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This paper describes

MSVMpack, an open source software package dedicated to our generic model of multi-class support vector machine. All four multi-class support vector machines (M-SVMs) proposed so far in the literature appear as instances of this model. MSVMpack provides for them the first unified implementation and offers a convenient basis to develop other instances. This is also the first parallel implementation for M-SVMs. The package consists in a set of command-line tools with a callable library. The documentation includes a tutorial, a user's guide and a developer's guide.

Introduction

In the framework of polytomy computation, a multi-class support vector machine (M-SVM) is a support vector machine (SVM) dealing with all the categories simultaneously. Four M-SVMs can be found in the literature: the models of [START_REF] Weston | Multi-class support vector machines[END_REF], [START_REF] Crammer | On the algorithmic implementation of multiclass kernel-based vector machines[END_REF], [START_REF] Lee | Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data[END_REF], and the M-SVM 2 of [START_REF] Guermeur | A quadratic loss multi-class SVM for which a radius-margin bound applies[END_REF]. The proposed software implements them all in a single package named MSVMpack. Its design paves the way for the implementation of our generic model of M-SVM and the integration of additional functionalities such as model selection algorithms. The current version offers a parallel implementation with the possibility to use custom kernels. This software package is available for Linux under the terms of the GPL at http://www.loria.fr/ ˜lauer/MSVMpack/ and provides two command-line tools with a C application programming interface without dependencies beside a linear programming solver.

Multi-Class Support Vector Machines

We consider Q-category classification problems where X is the description space and the set Y of the categories can be identified with [

[ 1, Q ] ].
Let κ be a real-valued positive type function [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF]) on X 2 and let (H κ , •, • H κ ) be the corresponding reproducing kernel 

Hilbert space. Let H = H Q κ and H = (H κ + {1}) Q . H is the class of functions h = (h k ) 1 k Q from X to R Q that can be written as h (•) = h (•) + b = hk (•) + b k 1 k Q , where h = hk 1 k Q ∈ H and b = (b k ) 1 k Q ∈ R Q . A

Reference M-SVM type

M p K 1 K 2 K 3 Weston and Watkins (1998) WW I Qm 1 1 1 0 Crammer and Singer (2001) CS 1 Q-1 I Qm 1 1 1 1 Lee et al. (2004) LLW I Qm 1 0 1 Q-1 0 Guermeur and Monfrini (2011) MSVM2 M (2) 2 0 1 Q-1 0
Table 1: Specifications of the M-SVMs with their type as used by the MSVMpack interface.

• H given by:

∀ h ∈ H , h H = Q ∑ k=1 hk , hk H κ = hk H κ 1 k Q 2 .
With these definitions at hand, our generic definition of a Q-category M-SVM is:

Definition 1 (Generic model of M-SVM, Definition 4 in Guermeur, forthcoming) Let ((x i , y i )) 1 i m ∈ (X × [ [ 1, Q ] ]) m and λ ∈ R * + . Let ξ ∈ R Qm be a vector such that for (i, k) ∈ [ [ 1, m ] ] × [ [ 1, Q ] ], ξ ik is its component of index (i -1)Q + k, with (ξ iy i ) 1 i m = 0 m . A Q-category M-SVM is a classifier obtained by solving a convex quadratic programming (QP) problem of the form min h,ξ J (h, ξ) = Mξ p p + λ h 2 H s.t.            ∀i ∈ [ [ 1, m ] ] , ∀k ∈ [ [ 1, Q ] ] \ {y i } , K 1 h y i (x i ) -h k (x i ) K 2 -ξ ik ∀i ∈ [ [ 1, m ] ] , ∀(k, l) ∈ ([ [ 1, Q ] ] \ {y i }) 2 , K 3 (ξ ik -ξ il ) = 0 ∀i ∈ [ [ 1, m ] ] , ∀k ∈ [ [ 1, Q ] ] \ {y i } , (2 -p)ξ ik 0 (1 -K 1 ) ∑ Q k=1 h k = 0, where p ∈ {1, 2}, (K 1 , K 3 ) ∈ {0, 1} 2 , K 2 ∈ R *
+ and the matrix M is such that Mξ p is a norm of ξ.

