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By employing a semiclassical Boltzmann transport equation and using an energy and size dependent relaxation time (τ ) approximation (RTA), we evaluate the thermoelectric figure-of-merit ZT of a quantum wire with rectangular cross-section. The inferred ZT shows abrupt enhancement in comparison to its counterparts in bulk systems. Still, the estimated ZT for the representative Bi 2 Te 3 nanowires and its dependence on wire parameters deviate considerably from those predicted by the existing RTA models with a constant τ . In addition, we address contribution of the higher energy subbands to the transport phenomena, the effect of chemical potential tuning on ZT , and correlation of ZT with quantum size effects (QSEs). Particularly, we show that within each subband, ZT has an optimum value which depends on wire dimensions and chemical potential. The obtained results are of general validity for a wide class of systems and may prove useful in the ongoing development of the modern thermoelectric applications.

Introduction

Thermoelectricity deals with conversion of heat to electricity and vice versa. Last few years, mainly due to the recent advances in material science and fabrication techniques on the one hand and a quest for alternative sources of energy generation on the other hand, have witnessed a rejuvenation of interest in the thermoelectric phenomena [1,2,3,4,5,6,7,8,9,10,11,12,13]. Performance of a thermoelectric device is defined through its dimensionless figure-of-merit ZT ≡ S 2 σT /κ. Here, T is the absolute temperature, S stands for the thermopower (the Seebeck coefficient), and σ and κ represent the electrical and thermal conductivities, respectively. At first glance, a large ZT might be achievable by maximizing σ and S, and by minimizing κ. The problem, however, lies in the fact that these quantities are interdependent and each of them is rather sensitive to the material properties, to the temperature, and to the size and geometry of the underlying building blocks in a miniaturized thermoelectric module. Consequently, often one of the two not-completely-independent strategies is exploited: increasing of the power factor P ≡ S 2 σ which is largely an electronic property, or decreasing of κ which consists of electronic κ e and lattice κ ph. contributions by manipulation of the latter. A large P can be achieved by tuning of the chemical potential level through doping or external electric fields (gating) and by having control over the scattering mechanisms of the charge carriers in the device. Reduction in κ ph. , instead, can be obtained by exploitation of material systems built up from heavy elements and by intentional enhancement of the phonon scattering events through introduction of lattice imperfections (impurity atoms, superlattice structures, etc.) or by intensifying of the surface scattering of the heat carriers from the specimen boundaries in the systems with reduced dimensionality.

In what follows, assuming a constant κ ph. , we focus on the charge carrier contributions to the thermoelectric properties of a one-dimensional (1D) wire with discrete energy levels. To demonstrate the applicability of the present approach, we evaluate ZT in bismuth telluride nanowires and discuss the obtained results with an eye on the predictions of the earlier models.

Theoretical model

Current generic models (as compared to the ab initio calculations) for evaluation of the thermoelectric figure-of-merit are mostly based on the solution of Boltzmann transport equation (BTE) with various degrees of sophistications. An efficient approximation for solving BTE can be attained by its linearization and through introduction of a relaxation time τ , the time period within which the system gains its equilibrium after removal of the external stimulus. Consequently, the generalized transport coefficients of the system L (l) can be obtained through the relation [START_REF] See | Electrons and Phonons[END_REF] 

L (l) ≡ νq 2-l 2π - ∂f 0 ∂E τ (k)(E(k) -ζ) l v(k)v(k)dk, (1) 
where, q is the electrical carrier charge, E(k) is the energy-wavevector dispersion relation, hv(k) ≡ ∇ k E(k) defines the velocity operator (h is the reduced Planck constant), and ν is the valley degeneracy. The equilibrium Fermi-Dirac distribution function is given by f

0 (E)≡[1+exp β(E -ζ)] -1 , where β ≡ 1/k B T (k B is the Boltzmann constant)
and ζ denotes the chemical potential. Correspondingly, the measurable transport quantities are defined by the following expressions:

σ ≡L (0) , S ≡ 1 T L (1) L (0) -1 , κ e ≡ 1 T L (2) -L (1) L (0) -1 L (1) . (2) 
Here, σ designates the electrical conductivity tensor, S is the thermopower (Seebeck coefficient), and κ e is the electronic contribution to the thermal conductivity [START_REF] See | Electrons and Phonons[END_REF].

