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We study the exit time τ = τ (0,∞) for 1-dimensional strictly stable processes and express its Laplace transform at t α as the Laplace transform of a positive random variable with explicit density. Consequently, τ satisfies some multiplicative convolution relations. For some stable processes, e.g. for the symmetric 2 3 -stable process, explicit formulas for the Laplace transform and the density of τ are obtained as an application.

Introduction

Let α ∈ (0, 2) and (X t , P x ) be a strictly α-stable process in R with characteristic function

E 0 e iXtz = exp -t|z| α 1 -iβ tan πα 2 sgn z ,
where β ∈ [-1, 1] and β = 0 for α = 1. For any D ⊂ R let τ D = inf{t ≥ 0 : X t ∈ D} be the first exit time from D of the process X t . Throughout this article we shall consider the starting point x > 0 and τ = τ (0,∞) , the exit time of X t from the positive half-line.

The question of the first exit time from domains are basic for all stochastic processes. Surprisingly few exact formulas are known for stable processes. The only exceptions are Brownian motion, completely asymmetric stable processes with α > 1 (see [START_REF] Bingham | Maxima of sums of random variables and suprema of stable processes[END_REF], [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF], [START_REF] Simon | Fonctions de Mittag-Leffler et processus de Lévy stables sans sauts négatifs[END_REF]) and symmetric Cauchy process ( [START_REF] Darling | The maximum of sums of stable random variables[END_REF], see also [START_REF] Kulczycki | Spectral properties of the Cauchy process on half-line and interval[END_REF]). The quotient τ /τ was studied for independent τ and dual τ in [START_REF] Doney | On the maxima of random walks and stable processes and the arc-sine law[END_REF].

Some recent results on this problem in the completely asymmetric case were obtained by T. Simon in [START_REF] Simon | Fonctions de Mittag-Leffler et processus de Lévy stables sans sauts négatifs[END_REF] and next were applied in [START_REF] Patie | Intertwining certain fractional derivatives[END_REF] and [START_REF] Simon | Hitting densities for spectrally positive stable processes[END_REF]. On the other hand, some formulas were found by A. Kuznetsov in [START_REF] Kuznetsov | On extrema of stable processes[END_REF], however the final expressions are complicated. M. Kwaśnicki in [START_REF] Kwaśnicki | Spectral analysis of subordinated Brownian motions in half-line[END_REF] gives an integral representation of the density of τ in the case of symmetric stable processes (β = 0).

In this article we study the exit time τ = τ (0,∞) for 1-dimensional stable processes and give in Theorem 3 a new formula for its Laplace transform. It follows that τ satisfies some multiplicative convolution relations(Corollary 6); in particular for α > 1 the exit time τ is the multiplicative convolution of a 1/α-stable subordinator with an explicitly given random variable M α,ρ . We generalize in this way the result of [START_REF] Simon | Fonctions de Mittag-Leffler et processus de Lévy stables sans sauts négatifs[END_REF] for all stable processes. Applications of Theorem 3 are next given in the final part of the article. New explicit formulas for the Laplace transform and the density of τ are proven for the processes dual to those of the Doney's class C 1,1 , in particular for the symmetric 2 3 -stable process (Proposition 7 and Corollary 8). Further applications of Theorem 3 will be presented in a forthcoming paper.

The main tool to prove the results of this article is a series representation that we obtained in [START_REF] Graczyk | On Wiener Hopf factors of stable processes[END_REF] for the logarithm of the bivariate Laplace exponent κ(η, θ) of the ascending ladder process built from the process X t . This application of the series representation of ln κ was announced in [START_REF] Graczyk | On Wiener Hopf factors of stable processes[END_REF]. It allows to determine explicitly in Proposition 1 the inverse Stieltjes transform of the function 1/κ(1, θ).

Stieltjes transform and Wiener-Hopf factors

In this part of the article we will exploit our series representation of κ(1, θ) from [START_REF] Graczyk | On Wiener Hopf factors of stable processes[END_REF] by inverting a Stieltjes transform.