Extending to matrices the notation used to designate the components of ξ and using δ to denote the Kronecker symbol, let us define the general term of M (2) ∈ M Qm,Qm (R) as:

m (2) ik, jl = (1 -δ y i ,k ) 1 -δ y j ,l δ i, j δ k,l + √ Q -1 Q -1 .
This allows us to summarize the characteristics of the four M-SVMs in Table 1. The potential of the generic model is discussed in Guermeur (forthcoming).

The Software Package

Training Algorithm

As in the bi-class case, an M-SVM is trained by solving the Wolfe dual of its instantiation of the QP problem in Definition 1. The corresponding dual variables α ik are the Lagrange multipliers of the constraints of correct classification. The implemented QP algorithm is based on the Frank-Wolfe method [START_REF] Frank | An algorithm for quadratic programming[END_REF], in which each step of the descent is obtained as the solution of a linear program (LP). The LP solver included in MSVMpack is lp solve [START_REF] Berkelaar | An Open Source (Mixed-Integer) Linear Programming System[END_REF]. In order to make it possible to process large data sets, a decomposition method is applied and only a small subset of the data is considered in each iteration. Let J d be the dual objective function and let α = (α ik ) be a (feasible) solution of the dual problem obtained at some point of the training procedure. The quality of α is measured thanks to the computation of an upper bound U(α) on the optimum J (h * , ξ * ) = J d (α * ) that goes to this optimum. The stopping criterion is defined as a large enough value for J d (α)/U(α). In MSVMpack, the bound U(α) is obtained by solving the primal problem with h being the function associated with the current α. This partial optimization requires little computation except in the case of the M-SVM 2 , for which another QP problem has to be solved. However, the computational burden may increase for a large number of classes (e.g., Q > 20).

Practical Use and Experiments

In its most simple form, the command line 'trainmsvm trainingdata -m WW' is used to train an M-SVM, where the -m flag allows one to choose the type of M-SVM model according to Table 1. Then, this model can be applied to a test set by using 'predmsvm testdata'. The complete list of options and parameters for these command-line tools can be found in the documentation or simply obtained by calling them without argument.

Table 2 shows a comparison of MSVMpack with other implementations of M-SVMs on a subset of the USPS database with 500 instances from 10 classes and the whole CB513 data set with 84119 instances from 3 classes. For the latter, the numbers reflect the average error and total times over a 5-fold cross validation, and the implementations that failed due to a lack of memory are not included in the Table . We refer the reader to the documentation for the details of the experimental setup and additional comparisons on other data sets.

Calling the Library from Other Programs

The "Developer's guide" section of the documentation presents the API reference and an example program including MSVMpack functionalities through this API. The library defines specific data structures for M-SVM models and data sets. It also provides wrapper functions, which act according to the M-SVM model type, for example, call the corresponding training function. The standard workflow for a train-and-test sequence is: call MSVM make model() to initialize the model; call MSVM make dataset() for each data set to load; call MSVM train() to train the model; and call MSVM classify set() to test the trained classifier.

Ongoing and Future Developments

MSVMpack implements the four M-SVMs proposed in the literature. Current work focuses on the explicit implementation of our generic model of M-SVM, which will make it possible to study new machines thanks to a simple choice of the values of the hyperparameters M, p, and (K t ) 1 t 3 . Future

  function h assigns the category y to x if and only if y = argmax 1 k Q h k (x) (cases of ex aequo are dealt with by introducing a dummy category). H is endowed with the norm c 2011 Fabien Lauer and Yann Guermeur.

MSVMpack includes a C application programming interface (API) and two command-line tools: one for training an M-SVM and one for making predictions with a trained M-SVM. The following discusses some algorithmic issues before presenting these tools and the API.

work will consider including automatic tuning procedures for the regularization parameter λ, and relaxing the hypothesis on the norm of the penalizer.