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On exit time of stable processes

Piotr Graczyk, Tomasz Jakubowski

Abstract

We study the exit time τ = τ(0,∞) for 1-dimensional strictly sta-

ble processes and express its Laplace transform at tα as the Laplace

transform of a positive random variable with explicit density. Conse-

quently, τ satisfies some multiplicative convolution relations. For some

stable processes, e.g. for the symmetric 2
3 -stable process, explicit for-

mulas for the Laplace transform and the density of τ are obtained as

an application.

1 Introduction

Let α ∈ (0, 2) and (Xt,P
x) be a strictly α-stable process in R with charac-

teristic function

E0eiXtz = exp
[
−t|z|α

(
1 − iβ tan

πα

2
sgn z

)]
,

where β ∈ [−1, 1] and β = 0 for α = 1. For any D ⊂ R let

τD = inf{t ≥ 0: Xt 6∈ D}

be the first exit time from D of the process Xt. Throughout this article we
shall consider the starting point x > 0 and

τ = τ(0,∞),

the exit time of Xt from the positive half-line.
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The question of the first exit time from domains are basic for all stochastic
processes. Surprisingly few exact formulas are known for stable processes.
The only exceptions are Brownian motion, completely asymmetric stable
processes with α > 1 (see [4], [14], [17]) and symmetric Cauchy process ([5],
see also [11]). The quotient τ̂ /τ was studied for independent τ and dual τ̂ in
[6].

Some recent results on this problem in the completely asymmetric case
were obtained by T. Simon in [17] and next were applied in [15] and [18]. On
the other hand, some formulas were found by A. Kuznetsov in [12], however
the final expressions are complicated. M. Kwaśnicki in [13] gives an integral
representation of the density of τ in the case of symmetric stable processes
(β = 0).

In this article we study the exit time τ = τ(0,∞) for 1-dimensional stable
processes and give in Theorem 3 a new formula for its Laplace transform.
It follows that τ satisfies some multiplicative convolution relations(Corollary
6); in particular for α > 1 the exit time τ is the multiplicative convolution of
a 1/α-stable subordinator with an explicitly given random variable Mα,ρ. We
generalize in this way the result of [17] for all stable processes. Applications
of Theorem 3 are next given in the final part of the article. New explicit
formulas for the Laplace transform and the density of τ are proven for the
processes dual to those of the Doney’s class C1,1, in particular for the sym-
metric 2

3
-stable process (Proposition 7 and Corollary 8). Further applications

of Theorem 3 will be presented in a forthcoming paper.
The main tool to prove the results of this article is a series representation

that we obtained in [9] for the logarithm of the bivariate Laplace exponent
κ(η, θ) of the ascending ladder process built from the process Xt. This ap-
plication of the series representation of ln κ was announced in [9]. It allows
to determine explicitly in Proposition 1 the inverse Stieltjes transform of the
function 1/κ(1, θ).

2 Stieltjes transform and Wiener-Hopf fac-

tors

In this part of the article we will exploit our series representation of κ(1, θ)
from [9] by inverting a Stieltjes transform.

Recall that if µ is a positive Borel measure on [0,∞) then for any x ∈
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(0,∞) the Stieltjes transform of µ is defined by

Sµ(θ) =

∫ ∞

0

1

θ + x
dµ(x) (1)

whenever the integral converges. According to [3], a function G on (0,∞) is
of the form G(θ) = a+ Sµ(θ) for a positive measure µ and a ≥ 0 if and only
if

(S1) G extends to a holomorphic function in the cut plane C \ R−
(S2) G(θ) ≥ 0 for θ > 0
(S3) ImG(z) ≤ 0 for Imz > 0.

Then the inverse Stieltjes transform is

S−1(G)(x) = −(1/π) lim
y→0+

ImG(−x + iy) , x > 0 ,

where the limit, in general, is in the vague sense and equals µ. If µ is abso-
lutely continuous with a continuous density, the limit is equal to the density
of µ for all x > 0 ([19]).