The precise form of the dispersion relation above can only be derived through detailed band structure calculations and depends strongly on the material properties and on the boundary conditions in the system of interest. Similarly, the relaxation time for any specific process depends on the density of energy states (DOS) and on the types of the scattering mechanisms taken into account. In most calculations, however, one expresses DOS via the single-particle eigenenergies and assumes a power-law dependence of the relaxation time on energy, τ (E) ∝ E α . It was only under such conditions that A. F. Ioffe arrived at his compact expressions in terms of the Fermi-Dirac integrals for the evaluation of the transport coefficients in Eq. ( 1) above [START_REF] Ioffe | Semiconductor Thermoelements and Thermoelectric Cooling[END_REF][START_REF] Nolas | Thermoelectrics, Basic Principles and New Materials Developments[END_REF]. Despite this, such basic assumptions have been widely overlooked in the latter evaluations of the ZT values in low-dimensional systems, leading ultimately to the estimations of unrealistically high, monotonously size-dependent, ZT 's in atomically thin nanowires [17,18,19,[START_REF] Dresselhaus | Thermoelectrics Handbook: Micro to Nano[END_REF]. It is worth reminding that in the limit of ultra narrow nanowires, the whole concept of a size-independent DOS and any argument subsequent to it will collapse. For example, predicting an extremely high value of ZT ∼ 40 (based on evaluation of transport properties with a size-independent relaxation time and DOS) for nanowires as thin as ∼1 Å, where there is only a very sparse, discontinuous and strongly size-dependent density of states, will lead to misleading conclusions. (We are not going here, by any means, to underestimate the value of the pioneering work of Dresselhaus and coworkers [17,18,19,[START_REF] Dresselhaus | Thermoelectrics Handbook: Micro to Nano[END_REF], rather to point out the shortcomings of their approach explicitly, and to take their widely cited model one step further.) In such cases, one has to resort to the other proper techniques like, e.g., tight-binding models and check for the consistency of the obtained results. Furthermore, as shown elsewhere [START_REF] Mahan | [END_REF], even minor variations in the form of DOS [and subsequent changes in τ (E)] will affect ZT values dramatically. It is also elucidating to remind that, based on a purely mathematical analysis of the functional in Eq. (1), Mahan and Sofo estimate in [START_REF] Mahan | [END_REF] a universal (that is, independent of size, temperature, and specific material properties) finite upper limit for ZT in semiconductor thermoelectric materials. Based on these facts and to circumvent the above-mentioned crucial shortcomings in the existing theoretical models for low-dimensional thermoelectric systems, starting with the basic principles, below we obtain the transport coefficients and ZT values specifically for a 1D nanowire with quantized energy levels. The key issue in such a treatment is the derivation of a proper, i.e. size and energy dependent, expression for the relaxation time.

To this end, neglecting the many many-body electronic correlations and localization effects, we first assume that the single-particle charge carriers are confined in a wire aligned along the z-axis. The wire has dimensions w, t, and L (width, thickness, and length, respectively) and it's volume is Ω≡wtL. The wave functions and eigenenergies of such a particle can be derived easily by solving of the corresponding Schrödinger equation and are given by

Ψ ij (k) = 2 √ Ω sin iπx w sin jπy t exp (ikz) (3) 
and

E ij (k)≡E ij + h2 k 2 2m z , (4) 
where

E ij ≡ (h 2 π 2 /2)(i 2 /w 2 m x + j 2 /t 2 m y
) are the subband energies, i, j ∈ N, and k is the wavenumber of the traveling particle wave along the wire axis. Above, m x , m y , and m z are the components of the carrier effective mass along the wire axes.

