system reaches the
same steady-state, that is, stationary concentration profiles are independent of initial values.

We can go further and study the rate of convergence toward the stationary solution. This requires
some further notations and assumptions. For µ(x) defined in (7), we use the notations in appendix C for
the eigenelements φ = (φ1, φ2, φ3), k(µ) and Λ(µ). We assume

sup
x∈[0,L]

(
2 − k(µ)

)
+
[µ(x) − FC(C, x)] < Λ(µ). (15)

When F (C, x) = µ(x)C, this condition is obviously satisfied and thus it expresses a smallness condition
on the second derivative in C.

When F (C3, x) = Vm(x) C3

1+C3 , the condition simplifies to

sup
x∈[0,L]

(
2 − k(Vm)

)
+

Vm(x) < Λ(Vm), (16)

which is a smallness condition on Vm since Λ(0) > 0.
With this assumption, we can state the

Theorem 6 (Exponential convergence). With assumptions (7), (8) and (15), the solution to the problem
(6) converges exponentially with t to the unique solution to (5) in the space

L1(φ) =

{
f : [0, L] → R

3,

∫

[0,L]

(
|f1(x)|φ1(x) + |f2(x)|φ2(x) + |f3(x)|φ3(x)

)
dx < ∞

}
.

that is to say:
‖C(x, t) − C(x)‖L1(φ) ≤ e−µt‖C(x, 0) − C(x)‖L1(φ).

This theorem expresses a narrower result: if the maximal pump velocity Vm is small enough, the
system reaches steady-state at an exponential rate which depends on Vm.

3 Proof of existence and a priori bounds

Because it is closely related to our numerical algorithm, we choose an approach based on the semi-discrete
scheme.

3.1 Existence of a solution to the semi-discrete problem

Consider a discretisation parameter ∆x = L/N > 0 with N an integer. The semi-discrete scheme
associated with (6) is defined, for k ∈ [1, N ], as





dC1
k

dt
(t) +

C1
k(t) − C1

k−1(t)

∆x
=

1

3

[
C1

k(t) + C2
k(t) + C3

k(t) + Fk(C3
k(t))

]
− C1

k(t),

dC2
k

dt
(t) +

C2
k(t) − C2

k−1(t)

∆x
=

1

3

[
C1

k(t) + C2
k(t) + C3

k(t) + Fk(C3
k(t))

]
− C2

k(t),

dC3
k

dt
(t) −

C3
k+1(t) − C3

k(t)

∆x
=

1

3

[
C1

k(t) + C2
k(t) + C2

k(t) + Fk(C3
k(t))

]
− C3

k(t) − F (C3
k(t)),

(17)
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with the boundary conditions C1
0 > 0 and C2

0 > 0 given in (6) and C3
N+1 = C2

N . We also choose the
initial data

Ci
k(0) =

1

∆x

∫ k∆x

(k−1)∆x

Ci(x, 0)dx, i = 1, 2, 3, k = 1, ..., N. (18)

Because (17) is a system of differential equations, it has a unique smooth solution and it is nonnegative.
In order to link the continuous model to this discrete equation, we reconstruct three piecewise constant
functions Ci

∆x(x, t), from the discrete values, as

Ci
∆x(x, t) = Ci

k(t), for x ∈ ((k − 1)∆x, k∆x), i = 1, 2, 3. (19)

To simplify the notation, we sometimes merely write C instead of C∆x. We next prove that C∆x converges
to the continuous solution.

Our proof is divided in several steps. We first recall some preliminary estimates on Ci
k(0). Secondly

we derive several uniform (in ∆x) a priori bounds on the semi-discrete solutions. In a third , we use these
estimates to prove that the solution converges when ∆x goes to 0 to a weak solution to (6). Then, still
using a priori bounds, we find some additional properties of the solution. These are enough to pass to
the limit and recover a weak solution to (6).

First step. Preliminary controls. Given our assumptions (8), we derive using a classic approach
(see [Bouchut, 2004, Godlewski and Raviart, 1996, LeVeque, 2002]) the following initial bounds at the
discrete level

‖C∆x(t = 0)‖L1 ≤ K0 :=

3∑

i=1

‖Ci(t = 0)‖L1, (20)

3∑

i=1

N∑

k=1

‖Ci
k(t = 0) − Ci

k−1(t = 0)‖L1 ≤ K1 :=

3∑

i=1

‖
d

dx
Ci(t = 0)‖M1 , (21)

‖
d

dt
C∆x(t = 0)‖L1 ≤ K2, (22)

for a constant K2, obtained from the equation and using (20)–(21), which only depends on the initial
data but not on ∆x. Indeed, from (17), we deduce that for k ∈ [1, N ] we have





∣∣∣dC1
k

dt
(0)

∣∣∣ ≤ 1

∆x

∣∣∣C1
k(0) − C1

k−1(0)
∣∣∣ +

2

3

∣∣∣C1
k(0)

∣∣∣ +
1

3

∣∣∣C2
k(0)

∣∣∣ +
1

3

∣∣∣C3
k(0)

∣∣∣ +
1

3

∣∣∣C3
k(0)

∣∣∣µ(x),

∣∣∣dC2
k

dt
(0)

∣∣∣ ≤ 1

∆x

∣∣∣C2
k(0) − C2

k−1(0)
∣∣∣ +

1

3

∣∣∣C1
k(0)

∣∣∣ +
2

3

∣∣∣C2
k(0)

∣∣∣ +
1

3

∣∣∣C3
k(0)

∣∣∣ +
1

3

∣∣∣C3
k(0)

∣∣∣µ(x),

∣∣∣dC2
k

dt
(0)

∣∣∣ ≤ 1

∆x

∣∣∣C2
k(0) − C2

k+1(0)
∣∣∣ +

1

3

∣∣∣C1
k(0)

∣∣∣ +
1

3

∣∣∣C2
k(0)

∣∣∣ +
2

3

∣∣∣C3
k(0)

∣∣∣ +
2

3

∣∣∣C3
k(0)

∣∣∣µ(x).

We multiply each line by ∆x and add them to obtain

‖
dC

dt
(0)‖L1 ≤

N∑

k=1

|C1
k(0)−C1

k−1(0)|+

N∑

k=1

|C2
k(0)−C2

k−1(0)|+

N∑

k=1

|C3
k(0)−C3

k+1(0)|+Kµ‖C(0)‖L1 (23)

because µ is bounded on [0, L] by a constant Kµ.

On the other hand (21) holds true with M1 the Banach space of bounded measures. The notation
‖ · ‖M1 includes a Dirac mass at x = 0 for i = 1, 2, when the initial data does not match the boundary
condition. Indeed, applying (8) to C1, we have

N∑

k=1

|C1
k(0) − C1

k−1(0)| =
1

∆x

N∑

k=2

∣∣∣
∫ k∆x

(k−1)∆x

C1(x, 0)dx −

∫ (k−1)∆x

(k−2)∆x

C1(x, 0)dx +

∫ ∆x

0

(C1(x, 0) − C1
0 )dx

∣∣∣

6



and based upon (18), we can write

N∑

k=1

|C1
k(0) − C1

k−1(0)| =

N∑

k=2

1

∆x

[∣∣∣
∫ k∆x

(k−1)∆x

[C1(x, 0)dx − C1(x − ∆x, 0)]dx +

∫ ∆x

0

(C1(x, 0) − C1
0 )dx

∣∣∣
]

=

N∑

k=2

1

∆x

[∣∣∣
∫ k∆x

(k−1)∆x

∫ x

x−∆x

d

dx
C1(z, 0)dz]dx

∣∣∣
]