Let α ∈ (0, 2) and (Xt,P
x) be a strictly α-stable process in R. By

κα,ρ(η, θ) we denote the bivariate Laplace exponent of the ascending lad-
der process built from Xt. We normalize it requiring that κα,ρ(1, 0) = 1. To
simplify the notation we will write κ(η, θ) for a fixed pair α, ρ (or equiva-
lently a fixed process Xt). By κ̂ we denote the Laplace exponent for the dual
process X̂t = −Xt. As usually we write the positivity coefficient

ρ = P0(Xt ≥ 0) =
1

2
+

1

πα
arctan

(
β tan

πα

2

)
.

Proposition 1. For ρ ∈ (0, 1] \ {1/α} we have

sin(ραπ)

π

∫ ∞

0

1

x + θ

xακ̂(1, x)

x2α + 2xα cos(ραπ) + 1
dx =

1

κ(1, θ)
. (2)

Proof. Denote G(θ) = 1/κ(1, θ). The function G(θ) extends to a holomorphic
function h1(z) on C \ R− (see [8],(i) p.205). Let L be the set of Liouville
numbers. For θ ∈ (0, 1) and α 6∈ L ∪Q we have by [9]

G(θ) = exp

(
−

∞∑

m=1

(−1)m+1θm sin(ρmπ)

m sin(mπ
α

)
−

∞∑

k=1

(−1)k+1θαk sin(ραkπ)

k sin(αkπ)

)
.
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The right hand side of the last formula may be extended to a holomor-
phic function h2(z) on {z ∈ C : |z| < 1} \ R− defining wα = exp(αLogw)
where Logw = ln |w| + iArgw, Argw ∈ (−π, π], is the principal value of
the complex logarithm. We note that h1 = h2 on (0, 1), hence h1 = h2 on
{z ∈ C : |z| < 1} \ R− and h2 extends to a holomorphic function on C \ R−,
equal for |z| > 1 to the holomorphic extension of 1

κ(1,θ)
for θ > 1.

In the first part of the proof we will compute

l(x) = −1

π
lim
y→0+

ImG(−x + iy)

for positive x. Denote by h(z) the expression under exponential of h2. Let
us compute for 0 < x < 1

l(x) = −1

π
lim
y→0+

Im exp(h(−x + iy)) = −1

π
eRe(w) sin(Im(w)),

where

w = −
∞∑

m=1

(−1)m+1(−x)m sin(ρmπ)

m sin(mπ
α

)
−

∞∑

k=1

(−1)k+1eiαkπxαk sin(ραkπ)

k sin(αkπ)
.

The last limit is justified by a standard estimation argument, that implies
that in a converging power series one can enter the limit under the series.
Moreover, the same argument shows that when 0 < x < 1, we have

l(x) = −1

π
lim

w→−x,Imw>0
ImG(w) = −1

π
eRe(w) sin(Im(w)). (3)

Now we evaluate

Re(w) =

∞∑

m=1

xm sin(ρmπ)

m sin(mπ
α

)
−

∞∑

k=1

(−1)k+1 cos(αkπ)xαk sin(ραkπ)

k sin(αkπ)
,

Im(w) = −
∞∑

k=1

(−1)k+1 sin(αkπ)xαk sin(ραkπ)

k sin(αkπ)
=

∞∑

k=1

(−1)kxαk sin(ραkπ)

k
.

We will need the following formulas from [10]

∞∑

k=1

pk sin(kϕ)

k
= arctan

p sinϕ

1 − p cosϕ
, ϕ ∈ (0, 2π), p2 ≤ 1. (4)
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∞∑

k=1

pk cos(kϕ)

k
= −1

2
log(1 − 2p cosϕ + p2) , ϕ ∈ (0, 2π), p2 ≤ 1. (5)

Therefore applying a formula sin(arctanu) = u√
1+u2

we get

sin(Im(w)) = sin(arctan
−xα sin(ραπ)

1 + xα cos(ραπ)
)

=
− xα sin(ραπ)

1+xα cos(ραπ)√
1 +

(
xα sin(ραπ)

1+xα cos(ραπ)

)2 =
−xα sin(ραπ)√

x2α + 2xα cos(ραπ) + 1
.