Let us now assume that N scatterers each with a scattering strength V 0 are randomly distributed at positions R j along the wire,

V (r) = N j=1 V 0 δ (r -R j ) . (5) 
Above, δ(r) is the three-dimensional Dirac delta function and r ≡ (x, y, z) indicates the position vector. The corresponding scattering rates can now be obtained through the Fermi's golden rule

τ -1 mnk→m ′ n ′ k ′ = 2π h | Ψ mn (k) | V (r) | Ψ m ′ n ′ (k ′ ) | 2 . (6) 
Here, | Ψ mn (k) and | Ψ m ′ n ′ (k ′ ) stand for the initial and final states of the single-particle wave functions, respectively. Assuming now an elastic scattering with conservation of momentum, the transition rate between the states (m, n) and (m ′ , n ′ ) can be evaluated by averaging over the configuration of the scattering centers [22]; the result is:

τ -1 mn→m ′ n ′ = π 2 ̺ hV 2 0 Λ mn m ′ n ′ g(E)| E=E m ′ n ′ (k ′ ) , (7) 
where

Λ mn m ′ n ′ ≡ (2 + δ mm ′ )(2 + δ nn ′ ), ̺ ≡ N/Ω
is the volume density of scatterers, and the energy density of states g(E) is given by

g(E) = s 2πh Ω wt m z 2 i,j Θ (E -E ij ) E -E ij , ( 8 
)
where s is the spin degeneracy, and Θ designates the Heaviside step function. In Eq. ( 7) above, as in most cases the density and strength of scatterers are unknown and may vary from one individual nanowire to another, it will be helpful to make use of the macroscopic definition of carrier mobility µ ≡ |q| τ /m * (|q| is the magnitude of carrier charge and m * is the effective mass; for a 1D wire aligned along the z-axis, m * = m z ) and define analogously a mean value µ ij for the carrier mobility within each subband (i, j) through the relation µ ij ≡ |q| τ ij /m * . Substituting for the relaxation time in Eq. ( 7) above, the quantity ̺V 2 0 for the subband (i, j) can now be accounted for as 1

̺V 2 0 | ij = sν 4 Ω wt µ ij m z |q| h2 m z 2k B T m,n 1 τ mn . (9) 
Here, the lifetime of the state (m, n) is defined through the Matthiessen's rule τ mn

-1 ≡ m ′ n ′ τ mn→m ′ n ′ -1
, while the corresponding expectation values are given by

τ mn→m ′ n ′ ≡ τ mn→m ′ n ′ (ε)εg(ε)∂ ε f dε εg(ε)∂ ε f dε , (10) 
where, ε ≡ βE stands for the reduced energy. At this point, it should be emphasized that substitution for ̺V 2 0 in Eq. ( 9) above is not a principal restriction on the present model. If the density of scatterers ̺ and their strength V 0 (or only the product ̺V 2 0 ) are known for any single nanowire, one can evaluate all the kinetic coefficients accordingly. The use of a constant mobility here is only to facilitate the comparison to the experimental data and to the results of previous models with a constant relaxation time and a fixed mobility. Correspondingly, ̺V 2 0 can be used as a fitting parameter to experimental data, and will thus provide useful information on the presence and distribution of scattering centers in a fabricated specimen.

Next, substituting for the corresponding expressions and making a coordinate transformation where ε and the reduced chemical potential ζ * ≡ βζ (for electrons) are measured from the bottom of the conduction band [START_REF] See | Electrons and Phonons[END_REF], the transport coefficients in Eq. ( 1) can be expressed as

L (l) = sν wt 4πµ β l+0.5 m z 2 q (1-l) h m,n 1 τ mn i,j F l ij ≡ i,j L (l) ij , (11) 
where

F l ij ≡ F l ij (ζ * ) and
F l ij ≡ ∞ 0 cosh -2 ε + ζ * 2 τ ij (ε)(ε + ζ * ) l ε -ε ij dε. ( 12 
)
In Eq. ( 11) above, L

ij can be interpreted as the contribution of a single subband (i, j) to the generalized transport coefficient L (l) . (The contribution of the holes can be accounted for analogously.) It is also noticeable that the expression in Eq. ( 12) is reminiscent of the Fermi integral (see Eq. ( 14) in the Appendix) appearing in the corresponding models with a size-independent relaxation time introduced originally in [START_REF] Ioffe | Semiconductor Thermoelements and Thermoelectric Cooling[END_REF] and exploited later by Dresselhaus and coworkers in their primary [18] and subsequent studies [19,[START_REF] Dresselhaus | Thermoelectrics Handbook: Micro to Nano[END_REF].