+

∫ ∆x

0

∫ x

0

∣∣∣ d

dx
C1(z, 0)dzdx

∣∣∣

=

N∑

k=2

1

∆x

[ ∫ k∆x

(k−1)∆x

∫ ∆x

0

∣∣∣ d

dx
C1(x + u − ∆x, 0)du

∣∣∣dx
]

+

∫ ∆x

0

∫ x

0

∣∣∣ d

dx
C1(z, 0)dz

∣∣∣dx

≤
1

∆x

[ ∫ ∆x

0

∫ L

∆x

∣∣∣ d

dx
C1(x + u − ∆x, 0)

∣∣∣dx du
]

+

∫ ∆x

0

∫ x

0

∣∣∣ d

dx
C1(z, 0)dz

∣∣∣dx

≤
1

∆x

[ ∫ ∆x

0

∫ L+x−∆x

x

∣∣∣ d

dx
C1(z, 0)

∣∣∣dz dx
]

+

∫ ∆x

0

∫ x

0

∣∣∣ d

dx
C1(z, 0)dz

∣∣∣dx

≤
1

∆x

∫ ∆x

0

∫ L+x−∆x

0

∣∣∣ d

dx
C1(z, 0)

∣∣∣dz dx

≤ ‖
d

dx
C1(t = 0)‖L1.

�

Second step. Control in time. We first prove a uniform control on time derivatives

‖
dC∆x

dt
(t)‖L1 ≤ ‖

dC∆x

dt
(0)‖L1 ≤ K2, ∀t > 0. (24)

To prove this, we differentiate (17) with respect to t and find





d

dt

(dC1
k

dt

)
+

d

dt

(C1
k − C1

k−1

∆x

)
= −

2

3

d

dt
C1

k +
1

3

d

dt
C2

k +
1

3

d

dt
C3

k +
1

3

d

dt
C3

k

∂F

∂C
,

d

dt

(dC2
k

dt

)
+

d

dt

(C2
k − C2

k−1

∆x

)
=

1

3

d

dt
C1

k −
2

3

d

dt
C2

k +
1

3

d

dt
C3

k +
1

3

d

dt
C3

k

∂F

∂C
,

d

dt

(dC3
k

dt

)
+

d

dt

(C3
k − C3

k+1

∆x

)
=

1

3

d

dt
C1

k +
1

3

d

dt
C2

k −
2

3

d

dt
C3

k −
2

3

d

dt
C3

k

∂F

∂C
.

(25)

We multiply each line i by sign( d
dtC

i
k) and find





d

dt

∣∣∣dC1
k(t)

dt

∣∣∣ +
1

∆x

[∣∣∣ d

dt
C1

k(t)
∣∣∣ −

∣∣∣ d

dt
C1

k−1(t)
∣∣∣
]
≤ −

2

3

∣∣∣ d

dt
C1

k

∣∣∣ +
1

3

∣∣∣ d

dt
C2

k

∣∣∣ +
1

3

∣∣∣ d

dt
C3

k

∣∣∣ +
1

3

∣∣∣ d

dt
C3

k

∣∣∣∂F

∂C
,

d

dt

∣∣∣dC2
k(t)

dt

∣∣∣ +
1

∆x

[∣∣∣ d

dt
C2

k(t)
∣∣∣ −

∣∣∣ d

dt
C2

k−1(t)
∣∣∣
]
≤

1

3

∣∣∣ d

dt
C1

k

∣∣∣ − 2

3

∣∣∣ d

dt
C2

k

∣∣∣ +
1

3

∣∣∣ d

dt
C3

k

∣∣∣ +
1

3

∣∣∣ d

dt
C3

k

∣∣∣∂F

∂C
,

d

dt

∣∣∣dC3
k(t)

dt

∣∣∣ +
1

∆x

[∣∣∣ d

dt
C3

k(t)
∣∣∣ −

∣∣∣ d

dt
C3

k+1(t)
∣∣∣
]
≤

1

3

∣∣∣ d

dt
C1

k

∣∣∣ − 1

3

∣∣∣ d

dt
C3

k

∣∣∣ +
2

3

∣∣∣ d

dt
C2

k

∣∣∣ − 1

3

∣∣∣ d

dt
C3

k

∣∣∣∂F

∂C
.

We sum on the lines and on the indices k to obtain

d

dt

N∑

k=1

3∑

i=1

∆x|
d

dt
Ci

k(t)| ≤ −|
d

dt
C1

N (t)| + |
d

dt
C1

0 | − |
d

dt
C2

N (t)| + |
d

dt
C2

0 | + |
d

dt
C3

N+1(t)| − |
d

dt
C3

1 |. (26)

Knowing that C1
0 and C2

0 are independent on t, we have d
dtC

1
0 = 0, d

dtC
2
0 = 0. In addition, since

C3
N+1(t) = C2

N (t), we have d
dtC

3
N+1(t) = d

dtC
2
N (t). Altogether, we arrive at

d

dt

N∑

k=1

∆x
[
|
d

dt
C1

k(t)| + |
d

dt
C2

k(t)| + |
d

dt
C3

k(t)|
]
≤ 0. (27)

That proves our first estimate (24).

Third step. Bounds on C∆x. Our purpose here is to prove that we also have for all t ≥ 0

‖C∆x(t)‖L1 ≤ K0 + K3t, with K3 = C1
0 + C2

0 . (28)
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To do so, using (17), we sum on the lines and on the indices and find

d

dt

N∑

k=1

∆x
[
C1

k(t) + C2
k(t) + C3

k(t)
]
≤ C2

0 + C1
0 (29)

and the result follows.

Fourth step. Uniform bounded variations on C∆x. We want to prove the uniform BV control

N∑

k=1

|Ck − Ck−1|(t) ≤ K4(1 + t) ∀t > 0. (30)

Note that an uniform bound follows directly from this BV control. For all t ≥ 0,

Ci
k ≤ Ci

0 + K4(1 + t), i = 1, 2, C3
k ≤ C2

0 + 2K4(1 + t). (31)

We prove it for C1 only. We deduce from (17) that

N∑

k=1

|C1
k − C1

k−1|(t) ≤

N∑

k=1

∆x|
d

dt
C1

k(t)| +

N∑

k=1

∆x

3

[
2|C1

k | + |C2
k | + (1 + Kµ)|C3

k |
]
(t)

≤ K4(1 + t)

using the estimates (28) and (24).

Fifth step. Convergence of the semi-discrete solution. Because we have proved that C∆x is
uniformly bounded in BV ([0, T ]× [0, L]), according to the Rellich-Kondrachov compactness theorem (see
[Evans, 1998, Demengel and Demengel, 2007, Dafermos, 2005]), there is a subsequence which converges in
L1

(
(0, T )×(0, L)

)
to a function C(x, t) ∈ L1

(
(0, T )×(0, L)

)
. Then, after further extracting a subsequence

we obtain
C∆x(x, t) −→

∆x→0
C(x, t), a.e.

Consequently we also have, because F is continuous in C3,

F (C3
∆x(x, t), x) −→

∆x→0
F (C3(x, t), x).

To check that this limit is a weak solution to (6), we introduce the set V of test-functions

V =

{
Φ ∈

(
C1(R+ × [0, L])

)3

, Φ1(L, t) = Φ3(0, t) = 0, Φ3(L, t) = Φ2(L, t)

}
. (32)

It is easy to pass to the limit in the zero order terms because, using the dominated convergence
theorem, we have, for all Φ ∈ V ,

∫ T

0

∫ L

0

Cj
∆x(x, t)Φj(x, t)dxdt −→

∆x→0

∫ T

0

∫ L

0

Cj(x, t)Φj(x, t)dxdt,

∫ T

0

∫ L

0

F (C3
∆x(x, t), x)Φj(x, t)dxdt −→

∆x→0

∫ T

0

∫ L

0

F (C3(x, t), x)Φj(x, t)dxdt.