Recall that if µ is a positive Borel measure on [0, ∞) then for any x ∈ (0, ∞) the Stieltjes transform of µ is defined by

Sµ(θ) = ∞ 0 1 θ + x dµ(x) (1) 
whenever the integral converges. According to [START_REF] Berg | Quelques remarques sur le cône de Stieltjes[END_REF], a function G on (0, ∞) is of the form G(θ) = a + Sµ(θ) for a positive measure µ and a ≥ 0 if and only if (S1) G extends to a holomorphic function in the cut plane

C \ R - (S2) G(θ) ≥ 0 for θ > 0 (S3) ImG(z) ≤ 0 for Imz > 0. Then the inverse Stieltjes transform is S -1 (G)(x) = -(1/π) lim y→0 + ImG(-x + iy) , x > 0 ,
where the limit, in general, is in the vague sense and equals µ. If µ is absolutely continuous with a continuous density, the limit is equal to the density of µ for all x > 0 ( [START_REF] Widder | The Laplace transform[END_REF]).

Let α ∈ (0, 2) and (X t , P x ) be a strictly α-stable process in R. By κ α,ρ (η, θ) we denote the bivariate Laplace exponent of the ascending ladder process built from X t . We normalize it requiring that κ α,ρ (1, 0) = 1. To simplify the notation we will write κ(η, θ) for a fixed pair α, ρ (or equivalently a fixed process X t ). By κ we denote the Laplace exponent for the dual process Xt = -X t . As usually we write the positivity coefficient

ρ = P 0 (X t ≥ 0) = 1 2 + 1 πα arctan β tan πα 2 .
Proposition 1. For ρ ∈ (0, 1] \ {1/α} we have

sin(ραπ) π ∞ 0 1 x + θ x α κ(1, x) x 2α + 2x α cos(ραπ) + 1 dx = 1 κ(1, θ) . (2) 
Proof. Denote G(θ) = 1/κ(1, θ). The function G(θ) extends to a holomorphic function h 1 (z) on C \ R -(see [START_REF] Fourati | Inversion de l'espace et du temps des processus de Lévy stables[END_REF],(i) p.205). Let L be the set of Liouville numbers. For θ ∈ (0, 1) and α ∈ L ∪ Q we have by [START_REF] Graczyk | On Wiener Hopf factors of stable processes[END_REF] 

G(θ) = exp - ∞ m=1 (-1) m+1 θ m sin(ρmπ) m sin( mπ α ) - ∞ k=1 (-1) k+1 θ αk sin(ραkπ) k sin(αkπ) .
The right hand side of the last formula may be extended to a holomorphic function

h 2 (z) on {z ∈ C : |z| < 1} \ R -defining w α = exp(αLogw)
where Logw = ln |w| + iArgw, Argw ∈ (-π, π], is the principal value of the complex logarithm. We note that h 1 = h 2 on (0, 1), hence

h 1 = h 2 on {z ∈ C : |z| < 1} \ R -and h 2 extends to a holomorphic function on C \ R -, equal for |z| > 1 to the holomorphic extension of 1 κ(1,θ) for θ > 1.
In the first part of the proof we will compute

l(x) = - 1 π lim y→0 + ImG(-x + iy)
for positive x. Denote by h(z) the expression under exponential of h 2 . Let us compute for 0 < x < 1

l(x) = - 1 π lim y→0 + Im exp(h(-x + iy)) = - 1 π e Re(w) sin(Im(w)),
where

w = - ∞ m=1 (-1) m+1 (-x) m sin(ρmπ) m sin( mπ α ) - ∞ k=1
(-1) k+1 e iαkπ x αk sin(ραkπ) k sin(αkπ) .

The last limit is justified by a standard estimation argument, that implies that in a converging power series one can enter the limit under the series. Moreover, the same argument shows that when 0 < x < 1, we have

l(x) = - 1 π lim w→-x,Imw>0
ImG(w) = -1 π e Re(w) sin(Im(w)).