Now we compute Re(w). By (5) we get

Re(w) =

∞∑

m=1

(−1)m+1xm sin((1 − ρ)mπ)

m sin(mπ
α

)

+

∞∑

k=1

(−1)k+1xαk sin((1 − ρ)αkπ)

k sin(αkπ)
−

∞∑

k=1

(−1)k+1xαk cos(ραkπ)

k

= log κ̂(1, x) − 1

2
log(1 + 2xα cos(ραπ) + x2α).

Hence

−1

π
eRe(w) sin(Im(w)) =

sin(ραπ)

π

xακ̂(1, x)

x2α + 2xα cos(ραπ) + 1
= l(x) > 0.

By [9, Lemma 5] we have for θ > 1

κ(1, θ) = θαρκ(1, 1/θ)

and we use the same method and (3) to obtain

l(x) = −1

π
lim

w→−x,Imw>0
ImG(w) =

sin(ραπ)

π

xακ̂(1, x)

x2α + 2xα cos(ραπ) + 1
(6)

for x > 0, x 6= 1.
As the function l(x) is continuous at x = 1 and by [8, p.205] the limit

limw→−1,Imw>0 ImG(w) exists, it follows that the convergence in (6) holds also
for x = 1.
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Let us now justify the fact that the function G(θ) = 1/κ(1, θ) is a Stieltjes
transform of a positive measure µ on R+. We will check the conditions (S1-3)
given in the beginning of this section.

The function G(θ) is strictly positive for θ ∈ (0,∞) and it extends to a
holomorphic function h1(z) on C \ R−. Thus the conditions (S1) and (S2)
are verified. In order to justify (S3), we use the following property that we
proved above: the harmonic function −(1/π)ImG extends continuously to
the closed upper half-space {Imz ≥ 0} and its boundary values on R are
l(−x) > 0 when x < 0 and 0 for x ≥ 0. Taking into account the fact that
lim|z|→∞G(z) = 0 ([8, p.205]), the maximum principle([2, 1.10]) implies that
ImG(z) ≤ 0 on {Imz > 0} and (S3) also holds.

It follows that for a certain a ≥ 0 we have G(θ) = a+S(l)(θ). Considering
θ → ∞ we determine a = 0.

Finally consider any α ∈ (0, 2]. Since the Lebesgue measure of the set
L ∪ Q is 0 we can take a sequence αn tending to α. Passing to the limit we
obtain (2) for all α ∈ (0, 2].

Remark. Other proofs of the fact that 1/κ(1, θ) is the Stieltjes transform
of a positive measure µ seem possible, using properties of Bernstein functions
([16]).

We deduce immediately from Proposition 1 the following corollary.

Corollary 2. For ρ ∈ [0, 1) \ {1 − 1/α} we have

sin((1 − ρ)απ)

π

∫ ∞

0

1

x + θ

xακ(1, x)

x2α + 2xα cos((1 − ρ)απ) + 1
dx =

1

κ̂(1, θ)
. (7)

3 Laplace transform of τ and applications

The following theorem is the main result of the article.

Theorem 3. Let Xt be a non-spectrally positive strictly α-stable process on
R. For any t > 0 we have

E1e−tτ =
sin((1 − ρ)απ)

π

∫ ∞

0

e−t1/αx xα−1κ(1, x)

x2α + 2xα cos((1 − ρ)απ) + 1
dx. (8)

Remark. Observe that the only case excluded from the Theorem 3
is well known: when Xt is a spectrally positive α-stable process starting
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from X0 = x, 1 < α < 2, then (τx(0,∞))x>0 is a 1/α-stable subordinator and

E1e−tτ = e−t1/α ([4] p.281). When Xt is spectrally negative, the formula (8)
was obtained recently by T. Simon([17]).