To recover the terms with x-derivative is more difficult. After a change of variable, we write

∫ T

0

∫ L

∆x

C1
∆x(x, t) − C1

∆x(t, x − ∆x)

∆x
Φ1(x, t)dxdt

=

∫ T

0

∫ L

∆x

C1
∆x(x, t)

∆x
Φ1(x, t)dxdt −

∫ T

0

∫ L−∆x

0

C1
∆x(x, t)

∆x
Φ1(t, x + ∆x)dxdt

= −

∫ T

0

∫ ∆x

0

C1
∆x(x, t)

∆x
Φ1(t, x)dxdt +

∫ T

0

∫ L−∆x

0

C1
∆x(x, t)

Φ1(x, t) − Φ1(t, x + ∆x)

∆x
dxdt

+

∫ T

0

∫ L

L−∆x

C1
∆x(x, t)

∆x
Φ1(x, t)dxdt.
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Using again the dominated convergence theorem, we have

∫ T

0

∫ L−∆x

∆x

C1
∆x(x, t)

Φ1(x, t) − Φ1(t, x + ∆x)

∆x
dxdt −→

∆x→0
−

∫ T

0

∫ L

0

C1(x, t)
∂Φ1(x, t)

∂x
dxdt,

−

∫ T

0

∫ ∆x

0

C1
∆x(x, t)

∆x
Φ1(t, x + ∆x)dxdt −→

∆x→0
−

∫ T

0

Φ1(0, t)C1(0, t),

∫ T

0

∫ L

L−∆x

C1
∆x(x, t)

∆x
Φ1(x, t)dxdt −→

∆x→0

∫ T

0

Φ1(L, t)C1(L, t) = 0.

Integrating by part, we obtain

∫ T

0

∫ L

0

∂C1
∆x(x, t)

∂t
Φ1(x, t)dxdt =

∫ T

0

∫ L

0

C1
∆x(x, t)

∂Φ1(x, t)

∂t
dxdt

+

∫ L

0

Φ1(x, T )C1
∆x(x, T )dx −

∫ L

0

Φ1(x, 0)C1
∆x(x, 0)dx

−→
∆x→0

−

∫ T

0

∫ L

0

C1(x, t)
∂Φ1(x, t)

∂t
dxdt

+

∫ L

0

Φ1(x, T )C1(x, T )dx −

∫ L

0

Φ1(x, 0)C1(x, 0)dx

We are now ready to pass to the limit in the equations. We argue independently for each component
of the system. The equation satisfied by C1

∆x is,





∂C1
∆x

∂t
(x, t) +

C1
∆x(x, t) − C1

∆x(t, x − ∆x)

∆x
= −

2

3
C1

∆x(x, t) +
1

3

[
C2

∆x(x, t) + C3
∆x(x, t) + F (C3

∆x(x, t), x)
]
, x ∈]∆x, L],

∂C1
∆x

∂t
(x, t) +

C1
∆x(x, t) − C1

0

∆x
= −

2

3
C1

∆x(x, t) +
1

3

[
C2

∆x(x, t) + C3
∆x(x, t) + F (C3

∆x(x, t), x)
]
, x ∈]0, ∆x],

C1
∆x(0, t) = C1

0 , x = 0
(33)

Thus, we prove that C satisfies the following weak formulation. For Φ ∈ V (see (32)) we have

∫ T

0

∫ L

0

∂Φ

∂t
.C(x, t)dxdt +

∫ T

0

∫ L

0

∂Φ

∂x
.C(x, t)dxdt =

2

3

∫ T

0

∫ L

0

Φ.C(x, t)dxdt

+
2

3

∫ T

0

∫ L

0

Φ3.F (C3, x)(x, t)dxdt −
1

3

∫ T

0

∫ L

0

[
Φ1(C2 + C3 + F (C3, x))(x, t)

]
dxdt

−
1

3

∫ T

0

∫ L

0

[
Φ2(C1 + C3 + F (C3, x))(x, t)

]
dxdt −

1

3

∫ T

0

∫ L

0

[
Φ3(C1 + C2)(x, t)

]
dxdt

+

∫ T

0

Φ1(0, t)C1(0, t)dt +

∫ T

0

Φ2(0, t)C2(0, t)dt +

∫ L

0

Φ(x, T )C(x, T )dx −

∫ L

0

Φ(x, 0)C(x, 0)dx (34)

The equations for C2 and C3 are treated similarly, because the boundary conditions are related and
cancel out when adding the equations.

We subsequently prove that the first line of (33) converges to a weak equation, and deduce the weak
equation satisfied by C.

3.2 Properties of limit

In the limit process, we keep the a priori bounds that we record here from (24), (28), (30),

∫ L

0

[C1 + C2 + C3](x, t)dx ≤ K0 + K3t, ∀t ≥ 0, (35)

∫ L

0

[
|
∂

∂t
C1| + |

∂

∂t
C2| + |

∂

∂t
C3|

]
(x, t)dx ≤ K2, ∀t ≥ 0, (36)
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‖
∂C

∂x
(t)‖L1[0,L] ≤ K4(1 + t) ∀t ≥ 0. (37)

Moreover, we can prove that C is uniformly continuous in time. Indeed, ∀t < 0, h > 0,

‖C(x, t + h) − C(x, t)‖L1[0,L] ≤

∫ L

0

∣∣∣
∫ h

0

∂

∂t
C(x, t + s)ds

∣∣∣dx

≤

∫ h

0

‖
d

dt
C(x, t + s)‖L1[0,L]ds ≤ K0h. �

This proves that for all T > 0 the regularity holds also

Ci ∈ C
(
[0, T ]; L1[0, L]

)
∩ BV

(
[0, T ]× [0, L]

)
.

The drawback of estimates (35) and (37) is that they are time-dependent. This is improved in section
3.4.

3.3 The contraction property and the comparison principle

We continue this section with the contraction property (9). We use the notations

di(x, t) := |Ci(x, t) − C̃i(x, t)|, i = 1, 2, 3.

G(x, t) := |F
(
C3(x, t), x

)
− F

(
C̃3(x, t), x

)
| ≤ µ(x) d3(x, t).

We substract the lines i in (6) for C and C̃. We multiply them by sign
(
Ci(x, t)− C̃i(x, t)

)
, (see [Allaire,

2007, Perthame, 2007] and the references therein). We obtain the inequalities





∂d1

∂t
+

∂d1

∂x
≤ −

2

3
d1 +

1

3
(d2 + d3 + G),

∂d2

∂t
+

∂d2

∂x
≤ −

2

3
d2 +

1

3
(d1 + d3 + G),

∂d3

∂t
−

∂d3

∂x
≤ −

2

3
(d3 + G) +

1

3
(d2 + d1).

(38)

The third line uses the fact that, because we assume F is nondecreasing in C (assumption (7))

sign
(
C3(x, t) − C̃3(x)

) [
F

(
C3(x, t), x

)
− F

(
C̃3(x), x

)]
=

∣∣∣F
(
C3(x, t), x

)
− F

(
C̃3(x), x

)∣∣∣ .