(

) 3 
Now we evaluate

Re(w) = ∞ m=1 x m sin(ρmπ) m sin( mπ α ) - ∞ k=1 (-1) k+1 cos(αkπ)x αk sin(ραkπ) k sin(αkπ) , Im(w) = - ∞ k=1 (-1) k+1 sin(αkπ)x αk sin(ραkπ) k sin(αkπ) = ∞ k=1 (-1) k x αk sin(ραkπ) k .
We will need the following formulas from [10]

∞ k=1 p k sin(kϕ) k = arctan p sin ϕ 1 -p cos ϕ , ϕ ∈ (0, 2π), p 2 ≤ 1. ( 4 
) ∞ k=1 p k cos(kϕ) k = - 1 2 log(1 -2p cos ϕ + p 2 ) , ϕ ∈ (0, 2π), p 2 ≤ 1. (5)
Therefore applying a formula sin(arctan u) = u √ 1+u 2 we get sin(Im(w)) = sin(arctan

-x α sin(ραπ) 1 + x α cos(ραπ) ) = -x α sin(ραπ) 1+x α cos(ραπ) 1 + x α sin(ραπ) 1+x α cos(ραπ) 2 = -x α sin(ραπ) x 2α + 2x α cos(ραπ) + 1 .
Now we compute Re(w). By (5) we get

Re(w) = ∞ m=1 (-1) m+1 x m sin((1 -ρ)mπ) m sin( mπ α ) + ∞ k=1 (-1) k+1 x αk sin((1 -ρ)αkπ) k sin(αkπ) - ∞ k=1 (-1) k+1 x αk cos(ραkπ) k = log κ(1, x) - 1 2 log(1 + 2x α cos(ραπ) + x 2α ).
Hence

- 1 π e Re(w) sin(Im(w)) = sin(ραπ) π x α κ(1, x) x 2α + 2x α cos(ραπ) + 1 = l(x) > 0.
By [9, Lemma 5] we have for θ > 1

κ(1, θ) = θ αρ κ(1, 1/θ)
and we use the same method and (3) to obtain

l(x) = - 1 π lim w→-x,Imw>0 ImG(w) = sin(ραπ) π x α κ(1, x) x 2α + 2x α cos(ραπ) + 1 (6) for x > 0, x = 1.
As the function l(x) is continuous at x = 1 and by [8, p.205] the limit lim w→-1,Imw>0 ImG(w) exists, it follows that the convergence in (6) holds also for x = 1.

Let us now justify the fact that the function G(θ) = 1/κ(1, θ) is a Stieltjes transform of a positive measure µ on R + . We will check the conditions (S1-3) given in the beginning of this section.

The function G(θ) is strictly positive for θ ∈ (0, ∞) and it extends to a holomorphic function h 1 (z) on C \ R -. Thus the conditions (S1) and (S2) are verified. In order to justify (S3), we use the following property that we proved above: the harmonic function -(1/π)ImG extends continuously to the closed upper half-space {Imz ≥ 0} and its boundary values on R are l(-x) > 0 when x < 0 and 0 for x ≥ 0. Taking into account the fact that lim |z|→∞ G(z) = 0 ([8, p.205]), the maximum principle([2, 1.10]) implies that ImG(z) ≤ 0 on {Imz > 0} and (S3) also holds.

It follows that for a certain a ≥ 0 we have G(θ) = a+S(l)(θ). Considering θ → ∞ we determine a = 0.

Finally consider any α ∈ (0, 2]. Since the Lebesgue measure of the set L ∪ Q is 0 we can take a sequence α n tending to α. Passing to the limit we obtain (2) for all α ∈ (0, 2].

Remark. Other proofs of the fact that 1/κ(1, θ) is the Stieltjes transform of a positive measure µ seem possible, using properties of Bernstein functions ( [START_REF] Schilling | Bernstein functions, Theory and Applications[END_REF]).

We deduce immediately from Proposition 1 the following corollary.

Corollary 2. For ρ ∈ [0, 1) \ {1 -1/α} we have

sin((1 -ρ)απ) π ∞ 0 1 x + θ x α κ(1, x) x 2α + 2x α cos((1 -ρ)απ) + 1 dx = 1 κ(1, θ) . (7) 
3 Laplace transform of τ and applications

The following theorem is the main result of the article.

Theorem 3. Let X t be a non-spectrally positive strictly α-stable process on R. For any t > 0 we have

E 1 e -tτ = sin((1 -ρ)απ) π ∞ 0 e -t 1/α x x α-1 κ(1, x) x 2α + 2x α cos((1 -ρ)απ) + 1 dx. ( 8 
)
Remark. Observe that the only case excluded from the Theorem 3 is well known: when X t is a spectrally positive α-stable process starting from X 0 = x, 1 < α < 2, then (τ x (0,∞) ) x>0 is a 1/α-stable subordinator and E 1 e -tτ = e -t 1/α ([4] p.281). When X t is spectrally negative, the formula (8) was obtained recently by T. Simon([17]).

