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Stability of the embeddability under perturbations of the CR
structure for compact CR manifolds

Christine LAURENT-THIEBAUT

Abstract

We study the stability of the embeddability of compact 2-concave CR manifolds
in complex manifolds under small horizontal perturbations of the CR structure.

The study of local and global embeddability of CR manifolds in complex manifolds
has occupied a large number of mathematicians in the last forty years. Most of the results
concern the case of strictly pseudoconvex CR manifolds of hypersurface type, very few is
known in the other cases.

The stability of the embeddability property of a CR manifold M was first studied by
N. Tanaka, [13], for strictly pseudoconvex CR manifolds of hypersurface type and real
dimension greater or equal to 5 embedded in some CV. Few years later R. S. Hamilton,
[5] et [6], was interested in the stability of the embeddability property for hypersurfaces
provided the perturbation of the original CR, structure is the restriction of a perturbation
of a complex structure on some complex manifold X of which M is the boundary. It was
proved in [8] and [7] that this last condition is satisfied for 2-concave hypersurfaces with
a pertubation preserving the contact structure.

Here we consider CR manifolds of higher codimension type with mixed Levi signature
and we are interested in the stability of the embeddability of such CR manifolds in complex
manifolds under small perturbations of the CR structure preserving the complex tangent
bundle.

Our main result is the following theorem:

Theorem 1. Let (M, Hy1M) be an abstract compact CR manifold of class C*, which is
smoothly embeddable as a CR manifold in a complex manifold X. Assume that (M, Hy M)
is either 2-concave and generically embeddable or (M, Hy1M) satisfies both conditions Y(1)
and Y(2). Let & be a smooth (generic if (M, Ho 1M) is 2-concave) embedding from M into
X and denote by My the image of M by the embedding & . Assume that the Oy-group of
cohomology H%' (Mo, T1,0X|MO) =0, and let j-\IOJM be an horizontal perturbation of Ho 1M

defined by a (0,1)-form ® € CéﬁQ(M, HioM), 1 > 1.
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Then there exists a positive real number & such that if || ®[[;12 < &, then the CR manifold
(M, Ho1M) is embeddable in X as a CR submanifold of class C'.

Note that in the hypersurface case, by a theorem of Gray [4] saying all contact struc-
tures on a compact manifold near a fixed contact structure are equivalent, the assumption
on the perturbation to be horizontal is not a true restriction.

Since strictly pseudoconvex CR manifolds of hypersurface type and of real dimension
greater or equal to 7 satisfies both conditions Y(1) and Y(2), Theorem 1 precises the
regularity in Tanaka’s result on stability of embeddability in the case of real dimension
greater or equal to 7.

Note also that, if the complex manifold X is some euclidean space C™, the cohomolog-
ical condition HO’I(MO,TLOX‘MO) = 0 in Theorem 1 is reduced to H%!(My) = 0. Since,
for a compact CR manifold satistying Y(1), H%!(Mj) is finite dimensional, it follows from
[3] that HY(Mp) = 0, if (M, Hy1M) is generically embedded in C", so the cohomological
condition H% (Mo, T1,0X, w,) = 0 is always satisfied when X = C" and & is generic.

Hence we get from Theorem 1 that, if I;TOJM is a small perturbation of class C'*2 of
the CR structure of a strictly pseudoconvex real hypersurface M of C”, n > 4, then the
CR manifold (M, I;TOJM ) is embeddable in C™ as a CR submanifold of class C'.

In the case of mixed Levi signature, Theorem 1 was proved by P. L. Polyakov in [11]
under the stronger hypothesis that M is 3-concave and generically embeddable, but with a
larger loss of regularity. We have to notice that, compare to our situation, Polyakov has no
restriction on the kind of the perturbation of the CR structure, but since in the 3-concave
case both conditions Y (1) and Y (2) are satisfied, we do not need the generic embeddability
of the initial CR structure. Our hypothesis of horizontality of the perturbation allows us
to work with anisotropic Holder spaces and to avoid a Nash-Moser process in the proof of
the theorem.