From these inequalities we conclude that

d

dt

∫ L

0

[d1 + d2 + d3]dx ≤ −d1(L, t) − d3(0, t) ≤ 0, (39)

which implies

∫ L

0

[d1(x, t) + d2(x, t) + d3(x, t)]dx ≤

∫ L

0

[d1(x, 0) + d2(x, 0) + d3(x, 0)]dx. (40)

This is the contraction property (9). �

The variant (10) can be proved following the same calculation, multiplying line i by sign+

(
C̃i(x, t)−

Ci(x, t)
)
, defined by sign+(f) = sign

(
max(f, 0)

)
. Because sign+ is increasing, it is enough to work with

a supersolution C̃i(x, t).
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3.4 Proof of theorem 3 and supersolution

We first build the family of stationary supersolutions, then we derive the uniform bounds on C(x, t).

First step. A family of supersolution to (5). Our goal is to build nonnegative functions U1, U2,
U3 such that U3(x) = U1(x) + U2(x) and U1, U2 satisfy





dU1(x)

dx
+

1

3
U1(x) −

2

3
U2(x) −

1

3
F (U1(x) + U2(x), x) = 0,

dU2(x)

dx
+

1

3
U2(x) −

2

3
U1(x) −

1

3
F (U1(x) + U2(x), x) = 0,

U1(0) ≥ C1
0 , U2(0) ≥ C2

0 .

(41)

which is clearly sufficient to have a supersolution to (5).
For U3, summing the equations on U1 and U2, we obtain

d

dx

[
U1(x) + U2(x)

]
−

1

3

[
U1(x) + U2(x)

]
−

2

3
F (U1(x) + U2(x), x) = 0,

so that we also have

−
dU3(x)

dx
+

2

3
U3(x) +

2

3
F (U3(x), x) −

1

3

[
U1(x) + U2(x)

]
= 0,

which implies that the correct equation holds. The boundary condition is also satisfied as a supersolution
because U3(L) = U2(L) + U1(L) ≥ U2(L).

To build a supersolution to (41), we choose U1 = U2 = 1
2H , where H satisfies

dH(x)

dx
−

1

3
H(x) −

2

3
F (H(x), x) = 0, H(0) = 2 max(C1

0 , C2
0 ). (42)

We conclude the proof because (42) is solved by the Cauchy-Lipschitz theorem. Note that the boundary
condition H(0) = H0 in place of 2 max(C1

0 , C2
0 ) allows us to find U1 and U2 (and thus U3) as large as

we want. �

Second step. Uniform L∞ bounds on Ci(x, 0). From the comparison principle (10), we conclude
that C(x, t) ≤ U i(x) choosing, as indicated above, U i ≥ Ci(x, 0). This proves (13).

From this uniform a priori bound, we also deduce 14 which improves (37). �

3.5 Proof of theorem 4 (existence of a solution to the stationary problem)

We prove the existence of a solution to (5). To do so, we use an auxiliary boundary value problem which
is studied in Appendix B,





dC1(x)

dx
+

2

3
C1(x) =

1

3

[
C2(x) + C3(x) + F (C3(x), x)

]
,

dC2(x)

dx
+

2

3
C2(x) =

1

3

[
C1(x) + C3(x) + F (C3(x), x)

]
,

−
dC3(x)

dx
+

2

3

[
C3(x) + F (C3(x), x)

]
=

1

3

[
C1(x) + C2(x)

]
,

C1(0) = C1
0 > 0, C2(0) = C2

0 > 0, C3(L) = C3
L ≥ 0.

(43)

For theorem 4, it is enough to prove that there is a positive value C3
L such that the solution to (43)

satisfies C3(L) = C2(L). To do so, we define the continuous mapping

g : C3
L 7−→ C2(L) − C3(L)

We claim that g(0) > 0 and that g(∞) < 0, which gives us that g vanishes on R
+ and concludes the proof.

• g(0) > 0. By the maximum principle, the Ci(·) are nonnegative and since C2
0 is positive, so is C2(L).

• g(∞) < 0. We want to prove that for C3
L large enough C2(L) < C3

L. It is enough to prove that

C1(L) + C2(L) < C3(L). (44)
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Because solutions to (43) satisfy
d

dx

[
C1 + C2 − C3

]
= 0,

proving (44) is equivalent to prove
C1

0 + C2
0 < C3(0). (45)

But this is obvious because, since the Cis are nonnegative, we have C3(x) ≥ C3(L) exp(−2(1 + µM )(L−
x)/3). This concludes the existence proof.

Uniqueness follows by monotonicity of g by the maximum principle for the transport equations. �

3.6 Proof of theorem 5 (large time limit)

Our proof is organized as follows. We consider the case where the initial data is a sub or a supersolution
to the steady state equation (5); we prove that the solutions are monotonic in time and, because they are
bounded as stated in theorem 3, they converge to the steady state. This is enough because for a general
initial data, we can always use theorem 2 and find a supersolution U0 such that

0 ≤ Ci(x, 0) ≤ U i
0(x) ∀i, ∀x ∈ [0, L].

According to the comparison principle, calling V and U the solutions to (6) with respective initial con-
ditions taken to be V0 = 0 (a subsolution!) and U0, we obtain

V i(x, t) ≤ Ci(x, t) ≤ U i(x, t) ∀i, ∀x ∈ [0, L], ∀t > 0.

As U and V converge toward the steady state, so does C.

With this argument we are reduced to proving theorem 5 with an initial data C0 which is supersolution
to (5); indeed the same argument holds for subsolutions with the only modification to replace the |∂C

∂t |+
by |∂C

∂t |−.

First step. In the same way we established the first inequality of theorem 3, we can differentiate (6)

with respect to t, multiply each line i by sign+(∂Ci

∂t ) (defined in section 3.3), and sum on the lines. We
obtain the variant of (12)

d

dt

∫ L

0

[(∂C1

∂t

)
+

+
(∂C2

∂t

)
+

+
(∂C3

∂t

)
+

]
(x, t)dt ≤ 0. (46)

Second step. As C(., t = 0) is a supersolution, we have
(∂Ci

∂t
(x, 0)

)
+

= 0 for all i, x ∈ [0, L]. Using

(46), we conclude that (∂Ci

∂t
(x, t)

)
+

= 0 ∀i, ∀x ∈ [0, L], ∀t > 0,

which means that C(., t) is a supersolution of (5) for all t > 0 and that each component is monotonically
decreasing.

Therefore we can pass to the limit pointwise as t → ∞ and Ci(x, t) converges to a function Ci(x)
which is a steady state and thus coincides with that built in theorem 4.

This establishes theorem 5 for initial data which are supersolutions and thus concludes the proof. �

4 Numerical method

Since, at least for small nonlinearities, the solution to the dynamic problem converges exponentially
toward the steady state solution, we propose to approach numerically the solution to (5) by computing
the solution to (6) for large times. For simplicity, we only treat the Michaelis-Menten form of the active
transport term (3). Also, as is usually done with in transport equations we use a finite volume method
(see [Bouchut, 2004, LeVeque, 2002, Godlewski and Raviart, 1996]).
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4.1 The finite volume scheme

We use a time step ∆t and a mesh of size ∆x = L/N with N the number of cells Qk = (xk−1/2, xk+1/2)
(that means x1/2 = 0 and xN+1/2 = L). The discrete times are denoted by tn = n∆t. To guarantee that
the discrete solution remains nonnegative as shown later, we use the CFL condition

∆t ≤
3∆x

3 + 2∆x + 2∆xVm
. (47)

The principle of finite volumes is to enforce numerical conservation of quantities that are physically
conserved and thus to approximate quantities by their average. For instance the discrete initial states
are, as before,

Cj,0
k =

1

∆x

∫

Qk

Cj(x, 0)dx, i = 1, 2, 3, k = 1, ..., N. (48)

We call Cj,n
k the discrete solution at time tn in tube i that approximates equation (6), for k ∈ [0, N ].