Proof. We note that if g(0) = 1 then

∫ ∞

0

1

x + t
f(x)dx = g(t) =⇒

∫ ∞

0

1

x + t

f(x)

x
dx =

1

t
− g(t)

t
. (9)

Indeed

1 =

∫ ∞

0

x + t

x + t

f(x)

x
dx = g(t) +

∫ ∞

0

t

x + t

f(x)

x
dx

From [14] we know that

∫ ∞

0

e−θyEye−ητ dy =
1

θ
− κ̂(η, 0)

θκ̂(η, θ)
, (10)

where τ = τ(0,∞) and η, θ > 0. Putting η = 1 and applying (9) to (7) we get

∫ ∞

0

e−θyEye−τ dy

=
sin((1 − ρ)απ)

π

∫ ∞

0

1

x + θ

xα−1κ(1, x)

x2α + 2xα cos((1 − ρ)απ) + 1
dx

=
sin((1 − ρ)απ)

π

∫ ∞

0

∫ ∞

0

e−y(x+θ) xα−1κ(1, x)

x2α + 2xα cos((1 − ρ)απ) + 1
dy dx

=

∫ ∞

0

e−θy

(
sin((1 − ρ)απ)

π

∫ ∞

0

e−yx xα−1κ(1, x)

x2α + 2xα cos((1 − ρ)απ) + 1
dx

)
dy.

Therefore

Eye−τ =
sin((1 − ρ)απ)

π

∫ ∞

0

e−yx xα−1κ(1, x)

x2α + 2xα cos((1 − ρ)απ) + 1
dx

and assertion of the theorem follows from scaling property Eye−τ = E1e−yατ

of stable processes.

For α ≥ 1 we immediately obtain from Theorem 3 a formula for the
density h = hα,ρ of τ under P1.
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Corollary 4. Let α ∈ (1, 2). The density of τ = τ(0,∞) under P1 is given by

h(s) =
sin((1 − ρ)απ)

π

∫ ∞

0

η1/α(x, s)
xα−1κ(1, x)

x2α + 2xα cos((1 − ρ)απ) + 1
dx, (11)

where ηγ(t, x) is the transition density of γ-stable subordinator.

Proof. Since
∫∞
0

e−xsηγ(t, x)dx = e−tsγ we obtain by Theorem 3

∫ ∞

0

e−sthα(s) ds

=
sin((1 − ρ)απ)

π

∫ ∞

0

∫ ∞

0

e−stη1/α(x, s)
xα−1κ(1, x)

x2α + 2xα cos((1 − ρ)απ) + 1
ds dx

=

∫ ∞

0

e−st sin((1 − ρ)απ)

π

∫ ∞

0

η1/α(x, s)
xα−1κ(1, x)

x2α + 2xα cos((1 − ρ)απ) + 1
dx ds

and the assertion follows.

Corollary 5. If Xt is a Cauchy process on R (α = 1, ρ = 1/2) then the
density of the exit time τ = τ(0,∞) under P1 is given by

h(x) =
1

π

κ(1, x)

x2 + 1
, x ≥ 0.

Remark. The above formula for h1,1/2 was obtained previously by Darling
in [5] (see also [11, (7.13)]).

For α 6= 1, Theorem 3 gives interesting multiplicative convolution relations
verified by τ . We present them in the following subsection.

3.1 Interpretation in terms of multiplicative convolu-

tions

For a given strictly α-stable process Xt with ρ ∈ [0, 1) \ {1 − 1/α} we define
the following function on R+

mα,ρ(x) =
sin((1 − ρ)απ)

πα

κ(1, x1/α)

x2 + 2x cos((1 − ρ)απ) + 1
, x ≥ 0.
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Observe that mα,ρ(x) is a probability density on R+. This follows from the
formula

sin((1 − ρ)απ)

π

∫ ∞

0

xα−1κ(1, x)

x2α + 2xα cos((1 − ρ)απ) + 1
dx = 1

obtained from (8) when t → 0 and by a change of variables x = y1/α.
Denote by Mα,ρ a positive random variable with density mα,ρ. The vari-

able Mα,1/α, 1 < α < 2 appeared for the first time in [17] for the special case
of a completely asymmetric α-stable process, 1 < α < 2 (in our context a
spectrally negative process), when κ(1, x1/α) = 1 + x1/α.