Proof. We note that if g(0) = 1 then

∞ 0 1 x + t f (x)dx = g(t) =⇒ ∞ 0 1 x + t f (x) x dx = 1 t - g(t) t . (9) 
Indeed

1 = ∞ 0 x + t x + t f (x) x dx = g(t) + ∞ 0 t x + t f (x)
x dx

From [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF] we know that

∞ 0 e -θy E y e -ητ dy = 1 θ - κ(η, 0) θ κ(η, θ) , (10) 
where τ = τ (0,∞) and η, θ > 0. Putting η = 1 and applying ( 9) to ( 7) we get

∞ 0 e -θy E y e -τ dy = sin((1 -ρ)απ) π ∞ 0 1 x + θ x α-1 κ(1, x) x 2α + 2x α cos((1 -ρ)απ) + 1 dx = sin((1 -ρ)απ) π ∞ 0 ∞ 0 e -y(x+θ) x α-1 κ(1, x) x 2α + 2x α cos((1 -ρ)απ) + 1 dy dx = ∞ 0 e -θy sin((1 -ρ)απ) π ∞ 0 e -yx x α-1 κ(1, x) x 2α + 2x α cos((1 -ρ)απ) + 1 dx dy. Therefore E y e -τ = sin((1 -ρ)απ) π ∞ 0 e -yx x α-1 κ(1, x) x 2α + 2x α cos((1 -ρ)απ) + 1 dx
and assertion of the theorem follows from scaling property E y e -τ = E 1 e -y α τ of stable processes.

For α ≥ 1 we immediately obtain from Theorem 3 a formula for the density h = h α,ρ of τ under P 1 . Corollary 4. Let α ∈ (1, 2). The density of τ = τ (0,∞) under P 1 is given by

h(s) = sin((1 -ρ)απ) π ∞ 0 η 1/α (x, s) x α-1 κ(1, x) x 2α + 2x α cos((1 -ρ)απ) + 1 dx, ( 11 
)
where η γ (t, x) is the transition density of γ-stable subordinator.

Proof. Since

∞ 0 e -xs η γ (t, x)dx = e -ts γ we obtain by Theorem 3

∞ 0 e -st h α (s) ds = sin((1 -ρ)απ) π ∞ 0 ∞ 0 e -st η 1/α (x, s) x α-1 κ(1, x) x 2α + 2x α cos((1 -ρ)απ) + 1 ds dx = ∞ 0 e -st sin((1 -ρ)απ) π ∞ 0 η 1/α (x, s) x α-1 κ(1, x) x 2α + 2x α cos((1 -ρ)απ) + 1 dx ds
and the assertion follows.

Corollary 5. If X t is a Cauchy process on R (α = 1, ρ = 1/2) then the density of the exit time τ = τ (0,∞) under P 1 is given by

h(x) = 1 π κ(1, x) x 2 + 1 , x ≥ 0.
Remark. The above formula for h 1,1/2 was obtained previously by Darling in [START_REF] Darling | The maximum of sums of stable random variables[END_REF] (see also [11, (7.13)]).

For α = 1, Theorem 3 gives interesting multiplicative convolution relations verified by τ . We present them in the following subsection.

Interpretation in terms of multiplicative convolutions

For a given strictly α-stable process X t with ρ ∈ [0, 1) \ {1 -1/α} we define the following function on

R + m α,ρ (x) = sin((1 -ρ)απ) πα κ(1, x 1/α ) x 2 + 2x cos((1 -ρ)απ) + 1 , x ≥ 0.
Observe that m α,ρ (x) is a probability density on R + . This follows from the formula

sin((1 -ρ)απ) π ∞ 0 x α-1 κ(1, x) x 2α + 2x α cos((1 -ρ)απ) + 1 dx = 1
obtained from (8) when t → 0 and by a change of variables x = y 1/α . Denote by M α,ρ a positive random variable with density m α,ρ . The variable M α,1/α , 1 < α < 2 appeared for the first time in [START_REF] Simon | Fonctions de Mittag-Leffler et processus de Lévy stables sans sauts négatifs[END_REF] for the special case of a completely asymmetric α-stable process, 1 < α < 2 (in our context a spectrally negative process), when κ(1, x 1/α ) = 1 + x 1/α .