We use the scheme 



C1,n+1
k = C1,n

k −
∆t

∆x
(C1,n

k − C1,n
k−1) + ∆tJ1,n

k ,

C2,n+1
k = C2,n

k −
∆t

∆x
(C2,n

k − C2,n
k−1) + ∆tJ2,n

k ,

C3,n+1
k = C3,n

k +
∆t

∆x
(C3,n

k+1 − C3,n
k ) + ∆tJ3,n

k ,

(49)

with the notations 



Cint,n
k =

1

3

[
C1,n

k + C2,n
k + C3,n

k + Vm
C3,n

k

1 + C3,n
k

]
,

J1,n
k = Cint,n

k − C1,n
k , J2,n

k = Cint,n
k − C2,n

k ,

J3,n
k = Cint,n

k − C3,n
k − Vm

C3,n
k

1 + C3,n
k

.

(50)

For boundary conditions, at each time we choose: C1,n
0 = C1

0 , C2,n
0 = C2

0 , C3,n
N+1 = C2,n

N .

Because this is an explicit scheme, departing from (48), we obtain directly the solution C1,n+1
k at time

tn+1 from that at time tn.

Derivation of the CFL condition. In order to guarantee that the discrete solution remains nonneg-
ative, under the assumptions that the boundary conditions and the initial conditions are nonnegative we
assume that

∀i ∈ [1, 2, 3], ∀k ∈ [1, N ], Ci,n
k ≥ 0.

We seek to have the same property for the following step of time:

∀i ∈ [1, 2, 3], ∀k ∈ [1, N ], Ci,n+1
k ≥ 0.

We begin with C1,n+1
k and we write (49) as

C1,n+1
k =

[
1 −

2

3
∆t −

∆t

∆x

]
C1,n

k +
∆t

∆x
C1,n

k−1 +
∆t

3
C2,n

k +
∆t

3
C3,n

k +
∆t

3
Vm

C3,n
k

1 + C3,n
k

.

To insure that C1,n+1
k is a positive combination of positive terms, we have to impose 1−

2

3
∆t−

∆t

∆x
≥ 0,

that is to say

∆t ≤
3∆x

2∆x + 3
. (51)

The same argument holds for C2. For C3, we write

C3,n+1
k =

[
1 −

2

3
∆t −

∆t

∆x
−

2

3
Vm

∆t

1 + C3,n
k

]
C3,n

k +
∆t

∆x
C3,n

k+1 +
∆t

3
C2,n

k +
∆t

3
C1,n

k .

Here we have to impose that
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1 − 2
3∆t − ∆t

∆x − 2
3Vm

∆t
1+C3,n

k

≥ 0, that is to say

∆t ≤
3∆x

3 + 2∆x + 2∆xVm
≤

3∆x

2∆x + 3
. (52)

Finally, to satisfy both (51) and (52), it is sufficient to impose (47). �

The arguments developed for the continuous model can be used at the discrete level to prove that the
numerical solutions remain bounded, as we now describe.
Stability of the scheme. We want to guarantee, under the CFL condition, the stability of the scheme
under the form:

0 ≤ Ci,n
k ≤ M, ∀k ∈ [1, N ], ∀n ∈ [0,∞[, i = 1, 2, 3. (53)

First step. Existence of a family of discrete supersolutions. We build a nonnegative vector
U = (U1

1 , . . . , U1
N , U2

1 , . . . , U2
N , U3

1 , . . . , U3
N) such that





U1
k − U1

k−1 ≥
∆x

3

[
U2

k + U3
k − 2U1

k + Vm
U3

k

1 + U3
k

]
, k ∈ [1, N ],

U2
k − U2

k−1 ≥
∆x

3

[
U1

k + U3
k − 2U2

k + Vm
U3

k

1 + U3
k

]
, k ∈ [1, N ],

(
U3

k+1 − U3
k

)
≥

∆x

3

[
U1

k + U2
k − 2U3

k − 2Vm
U3

k

1 + U3
k

]
, k ∈ [1, N ],

U1
0 > C1

0 , U2
0 > C2

0 , U3
N+1 = U2

N ,

(54)

and
U i

k ≥ Ci,0
k , ∀k ∈ [1, N ], i = 1, 2, 3, (55)

We define the matrix A = A∆x such that solving (54) is equivalent to finding U which satisfies

AU ≥ 0. (56)

A is irreducible [Prasolov, 1994], and

∃ j0 such as aj0,j0 −
∑

1≤i≤3N
i6=j0

ai,j0 > 0, (j0 = 2N + 1)

Using the M-matrix theory, A is invertible and A−1 is positive (that is to say all its coefficients are
positive). We then choose x > 0, x ∈ R

3N . We have A−1x = y > 0, so Ay = x. We can choose α such
that

αy ≥ C0, αy1 ≥ C1
0 , αyN+1 ≥ C2

0 . (57)

Thus, U = αy satisfies (54) and (55).
Second step. The induction. Assuming that for a given n

Ci,n
k ≤ U i

k ∀k ∈ [1, N ] i = 1, 2, 3. (58)

Then,

C1,n+1
k =

[
1 −

2

3
∆t −

∆t

∆x

]
C1,N

k +
∆t

∆x
Cn

k−1 +
∆t

3
C2,n

k +
∆t

3
C3,n

k +
∆t

3

C3,n
k

1 + C3,n
k

,

≤
[
1 −

2

3
∆t −

∆t

∆x

]
U1,N

k +
∆t

∆x
Un

k−1 +
∆t

3
U2,n

k +
∆t

3
U3,n

k +
∆t

3

U3,n
k

1 + U3,n
k

,

≤U1
k .

The same calculation holds for C2,n+1
k and C3,n+1

k . Since (55) holds true, we deduce (53) with M =
max {U i

k, k ∈ [1, N ], i = 1, 2, 3}.
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(a) (b)

(c) (d)

Figure 2: Concentration profiles at steady state in different tubes. The thin solid curve represents C1,
the thick curve Cint, the dashed curve C2, and the dotted curve C3. Parameters: C1

0 = 2 and C2
0 = 1,

L = 1, ∆x = 0.01, Nc = 0.99, where Nc = ∆t
∆x . The pump velocity Vm is taken as 0 (a), 3 (b), 5 (c), and

8 (d). The profiles are obtained after 1000 time iterations.
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4.2 Steady states

We then use this method to compute a numerical solution to (5), iterating the scheme for n large enough
with the initial data Cj(x, 0) = 1 for j = 1, 2 and 3.

Figure 2 depicts the concentration profiles at steady state for different values of Vm. We observe that
if Vm is large enough, there is a longitudinal gradient of concentration, as observed physiologically.

In order to assert the exponential convergence of the algorithm (as predicted by the theory), we define
for each time step n the indicator

c(n) = max
k∈[1,N ]

‖Cn
k − Cn−1

k ‖∞.

Displayed in Figure 3 is the plot of log(c(n)) as a function of the number of time iterations n. Our results
indicate that the exponential convergence holds true even for large values of Vm, even though the decay
rate is then slower. A physiological interpretation could be that the higher Vm, the more significant the
concentration gradient, and the longer the time needed to reach equilibrium.

0 200 400 600 800 1000 1200
−18

−16
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−10

−8
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−4

−2

0

 

 
Vm=0
Vm=3
Vm=5
Vm=8

Figure 3: Log-convergence of the dynamic problem toward the steady-state solution, for different values of
Vm. The parameters are the same as those used in Figure 2.The convergence slows down as Vm increases.

4.3 The linear case V
m

= 0

If we ignore active transport, the system becomes linear. In this case we prove that the convergence
toward the equilibrium state is of order e−λt with λ the first eigenvalue as described in Appendix C.