Results and discussion

Next, we evaluate ZT for a bismuth telluride nanowire at T = 70 K and at 300 K. To make the comparison between the predictions of the present model and those of the former studies more transparent, we solve the equations under exactly the same assumptions and use the same material parameters, m x = 0.32, m y = 0.08, and m * = m z = 0.02 for the electronic effective masses (all in units of the free electron mass), and take the same value for the subband mobilities of electrons along the wire axis as adopted in previous calculations [18,19,[START_REF] Dresselhaus | Thermoelectrics Handbook: Micro to Nano[END_REF], µ ij ≈ µ = 1200 cm 2 V -1 s -1 . In both the models addressed here (the present one and that with a constant-τ in Ref. [18,19,[START_REF] Dresselhaus | Thermoelectrics Handbook: Micro to Nano[END_REF]), only electronic contributions to the transport properties are taken into account. The lattice thermal conductivity of bulk Bi 2 Te 3 is κ bulk ph. ≈ 1.5 W/Km. Indeed, generally, thermal conductivity comprises of contribution of phonons with a wide range of wavelengths. In a more precise picture, particularly at lower dimensions, one has to deal with such a spectrum of phonon wavelenghts rather than with the simplified concept of a single phonon mean free path (and a single value for κ). For example, in the case of silicon, phonon mean free paths can span several orders of magnitude at room temperature and can have significant contribution at wavelenghts as large as 1 µm [23]. However, here, as in the corresponding studies with a constant relaxation time [18,19,[START_REF] Dresselhaus | Thermoelectrics Handbook: Micro to Nano[END_REF], it is assumed that the phonon confinement effects become considerable only if the lateral dimensions of the wire, w and t, are comparable in size to the phonon mean free path λ ph. . As for bismuth telluride nanowires λ ph. ∼ 1 nm [18], for wires with w, t > ∼ λ ph. , one can safely assume κ ph. ≈ κ bulk ph. [START_REF]This is a conservative estimation. If one takes the phonon confinement effects into account[END_REF]. Figure 1 shows dependence of the electronic contribution to the figure-of-merit of a wire with square cross-section on its size w and on ζ * . Here, in contrast to the constant-τ model of Hicks and Dresselhaus (HD) (see, the Appendix), dependence of ZT on wire size is non-monotonous and after reaching its optimum at a certain width and chemical potential, falls starkly to zero. This is a direct consequence of disappearance of electronic density of states for ultra thin wires. The most distinct differences between the two models are as follow: the peak values of the σ, κ e , and ZT in the present model show a shift toward larger wire thicknesses, ∼ 10 nm, as compared to the plain w -2 -dependence of the corresponding quantities predicted by the HD model; the thermopower S given here is temperature dependent and reaches the overall high values of the HD model only in very narrow wires; in contrast to the HD model, here the position of optimum ZT in ζw-plane has a visible dependence on temperature and, as temperature falls down, shifts toward higher thicknesses; the asymptotic values of the transport coefficients for a model square wire with w = 50 nm given by the HD model are unrealistically smaller than those obtained here (see Table 1 in Appendix).

To illustrate the effect of subband contributions and that of QSEs, the calculations were repeated for the first three subbands, up to (i, j) = (1, 3) (see, Fig. 2). Here, especially at T = 70 K, one can distinguish two clear maxima for σ, κ e , and S which arise from QSEs [22,[START_REF] Shadyar | [END_REF] and which are smeared out in ZT . This observation is rather general for other subbands too and is a consequence of the fact that σ and κ e have similar functional dependencies on the wire size and the QSEs distinguishable independently in each of them (and to a lesser extent in S) are compensated in ZT by one another. Another interesting observation is the abrupt enhancement of κ e at thinner wire diameters and in the region where ζ * approaches its optimum. Here, noticeably, κ e ≫ κ ph. . Alike, the HD model predicts an even stronger enhancement of κ e in thinner wires (Appendix). Dependence of the thermal conductivity on dopant concentration (cf. tuning of ζ), leading ultimately to the takeover of κ ph. by the electronic contribution κ e , was observed in experiments with bismuth-antimony alloys some years ago [26].