Let γ ∈ (0, 1) and ηγ(t, x) be the transition density of γ-stable subor-
dinator. Denote by N(γ) a random variable with the density ηγ(1, x), i.e.
E exp(−xN(γ)) = e−xγ

, x ≥ 0.
Recall that if Y and Z are independent random variables on (0,∞) with

densities f and g respectively, then the multiplicative convolution Y × Zp is
a random variable with the density

P[Y × Zp ∈ dt] =

∫ ∞

0

f(
t

up
)g(u)

du

up
. (12)

Corollary 6. (i) Let 1 < α < 2. Suppose that random variables Mα,ρ and
N(1/α) are independent and that X0 = 1. We have

τ
d
= Mα,ρ ×N(1/α),

(ii) Let 0 < α < 1. Suppose that random variables τ and N(α) are indepen-
dent. We have

τ ×N(α)α
d
= Mα,ρ.

Proof. Part (i) follows immediately from Corollary 4. In (11) we substitute
xα = u and use the scaling property η1/α(u1/α, s) = u−1η1/α(1, su−1).

In order to prove (ii), we use e−ty = E[−(ty)1/αN(α)] in the left-hand side
of (8), we apply Fubini and change variables x = y1/αu. By unicity of the
Laplace transform we get

∫ ∞

0

hα(
xα

uα
)ηα(u)

du

uα
=

sin((1 − ρ)απ)

πα

κ(1, x)

x2α + 2xα cos((1 − ρ)απ) + 1

Replacing xα by x in the last formula and using (12) ends the proof of (ii).
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3.2 Application for the Doney’s class Ĉ1,1

Let α ∈ [1
2
, 1) and 1 − ρ = 1/α − 1, i.e. we consider a process dual to a

process from the class C1,1 from R. Doney’s article [7]. We denote the class

of such processes by Ĉ1,1. In this case we have by [7] or [9]

κ(1, x) =
x2α − 2xα cosαπ + 1

1 + x
.

We recall the definition of the confluent hypergeometric functions 1F1 and
U (see [1])

1F1(a, b, z) =

∞∑

k=0

(a)kz
k

(b)kk!
, z ∈ C,

U(a, b, z)

=
π

sin πb

(
1F1(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−b 1F1(1 + a− b, 2 − b, z)

Γ(a)Γ(2 − b)

)
, z ∈ C \ R−,

where (a)k = a(a+ 1) . . . (a+ k− 1), (a)0 = 1 is Pochhammer symbol. Using
Theorem 3 we get the following formulas for Laplace and Stieltjes transforms
of τ

Proposition 7. If α ∈ [1
2
, 1) and Xt ∈ Ĉ1,1 then

(i) E1e−τt =
sin(απ)

π
Γ(α)Γ(1 − α, t1/α)et

1/α

, (13)

(ii) E1 1

x + τ
=

∫ ∞

0

e−u

(
eu

1/αx−1/α

x
− u1/α−1

x1/α

1F1(1, 2 − α, u1/αx−1/α)

Γ(2 − b)

)
du,

(14)

where Γ(a, z) =
∫∞
z

ta−1e−t dt is the incomplete Gamma function.
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Proof. To prove (i) we use simple transformations of integrals

E1e−τt =
sin(α(1/α− 1)π)

π

∫ ∞

0

e−t1/αxxα−1(x2α − 2xα cosαπ + 1)

(1 + x)(x2α + 2xα cos(α(1/α− 1)π) + 1)
dx

=
sin(απ)

π

∫ ∞

0

e−t1/αxxα−1

1 + x
dx (15)

=
sin(απ)

π

∫ ∞

0

∫ ∞

0

e−t1/αxe−s(x+1)xα−1 ds dx

=
sin(απ)

π

∫ ∞

0

e−s Γ(α)

(t1/α + s)α
ds =

sin(απ)Γ(α)

π

∫ ∞

t1/α
et

1/α−r 1

rα
dr

=
sin(απ)

π
Γ(α)Γ(1 − α, t1/α)et

1/α

.