For different values of L, on one hand, we calculate the eigenvalue λ in (73) using the power algorithm,
and on the other hand, we compute the logarithmic rate of convergence for the numerical solution to (6)
as t grows. The theoretical and numerical values are compared in Table 2.

Table 2: Comparison between the first eigenvalue λ of the differential operator (73) and the value γ of
the numerical gradient of the logarithmic convergence. The two values are obtained as described in the
text in the linear case Vm = 0.

L 0.1 0.5 1 2 3 6
λ 25.530 3.299 1.3044 0.509 0.296 0.125
γ 25.166 3.234 1.3044 0.517 0.292 0.109

5 Countercurrent exchange across 2 tubes

The counter-current arrangement of tubules and vessels in the kidney has long been known to improve
the production of concentrated urine (for a review, see [Stephenson, 1992]). The concentrating capacity of
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the kidney is reflected by the increase in fluid osmolality (or concentration) along the collecting duct and
can therefore be quantified by the interstitial axial concentration gradient. In order to assess the extent to
which the counter-arrangement architecture enhances concentration gradients, we then consider a simpler
system consisting of two tubes only. Note first that if there were no pump (i.e., no active transport of
solute out of one the tubes), the concentration of solute would remain constant, independent of x, in both
tubes (results not shown). In other words, the pump creates a transversal concentration gradient (referred
to as the “single effect”), which in turn generates an axial osmolality gradient [Hargitay and Kuhn, 2001],
[Stephenson, 1992]. The multiplication of the single effect in the axial direction concentrates the fluid
flowing downwards. Our simple 2-tubule model illustrates why multiplication of the single effect is greater
in counter-current flows than in cocurrent flows.

5.1 Countercurrent versus cocurrent exchange

Garner et al. Garner et al. [1978] undertook a similar study, in which they solved analytically the time-
dependent linear system relative to (59), using a Laplace transform which was numerically inverted. In
this study, we solve analytically (59) and (60) to compare the steady state solutions of a countercurrent
and a cocurrent architecture, assuming a linear rate for the pump. We then solve numerically the
corresponding dynamic system using the finite volume scheme. The advantages of our numerical method
are that it can be extended to n tubes (n ≥ 2), and that we could assume a nonlinear term for active
transport.

The countercurrent flows. When the tubes are arranged in a counter-current manner, the conserva-
tion equations can be written as





dC1(x)

dx
= J1(x), −

dC2(x)

dx
= J2(x), x ∈ [0, L],

C1(0) = C1
0 , C2(L) = C1(L).

(59)

The fluxes are given by

J1(x) = Cint(x) − C1(x), J2(x) = Cint(x) − C2(x) − VmC2(x).

with the condition
J1 + J2 = 0.

We infer from this condition that

Cint(x) =
1

2

[
C1(x) + C2(x) + VmC2(x)

]
, C1(x) − C2(x) = constant.

Knowing that C1(L) = C2(L), we conclude that C1 = C2. Then the system reduces to a single equation





dC1(x)

dx
=

1

2
VmC1(x), C1(0) = C1

0 .

C2(x) = C1(x).

We can calculate the analytical solution

C1(x) = C1
0e

Vm
2

x.

The cocurrent flows. In a cocurrent architecture, the equations are





dC3(x)

dx
= J3(x),

dC4(x)

dx
= J4(x),

C3(0) = C0 = C4(0).

(60)

The fluxes are still given by

J3(x) = Cint(x) − C3(x), J4(x) = Cint(x) − C4(x) − VmC4(x).
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With similar arguments, we obtain the solution




C3(x) = 2C0

[1 + Vm

2 + Vm
−

Vm

2(2 + Vm)
e(−1−Vm

2
)x

]
,

C4(x) = 2C0

[ 1

2 + Vm
+

Vm

2(2 + Vm)
e(−1−Vm

2
)x

]
.

In both configurations, there is a gradient of concentration in the first tubes (tubes 1 and 3). In the
countercurrent configuration, the gradient is exponential in both tubes, with parameter Vm

2 , where Vm

quantifies the single-effect. In the cocurrent configuration, the gradient is lower, and in the best case (L
and Vm very large), C3(L) tends toward 2C0 whereas C4(L) falls near 0.

Shown in figure 4 are concentration profiles solution to (59) and (60).

Figure 4: The solid curve represents the steady-state concentration profile (C1 = C2) for the countercur-
rent arrangement. The dashed curve (C3) and the dotted curve (C4) represent steady-state concentration
profiles in the cocurrent arrangement. The pump term is taken to be linear here.

5.2 Visualization of the dynamic of a countercurrent-flows system relaxing
toward the steady state

To visualize the evolution of concentration profiles with time, we consider the dynamic problem with
countercurrent flows, assuming as the initial condition that the concentration is equal to C0 all along the
tubes. We display some curves of concentration profiles at different times and see them evolve toward
the equilibrium state. We introduce the equation describing this dynamic problem





∂C1

∂t
(x, t) +

∂C1

∂x
(x, t) = J1(x, t), x ∈ [0, L], t > 0,

∂C2

∂t
(x, t) −

∂C2

∂x
(x, t) = J2(x, t), x ∈ [0, L], t > 0,

C1(0, t) = C1
0 , C2(L, t) = C1(L, t).

(61)

which we complete with nonnegative initial concentrations C1(x, 0), C2(x, 0). The fluxes are given by:

J1(x, t) = Cint(x, t) − C1(x, t),

J2(x, t) = Cint(x, t) − C2(x, t) − VmC2(x, t),

with the condition:
J1(x, t) + J2(x, t) = 0.

Shown in Figure 5 are concentration profiles at different times in 2 tubes arranged in a counter-current
manner, with a pump in the ascending tube, solution to (61) obtained using a finite volume scheme.

6 Conclusion and perspectives

Using a simplified model of solute exchange across 3 kidney tubules, in which the latter were taken to
all be impermeable to water, we demonstrated the existence and uniqueness of the stationary state. In
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Figure 5: Concentration profiles at different time iterations n in 2 tubes arranged in a countercurrent
manner, with a pump in the ascending one. The pump rate is taken to increase linearly with the
concentration C, see (61). Parameters: L = 1, C0 = 1, Vm = 1, ∆x = 0.01, ; ∆t = 0.0099.

addition, we showed that the dynamic solution converges toward the steady-state solution, and that the
convergence is exponential if the maximum rate of the pump mediating active transport in one of the
tubes is not too high. Finally, our results illustrate how the counter-current arrangement of tubules
enhances the axial concentration gradient, thereby favoring the production of highly concentrated urine.

Under physiological conditions, water and solute flows are tightly coupled in the kidney: osmosis
(i.e., transmembrane concentration gradients) is the main driving force for water exchange, and solute
movement is partly driven by convection. Hence, the system of nonlinear differential equations yielding
solute and water flows must generally be solved numerically. In this study, we chose to make some
simplifying assumptions (such as that of water-impermeable tubules) in order to better characterize this
system of differential equations, and to determine the existence and uniqueness of the solution. To the
best of our knowledge, there have been very few previous attempt to do so in a comparable system.
Layton [Layton, 1987] showed that for sufficiently low or sufficiently large rates of NaCl active transport,
there exists a unique solution to the Peskin model[Layton, 1986]. The latter model also considers three
tubules surrounded by a common interstitium, but it differs significantly from ours in that it assumes
that solute concentration is equal in the descending limb (i.e., tube 2 in our representation), the collecting
duct (i.e., tube 1), and the interstitium at each level. For the model considered in the present study, we
showed that the steady-state solution exists and is unique for any given value of Vm (i.e., the maximum
rate of NaCl active transport out of the ascending limb). We also demonstrated that the solution to
the dynamic model always converges toward the steady-state solution. Moreover, if Vm is small enough,
namely if condition (13) is satisfied, then the convergence is exponential with time.