Let γ ∈ (0, 1) and η γ (t, x) be the transition density of γ-stable subordinator. Denote by N(γ) a random variable with the density η γ (1, x), i.e.

E exp(-xN(γ)) = e -x γ , x ≥ 0.
Recall that if Y and Z are independent random variables on (0, ∞) with densities f and g respectively, then the multiplicative convolution Y × Z p is a random variable with the density

P[Y × Z p ∈ dt] = ∞ 0 f ( t u p )g(u) du u p . (12) 
Corollary 6. (i) Let 1 < α < 2. Suppose that random variables M α,ρ and N(1/α) are independent and that X 0 = 1. We have

τ d = M α,ρ × N(1/α),
(ii) Let 0 < α < 1. Suppose that random variables τ and N(α) are independent. We have

τ × N(α) α d = M α,ρ .
Proof. Part (i) follows immediately from Corollary 4. In [START_REF] Kulczycki | Spectral properties of the Cauchy process on half-line and interval[END_REF] we substitute x α = u and use the scaling property η 1/α (u 1/α , s) = u -1 η 1/α (1, su -1 ).

In order to prove (ii), we use e -ty = E[-(ty) 1/α N(α)] in the left-hand side of (8), we apply Fubini and change variables x = y 1/α u. By unicity of the Laplace transform we get

∞ 0 h α ( x α u α )η α (u) du u α = sin((1 -ρ)απ) πα κ(1, x) x 2α + 2x α cos((1 -ρ)απ) + 1
Replacing x α by x in the last formula and using [START_REF] Kuznetsov | On extrema of stable processes[END_REF] ends the proof of (ii).

Application for the Doney's class Ĉ1,1

Let α ∈ [ 1 2 , 1) and 1 -ρ = 1/α -1, i.e. we consider a process dual to a process from the class C 1,1 from R. Doney's article [START_REF] Doney | On Wiener-Hopf factorisation and the distribution of extrema for certain stable processes[END_REF]. We denote the class of such processes by Ĉ1,1 . In this case we have by [START_REF] Doney | On Wiener-Hopf factorisation and the distribution of extrema for certain stable processes[END_REF] or [START_REF] Graczyk | On Wiener Hopf factors of stable processes[END_REF] κ(1, x) =

x 2α -2x α cos απ + 1 1 + x .

We recall the definition of the confluent hypergeometric functions 1 F 1 and U (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF])

1 F 1 (a, b, z) = ∞ k=0 (a) k z k (b) k k! , z ∈ C, U(a, b, z) = π sin πb 1 F 1 (a, b, z) Γ(1 + a -b)Γ(b) -z 1-b 1 F 1 (1 + a -b, 2 -b, z) Γ(a)Γ(2 -b) , z ∈ C \ R -,
where (a) k = a(a + 1) . . . (a + k -1), (a) 0 = 1 is Pochhammer symbol. Using Theorem 3 we get the following formulas for Laplace and Stieltjes transforms of τ Proposition 7. If α ∈ [ 1 2 , 1) and X t ∈ Ĉ1,1 then

(i) E 1 e -τ t = sin(απ) π Γ(α)Γ(1 -α, t 1/α )e t 1/α , (13) 
(ii)

E 1 1 x + τ = ∞ 0 e -u e u 1/α x -1/α x - u 1/α-1 x 1/α 1 F 1 (1, 2 -α, u 1/α x -1/α ) Γ(2 -b) du, (14) 
where Γ(a, z) = ∞ z t a-1 e -t dt is the incomplete Gamma function.