To prove (ii) we use the following integral representation of U (see [1])

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−ztta−1(1 + t)b−a−1 dt, Re z > 0.

Applying this to (15) we get

E1 1

x + τ
=

sin(απ)

π

∫ ∞

0

∫ ∞

0

e−xte−t1/αs s
α−1

1 + s
ds dt

=
sin(απ)

π

∫ ∞

0

∫ ∞

0

e−ue−u1/αx−1/αs sα−1

x(1 + s)
ds du

=
sin(απ)

π

∫ ∞

0

e−uΓ(α)
U(α, α, u1/αx−1/α)

x
du.

Hence

E1 1

x + τ
=

∫ ∞

0

e−u

x

(
1F1(α, α, u

1/αx−1/α) − u1/α−1

x1/α−1

1F1(1, 2 − α, u1/αx−1/α)

Γ(2 − b)

)
du

=

∫ ∞

0

e−u

(
eu

1/αx−1/α

x
− u1/α−1

x1/α

1F1(1, 2 − α, u1/αx−1/α)

Γ(2 − b)

)
du.

It is possible to invert Stieltjes transform in (14) and the resulting density
of τ is given by a series either in x or in 1/x (cf. [12]). For α = 2/3 the
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process Xt is symmetric and the density of τ has a nice integral representation
involving hypergeometric function

1F2(a; b, c; z) =

∞∑

k=0

(a)kz
k

(b)k(c)kk!
, z ∈ C.

Corollary 8. Let Xt be a symmetric 2
3
-stable process on R with X0 = 1.

Then the density of τ = τ(0,∞) is given by the formula

P1(τ ∈ dx) =
1

π

∫ ∞

0

e−tx

(
sin(t3/2) +

t1/21F2(1; 2/3, 7/6;−t3/4)

Γ(4/3)

)
dt (16)

and its Laplace transform is

E1e−tτ =

√
3

2π
Γ(2/3)Γ(1/3, t3/2)et

3/2

, t > 0.

Proof. The second part is a direct consequence of (13). By (14)

E1 1

x + τ
=

∫ ∞

0

e−u

(
eu

3/2x−3/2

x
− u1/2

x3/2

1F1(1, 4/3, u3/2x−3/2)

Γ(4/3)

)
du.

Inverting Stieltjes transform we get

P1(τ ∈ dx)

= −1

π
Im

∫ ∞

0

e−u

(
eu

3/2x−3/2e−3iπ/2

−x
− u1/2

x3/2e3iπ/2
1F1(1, 4/3, u3/2x−3/2e−3iπ/2)

Γ(4/3)

)
du

= −1

π
Im

∫ ∞

0

e−u

(
eu

3/2x−3/2i

−x
− i

u1/2

x3/2

1F1(1, 4/3, u3/2x−3/2i)

Γ(4/3)

)
du.

Since

Im i1F1(1, 4/3, yi) = Re

∞∑

k=0

(1)k(iy)k

k!(4/3)k
=

∞∑

k=0

(−y2)k

(4/3)2k

=

∞∑

k=0

(1)k(−y2)k

k!(4/6)k(7/6)k22k
= 1F2(1; 2/3, 7/6;−y2/4)

12



we finally get

P1(τ ∈ dx)

=
1

π

∫ ∞

0

e−u

(
sin(u3/2x−3/2)

x
+

u1/2

x3/2

1F2(1; 2/3, 7/6;−u3x−3/4)

Γ(4/3)

)
du

=
1

π

∫ ∞

0

e−tx

(
sin(t3/2) +

t1/21F2(1; 2/3, 7/6;−t3/4)

Γ(4/3)

)
dt.

Remark. It is possible to obtain the formula (16) from the results of
M. Kwaśnicki [13]. However, in order to do this, one has to make several
non-elementary transformations of integrals and our approach seems simpler
than using [13].

Acknowledgement. We thank Christian Berg for discussions on the
Stieltjes transform and Thomas Simon for helpful comments and bibliograph-
ical indications.
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