It was recognized early on, as reviewed by Stephenson ([Stephenson, 1992]), that the formation of
a large axial concentration gradient in the kidney is made possible by the fact that tubules (1) exhibit
differential permeabilities and (2) are arranged in a counterflow manner. To assess the degree to which
the counter-current architecture increases the axial concentration gradient, relative to the cocurrent
configuration, we used a 2 tube system and derived an analytical solution for solute concentration profiles.
Our results suggest that solute concentration increases exponentially with x in the former case (with an
exponential factor that is proportional to Vm), whereas it is bounded independently of Vm in the latter
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case.
A similar exponential concentration increase was predicted for the single loop cycling model with

constant water flows [Garner et al., 1978] . The investigators used Laplace transforms to obtain numerical
solutions for two limiting cases: when the pump is either saturated (i.e., the active transport rate is a
constant) or very far from saturation (i.e., the rate is a linear function of concentration). Their study
cannot be easily extended to account for nonlinear rates, and for more than two tubes, as calculations
would then become impracticable. In contrast, the method we developed could be extended to consider
more tubules, and could apply to nonlinear rates.

A more realistic representation of kidney function would require accounting for transversal water
movement. Whether the existence and uniqueness of steady-state solutions to such problems can then
be proven remains to be determined.

Acknowledgments. Funding for this study was provided by the program EMERGENCE (EME 0918)
of the Université Pierre et Marie Curie (Paris Univ. 6). We would also like to thank Dr. S. R. Randall
for helpful discussions.

A Definition of weak solutions

A weak solution to (6) is a function C ∈ C
(
[0, T ], L1[0, L]

)3

such that for all Φ ∈ V defined in (32), we

have

∫ T

0

∫ L

0

∂Φ

∂t
.C(x, t)dxdt +

∫ T

0

∫ L

0

∂Φ

∂x
.C(x, t)dxdt =

2

3

∫ T

0

∫ L

0

Φ.C(x, t)dxdt

+
2

3

∫ T

0

∫ L

0

Φ3.F (C3, x)(x, t)dxdt −
1

3

∫ T

0

∫ L

0

[
Φ1(C2 + C3 + F (C3, x))(x, t)

]
dxdt

−
1

3

∫ T

0

∫ L

0

[
Φ2(C1 + C3 + F (C3, x))(x, t)

]
dxdt −

1

3

∫ T

0

∫ L

0

[
Φ3(C1 + C2)(x, t)

]
dxdt

+

∫ T

0

Φ1(0, t)C1(0, t)dt +

∫ T

0

Φ2(0, t)C2(0, t)dt +

∫ L

0

Φ(x, T )C(x, T )dx −

∫ L

0

Φ(x, 0)C(x, 0)dx. (62)

For (5), the definition of a weak solution C ∈ (L1[0, L])3 uses test functions Φ ∈ W with

W = {Φ ∈
(
C1([0, L])

)3

, Φ1(L) = Φ3(0) = 0, Φ3(L) = Φ2(L)},

and reads

∫ L

0

dΦ

dx
.C(x)dx =

2

3

∫ L

0

Φ.C(x, t)dx+
2

3

∫ L

0

Φ3.F (C3, x)(x)dx−
1

3

∫ L

0

[
Φ1(C2 +C3 +F (C3, x))(x)

]
dx

−
1

3

∫ L

0

[
Φ2(C1 + C3 + F (C3, x))(x)

]
dx −

1

3

∫ L

0

[
Φ3(C1 + C2)(x)

]
dx − Φ1(0)C1(0) − Φ2(0)C2(0).

(63)

B Existence of a solution to (43)

In subsection 3.5, we have used that there are nonnegative solutions to




dC1(x)

dx
+

2

3
C1(x) =

1

3

[
C2(x) + C3(x) + F (C3(x), x)

]
,

dC2(x)

dx
+

2

3
C2(x) =

1

3

[
C1(x) + C3(x) + F (C3(x), x)

]
,

−
dC3(x)

dx
+

2

3

[
C3(x) + F (C3(x), x)

]
=

1

3

[
C1(x) + C2(x)

]
,

C1(0) = C1
0 > 0, C2(0) = C2

0 > 0, C3(L) = C3
L ≥ 0.

(64)

and that they are monotonic with respect to the boundary values. We prove these statements here.
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First step. A regularized problem. For every α > 0, we prove that the following system has a
solution C which is nonnegative





dC1(x)

dx
+

2

3
C1(x) + αC1(x) =

1

3

[
C2(x) + C3(x) + F (C3(x), x)

]
,

dC2(x)

dx
+

2

3
C2(x) + αC2(x) =

1

3

[
C1(x) + C3(x) + F (C3(x), x)

]
,

−
dC3(x)

dx
+

2

3

[
C3(x) + F (C3(x), x)

]
=

1

3

[
C1(x) + C2(x)

]
,

C1(0) = C1
0 > 0, C2(0) = C2

0 > 0, C3(L) = C3
L ≥ 0.

(65)

To do so, we use the Banach-Picard theorem in the Banach space

X = L1([0, L], R+) × L1([0, L], R+), ‖(C1, C2)‖X =

∫ L

0

(
C1(x) + C2(x)

)
dx

For (D1, D2) ∈ X , we define (C1, C2) the solution to




dC1(x)

dx
+

2

3
C1(x) + αC1(x) =

1

3

[
D2(x) + C3(x) + F (C3(x), x)

]
,

dC2(x)

dx
+

2

3
C2(x) + αC2(x) =

1

3

[
D1(x) + C3(x) + F (C3(x), x)

]
,

−
dC3(x)

dx
+

2

3

[
C3(x) + F (C3(x), x)

]
=

1

3

[
D1(x) + D2(x)

]
,

C1(0) = C1
0 > 0, C2(0) = C2

0 > 0, C3(L) = C3
L ≥ 0.

(66)

Then, we claim that the operator

B : (D1, D2) 7−→ (C1, C2) := B(D1, D2)

has a unique fixed point in X+ (the cone of nonnegative functions), which follows from the two properties

(a) B : X+ −→ X+, (b) B is a strong contraction.

Second step. The fixed point. To prove (a), we check that (C1, C2) are nonnegative functions. The
Cauchy Lipschitz theorem tells us that there is a unique C3, which is a nonnegative continuous solution
to the third equation of (66) (here we use assumption (7)). Then, we again apply the Cauchy Lipschitz
theorem to the first two equations of (66) to obtain that C1 and C2 are continuous and positive functions.

Now, we check (b). By substractions of solutions, say (C1, C2) and (C1, C2) for two different D, say
(D1, D2) and (D1, D2), we obtain





d(C1 − C1)

dx
(x)+(

2

3
+ α)(C1 − C1) =

1

3

[
(D2 − D2)(x) + (C3 − C3)(x) + F (C3(x), x) − F (C3(x), x)

]
,

d(C2 − C2)

dx
(x)+(

2

3
+ α)(C2 − C2) =

1

3

[
(D1 − D1)(x) + (C3 − C3)(x) + F (C3(x), x) − F (C3(x), x)

]
,

−
d(C3 − C3)

dx
(x)+

2

3

[
(C3 − C3)(x) + F (C3(x), x) − F (C3(x), x)

]
=

1

3

[
(D1 − D1)(x) + (D2 − D2)(x)

]
,

(C1 − C1)(0) = 0, (C2 − C2)(0) = 0, (C3 − C3)(L) = 0.
(67)

We use the notation
δi(x) := (Ci(x) − C

i
(x)), i = 1, 2, 3.