Proof. To prove (i) we use simple transformations of integrals

E 1 e -τ t = sin(α(1/α -1)π) π ∞ 0 e -t 1/α x x α-1 (x 2α -2x α cos απ + 1) (1 + x)(x 2α + 2x α cos(α(1/α -1)π) + 1) dx = sin(απ) π ∞ 0 e -t 1/α x x α-1 1 + x dx (15) = sin(απ) π ∞ 0 ∞ 0 e -t 1/α x e -s(x+1) x α-1 ds dx = sin(απ) π ∞ 0 e -s Γ(α) (t 1/α + s) α ds = sin(απ)Γ(α) π ∞ t 1/α e t 1/α -r 1 r α dr = sin(απ) π Γ(α)Γ(1 -α, t 1/α )e t 1/α .
To prove (ii) we use the following integral representation of U (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF])

U(a, b, z) = 1 Γ(a) ∞ 0 e -zt t a-1 (1 + t) b-a-1 dt, Re z > 0.
Applying this to [START_REF] Patie | Intertwining certain fractional derivatives[END_REF] we get

E 1 1 x + τ = sin(απ) π ∞ 0 ∞ 0 e -xt e -t 1/α s s α-1 1 + s ds dt = sin(απ) π ∞ 0 ∞ 0 e -u e -u 1/α x -1/α s s α-1 x(1 + s) ds du = sin(απ) π ∞ 0 e -u Γ(α) U(α, α, u 1/α x -1/α ) x du.
Hence

E 1 1 x + τ = ∞ 0 e -u x 1 F 1 (α, α, u 1/α x -1/α ) - u 1/α-1 x 1/α-1 1 F 1 (1, 2 -α, u 1/α x -1/α ) Γ(2 -b) du = ∞ 0 e -u e u 1/α x -1/α x - u 1/α-1 x 1/α 1 F 1 (1, 2 -α, u 1/α x -1/α ) Γ(2 -b) du.
It is possible to invert Stieltjes transform in [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF] and the resulting density of τ is given by a series either in x or in 1/x (cf. [START_REF] Kuznetsov | On extrema of stable processes[END_REF]). For α = 2/3 the process X t is symmetric and the density of τ has a nice integral representation involving hypergeometric function

1 F 2 (a; b, c; z) = ∞ k=0 (a) k z k (b) k (c) k k! , z ∈ C.
Corollary 8. Let X t be a symmetric 2 3 -stable process on R with X 0 = 1. Then the density of τ = τ (0,∞) is given by the formula

P 1 (τ ∈ dx) = 1 π
∞ 0 e -tx sin(t 3/2 ) + t 1/2 1 F 2 (1; 2/3, 7/6; -t 3 /4) Γ(4/3) dt [START_REF] Schilling | Bernstein functions, Theory and Applications[END_REF] and its Laplace transform is

E 1 e -tτ = √ 3 2π
Γ(2/3)Γ(1/3, t 3/2 )e t 3/2 , t > 0.

Proof. The second part is a direct consequence of [START_REF] Kwaśnicki | Spectral analysis of subordinated Brownian motions in half-line[END_REF]. By ( 14)

E 1 1 x + τ = ∞ 0
e -u e u 3/2 x -3/2 x -u 1/2 x 3/2 1 F 1 (1, 4/3, u 3/2 x -3/2 ) Γ(4/3) du.

Inverting Stieltjes transform we get

P 1 (τ ∈ dx) = - 1 π Im ∞ 0
e -u e u 3/2 x -3/2 e -3iπ/2 -x -u 1/2 x 3/2 e 3iπ/2 1 F 1 (1, 4/3, u 3/2 x -3/2 e -3iπ/2 ) Γ(4/3) du

= - 1 π Im ∞ 0
e -u e u 3/2 x -3/2 i -x -i u 1/2 x 3/2 1 F 1 (1, 4/3, u 3/2 x -3/2 i) Γ(4/3) du.

Since

Im i 1 F 1 (1, 4/3, yi) = Re Remark. It is possible to obtain the formula ( 16) from the results of M. Kwaśnicki [START_REF] Kwaśnicki | Spectral analysis of subordinated Brownian motions in half-line[END_REF]. However, in order to do this, one has to make several non-elementary transformations of integrals and our approach seems simpler than using [START_REF] Kwaśnicki | Spectral analysis of subordinated Brownian motions in half-line[END_REF].

( 1 )

 1 k (-y 2 ) k k!(4/6) k (7/6) k 2 2k = 1 F 2 (1; 2/3, 7/6; -y 2 /4)we finally get P 1 (τ ∈ dx)
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