Summary

The approach described here, which is based on the formulation of the scattering rates of the charge carriers in terms of an energy and size dependent expression for the density of states, can be readily extended to address transport and thermoelectric properties of a wide range of quantum systems subject to more sophisticated forms of the relevant DOS's. The model also holds potential to account for the non-diagonal contributions of the transport tensor elements to the kinetic properties. It can equally be exploited in the metallic or semiconducting regimes and it considers inherently the important issue of quantum size effects in low-dimensional structures.

Appendix

Table 1 outlines contributions of the higher energy subbands to the transport properties and to ZT in a 50-nm-thick Bi 2 Te 3 nanowire with effective mass components m x = 0.32, m y = 0.08, and m z = 0.02 along the wire axis (all in units of the free electron mass). The calculations were done for a relatively thick wire for two main reasons. First, at around 50 nm, in both the models (the HD model and the one presented here) the transport coefficients approach their asymptotic values and, secondly, fabrication of such wires is experimentally easier. Below, we also summarize the main results of the constant-τ model and depict its predicted values of the transport properties as a function of wire thickness in Fig. 3. A comparison of this figure with Figs. 1 and2 in the text, should further illustrate the enhanced differences between predictions of the two models in thinner nanowires.

Constant relaxation-time model

Derivation of the transport properties in bulk systems, based on a constant relaxation-time approximation, was originally given in [START_REF] Ioffe | Semiconductor Thermoelements and Thermoelectric Cooling[END_REF] and later discussed in detail by Nolas et al. in [START_REF] Nolas | Thermoelectrics, Basic Principles and New Materials Developments[END_REF]. Later, extension of these results to the case of one-dimensional nanowires was obtained by Dresselhaus and coworkers [18,19]. A more recent account is given in [START_REF] Dresselhaus | Thermoelectrics Handbook: Micro to Nano[END_REF]. Below, we summarize the results. correspond to the subband numbers up to which the electronic (vs. holes) contributions are taken into account (κ ph. = 1.5 W/Km). HD represents the one-band constantτ model [18,19,[START_REF] Dresselhaus | Thermoelectrics Handbook: Micro to Nano[END_REF]. Note that with valley degeneracy ν = 6, σ and κ e become simply six times larger while S remains intact. Dependence of ZT on ν is of the form ZT ∝ (κ e + κ ph. /ν) -1 and its values for ν = 1 and ν = 6 are given explicitly.

The electronic (vs. holes) contribution to the transport coefficients σ, S, and κ e are defined through the generalized transport coefficients in Eq. ( 1). Substituting for a constant relaxation time in terms of a fixed mobility as assumed in [17,18,19,[START_REF] Dresselhaus | Thermoelectrics Handbook: Micro to Nano[END_REF], µ = |q| τ /m * , one can obtain the following expressions:

L (0) = 1 2 D e F -1/2 , L (1) = (k B T ) D e q 3 2 F 1/2 - 1 2 ζ * F -1/2 , L (2) = (k B T ) 2 D e q 2 5 2 F 3/2 -3ζ * F 1/2 + 1 2 ζ * 2 F -1/2 ,
where

D e ≡ ν 2 |q| πw 2 2k B T h2 1/2 √ m * µ, (13) 
and

F i ≡F i (ζ * ) ≡ ∞ 0 ε i dε e (ε-ζ * ) + 1 . (14) 
Using the definitions in Eq. ( 2), the above expressions can be further simplified to:

σ = ν|q| πw 2 2k B T h2 1/2 √ m * µF -1/2 , S = k B q 3F 1/2 F -1/2 -ζ * , κ e = 1 |q| 2ν πw 2 2k B T h2 1/2 k 2 B T √ m * µ 5 2 F 3/2 - 9F 2 1/2 2F -1/2 .
The dimensionless figure-of-merit, ZT = S 2 σT /(κ e + κ ph. ), can now be written as:

ZT = 1 2 3F 1/2 F -1/2 -ζ * 2 F -1/2 1 B + 5 2 F 3/2 - 9F 2 1/2 2F -1/2 (15) 
with