As in subsection 3.3 and using the same notations, we obtain the following inequalities




d|δ1|

dx
+ (

2

3
+ α)|δ1| =

1

3
sign(δ1)(D2 − D2 + δ3 + F (C3) − F (C3)),

d|δ2|

dx
+ (

2

3
+ α)|δ2| =

1

3
sign(δ2)(D1 − D1 + δ3 + F (C3) − F (C3)),

−
d|δ3|

dx
+

2

3
(|δ3| + G) =

1

3
sign(δ3)(D1 − D1 + D2 − D2).

(68)
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Integrating these inequalities, we conclude that

|δ1(L)| + |δ2(L)| + |δ3(0)| +

∫ L

0

(α +
2

3
)|δ1| +

∫ L

0

(α +
2

3
)|δ2|

+
1

3

∫ L

0

[
2 sign(δ3) − sign(δ1) − sign(δ2)

]
(δ3 + F (C3) − F (C3))

=
1

3

∫ L

0

[
sign(δ2) + sign(δ3)

]
(D1 − D1) +

1

3

∫ L

0

[
sign(δ1) + sign(δ3)

]
(D2 − D2), (69)

which gives us ∫ L

0

(α +
2

3
)(|δ1| + |δ2|) ≤

2

3

∫ L

0

[
|D1 − D1| + |D2 − D2|

]
. (70)

In terms of the Banach space under consideration, this is to say

‖(C1, C2) − (C1, C2)‖X ≤
2

2 + 3α
‖(D1, D2) − (D1, D2)‖X ,

and we have obtained the strong contraction property, and thus the existence of a solution to (65).

Third step. The limit α = 0. Until now, we denote the solution to (65) as Cα = (C1
α, C2

α, C3
α); it is

Lipschitz continuous because F is. We prove here that the familiy (Cα)α>0 is equicontinuous on [0, L].
Then we may apply Ascoli theorem to obtain a strongly convergent subsequence and conclude the proof.

From (65), we deduce that
d

dx
(C1

α(x) + C2
α(x) − C3

α(x)) ≤ 0, (71)

which tells us that

C1
α(L) + C2

α(L) + C3
α(0) ≤ C1

α(0) + C2
α(0) + C3

α(L) = C1
0 + C2

0 + C3
L.

We deduce that C1
α(L), C2

α(L) and C3
α(0) are uniformly bounded in α. Then, using that the endpoints

are controled, (71) tells us that the function h defined as

h(x) = C1
α(x) + C2

α(x) − C3
α(x) (72)

is uniformly bounded in α too. Inserting this in the third line of (65), we write

−
d

dx
C3

α +
2

3

(
C3

α + F (C3
α)

)
=

C3
α + h

3
,

so that C3
α is uniformly bounded in α. Using the first and second lines of (65), we also conclude that

(C1
α + C2

α) are uniformly bounded in α, and so do C1
α and C2

α.

Fourth step. The comparison principle. As it was done in the Second step, and using again the

argument of subsection 3.3 (replacing the absolute value by the positive part), one obtains that C1
0 ≥ C

1

0,

C2
0 ≥ C

2

0 and C3
L ≥ C

3

L implies that Ci(x) ≥ C
i
(x) for all x ∈ [0, L] and i = 1, 2 and 3.

C Existence of eigenelements

As often in nonlinear problems, the eigenelements for the linear problem play an important role in the
understanding of nonlinear effects. We state the first eigenelement problem and recall some properties
here. For a given continuous function µ(x) > 0, this consists in finding

(
Λ(µ), N(x; µ) ≥ 0, φ(x, µ) ≥ 0

)

solutions to the direct and dual problems defined as




dN1(x)

dx
=

1

3

[
N2(x) + (1 + µ(x))N3(x)

]
+ (Λ −

2

3
)N1,

dN2(x)

dx
=

1

3

[
N1(x) + (1 + µ(x))N3(x)

]
+ (Λ −

2

3
)N2,

−
dN3(x)

dx
=

1

3

[
N1(x) + N2(x)

]
+

(
Λ −

2

3
(1 + µ(x))

)
N3,

N1(0) = 0, N2(0) = 0, N3(L) = N2(L).

(73)
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



−
dφ1(x)

dx
=

1

3

[
φ2(x) + φ3(x)

]
+ (Λ −

2

3
)φ1,

−
dφ2(x)

dx
=

1

3

[
φ1(x) + φ3(x)

]
+ (Λ −

2

3
)φ2,

dφ3(x)

dx
=

1 + µ(x)

3

[
φ1(x) + φ2(x)

]
+

(
Λ −

2

3
(1 + µ(x))

)
φ3,

φ1(L) = 0, φ3(0) = 0, φ2(L) = φ3(L).

(74)

It is also standard to normalize the eigenfunctions as

∫ L

0

(N1 + N2 + N3) = 1,

∫ L

0

(N1φ1 + N2φ2 + N3φ3) = 1. (75)

Finally we use the notation k(µ):

k := k(µ) is the biggest real number such that φ1 + φ2 ≥ kφ3. (76)

The standard result à la Krein-Rutman is

Proposition 1. For µ > 0 there is a (smooth) solution with Λ(µ) > 0. Moreover we have: N1(x) > 0,
N2(x) > 0 for x > 0, N3 > 0 and φ1(x) > 0 for x < L, φ3(x) > 0 for x > 0, φ2 > 0.

Strategy of the proof. We consider the implicit scheme with space step h associated to (73). We call
Ah the matrix of the scheme. We can prove that Ah is invertible and that its inverse is positive. Thus, the
Perron Frobenius theorem yields the existence of λh > 0, Nh ≥ 0, φh ≥ 0, solution to the eigenproblem

AhNh = λhNh, tAhφh = λhφh.

Since (λh)h is bounded by 1 + spec(A), there is a subsequence (λh) such that

lim
h→0

λh = λ > 0.

From the discrete functions Nh and φh we build, as in section 3, continuous piecewise functions. Applying
the Ascoli theorem to the bounded and equicontinuous families (Nh)h and (φh)h, we also prove that there
are subsequences (λh), (φh) such as

lim
h→0

Nh = N ≥ 0, lim
h→0

φh = φ ≥ 0,

with N and φ satisfying the condition (75). Then, we prove that λ, N, φ satisfy (73), (74).

Proof of the exponential convergence. We define, with the notation of section 2.2

M(t) =

∫ L

0

[
d1(x, t)φ1(x) + d2(x, t)φ2(x) + d3(x, t)φ3(x)

]
dx.

The usual duality argument (see [Perthame, 2007]) gives, with G defined in section 3.3

d

dt
M(t) ≤ −λM(t) +

1

3

∫ L

0

(G − µ(x) d3)(φ1(x) + φ2(x) − 2φ3(x)dx

≤ −λM(t) +
(k − 2)

3

∫ L

0

(G − µ(x) d3)φ3(x)dx

because G ≤ µ(x) d3.
If, in (76), k(µ) ≥ 2, the result follows from the Gronwall lemma.
Otherwise k − 2 < 0 and we write, treating only the case C3 ≤ C3 to simplify

(2 − k)[µ(x)d3 − G] =

∫ C3

C3

[µ(x) − FC(c, x)]dc ≤ d3[Λ − δ]

with δ > 0 given by the difference between the right and left hand sides in (15). From this we conclude
that

d

dt
M(t) ≤ −δM(t)

and the exponential convergence again follows from the Gronwall lemma. �
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