B ≡ 2ν πw 2 2k B T h2 1/2 k 2 B T √ m * µ |q| κ ph. . (16) 
The most distinct difference of the above expressions with those presented in the Text is lack of oscillatory dependence of the transport coefficients on the wire size and on the quantization of the energy levels, i.e., absence of the quantum size effects. Also, it is noticeable that here the Seebeck coefficient S is wholly independent of size and the temperature, and σ and κ e have only a bare monotonic dependence of the form ∝ 1/w 2 on the wire width. Such dependencies lead ultimately to unrealistically large values for σ, κ e and, eventually, ZT in ultra thin wires. Figure 3 presents the obtained results for a Bi 2 Te 3 nanowire with the same parameters as given in the Text. This work is dedicated to the memory of Amirkhan Qezelli, my uncle and childhood friend. 

Figure 1 .

 1 Figure 1. (a) Dependence of the transport properties and the thermoelectric figureof-merit ZT (only the electronic contribution) on wire width w and on the chemical potential ζ (measured in units of thermal energy k B T ) for a square Bi 2 Te 3 nanowire at T = 300 K. The valley degeneracy is ν = 6. Only the first subband contribution is taken into account. (b) T = 70 K. Notice the many fold decreases of the peak values and their shift toward larger wire thicknesses.

Figure 2 .

 2 Figure 2. (a) Dependence of the transport coefficients on the wire size and on the chemical potential at T = 300 K. Same parameters as in Fig. 1, except that here (m, n) = (1, 3). The clearly visible bumps in σ and κ e are manifestations of the quantum size effects. (b) T = 70 K.
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 2 Te 3 nanowire (aligned along the z-axis) with w = 50 nm at a fixed chemical potential ζ * = -3 (measured from the bottom of the conduction band). The indices (m, n)

Figure 3 .

 3 Figure 3. (a) Thermoelectric figure-of-merit ZT for a square Bi 2 Te 3 nanowire at T = 300 K obtained by the constant-τ model. The chemical potential ζ is measured in units of thermal energy k B T . The effective mass values are the same as in the Text (m x = 0.32, m y = 0.08, and m z = 0.02 along the wire axis). (b) T = 70 K. Notice that the predicted enhancement of the transport properties here emerge only in ultra thin wires (w < ∼ 1 nm). This has to be compared to the predictions of our model presented in the Text.

Table 1 .

 1 Electrical conductivity σ, electronic thermal conductivity κ e , the Seebeck coefficient S, and the thermoelectric figure-of-merit ZT for a quadratic Bi

	300 70	HD (1,1)	1 × 10 -6 2.2 × 10 -5 7.2 × 10 -5 0.041 0.052	-401.3 -401.3 -92.9	8.1 × 10 -5 4.9 × 10 -4 7.2 × 10 -4 4.3 × 10 -3 0.016 0.082
	300	(1,1)	0.089	0.494	-86.0	0.099	0.265
	70	(1,2)	0.144	0.182	-103.9	0.065	0.252
	300	(1,2)	0.348	1.92	-88.5	0.240	0.377
	70	(1,3)	0.242	0.350	-105.5	0.102	0.314
	300	(1,3)	0.758	4.13	-92.3	0.344	0.442
	70	(2,1)	0.160	0.206	-95.9	0.061	0.228
	300	(2,1)	0.354	1.96	-86.6	0.230	0.360
	70	(2,2)	0.552	0.691	-107.8	0.205	0.477
	300	(2,2)	1.39	7.62	-89.1	0.362	0.420
	70	(2,3)	0.908	1.31	-109.7	0.273	0.492
	300	(2,3)	3.02	16.41	-93.0	0.438	0.471
	70	(3,1)	0.345	0.428	-100.4	0.126	0.359
	300	(3,1)	0.791	4.37	-87.5	0.309	0.393
	70	(3,2)	1.17	1.46	-112.9	0.353	0.611
	300	(3,2)	3.10	16.97	-90.0	0.408	0.438
	70	(3,3)	1.86	2.67	-114.2	0.406	0.578
	300	(3,3)	6.74	36.48	-94.1	0.471	0.487