The paper is organized as follows:

Section 1 consists in the description of the general setting and in the definitions of the
the main objects used in this paper.

Section 2 is devoted to the proof of Theorem 1. We first remark that the problem
can be reduced to the solvability of some tangential Cauchy-Riemann equation for the
perturbed structure. Using global homotopy formulas with good estimates we are lead to
a fixed point theorem, which gives the solution.

1 CR Structures

Let M be a Cl-smooth, [ > 1, paracompact differential manifold, we denote by TM the
tangent bundle of M and by TcM = C ® TM the complexified tangent bundle.

Definition 1.1. An almost CR structure on M is a subbundle Hy 1M of TcM such that
H(]JM N H071M = {0}

If the almost CR structure is integrable, i.e. for all Z, W € I'(M, Ho M) then [Z, W] €
I'(M, Hyp,1M) , then it is called a CR structure.

If Hyp 1M is a CR structure, the pair (M, Ho M) is called an abstract CR manifold.

The CR dimension of M is defined by CR-dim M = rk¢ Hg 1 M.
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We set Hy oM = m and we denote by H>'M the dual bundle (HoaM)* of Hy M.

The annihilator H'M of HM = Hy oM @ Ho M in T¢EM is called the characteristic
bundle of M. Given p € M, w € HSM and X,Y € H,M, we choose @ € I'(M, HM) and
X,Y e I'(M, HM) with &, = w, X, = X and Y, = Y. Then d&(X,Y) = —w([X,Y]).
Therefore we can associate to each w € HSM an hermitian form

Lo (X) = —iw([X, X)) (L1)

on H,M. This is called the Levi form of M at w € HSM.

In the study of the Jj-complex two important geometric conditions were introduced
for CR manifolds of real dimension 2n — k and CR-dimension n — k. The first one by
Kohn in the hypersurface case, kK = 1, the condition Y(q), the second one by Henkin in
codimension k, k > 1, the g-concavity.

A CR manifold M satisfies Kohn’s condition Y (¢) at a point p € M for some 0 < ¢ <
n — 1, if the Levi form of M at p has at least max(n — ¢,q + 1) eigenvalues of the same
sign or at least min(n — ¢, q + 1) eigenvalues of opposite signs.

A CR manifold M is said to be g-concave at p € M for some 0 < ¢ < n — k, if the
Levi form L, at w € HSM has at least ¢ negative eigenvalues on H,M for every nonzero
w € HYM.

In [12] the condition Y(q) is extended to arbitrary codimension.

Definition 1.2. An abstract CR manifold is said to satisfy condition Y(q) for some
1<qg<n-—katpeMifthe Levi form L, at w € HSM has at least n — k — g+ 1 positive
eigenvalues or at least ¢ + 1 negative eigenvalues on H,M for every nonzero w € HSM.

Note that in the hypersurface type case, i.e. kK =1, this condition is equivalent to the
classical condition Y(q) of Kohn for hypersurfaces and in particular if the CR structure is
strictly peudoconvex, i.e. the Levi form is positive definite or negative definite, condition
Y(q) holds for all 1 < ¢ < n—1. Moreover, if Ml is g-concave at p € M, then ¢ < (n—k)/2
and condition Y(r) is satisfied at p € M forany 0 <r <g—landn—k—q+1<r <n—k.

Let A%M = AY(H%'M), then QF?(M) = I'$(M, A%M) is called the space of (0, q)-
forms of class C*, 0 < s <[ on M.

If the almost CR structure is a CR structure, i.e. if it is integrable, and if s > 1, then
we can define an operator

By = QYI(M) — Q0T (M) (1.2)

called the tangential Cauchy-Riemann operator by setting Opf = df| Mo Mix- It

"X Hg 1 M*
satisfies 0, 0 9 = 0.

Definition 1.3. Let (M, Hp M) be an abstract CR manifold, X be a complex manifold
and I : M — X be an embedding of class C', then F is called a CR embedding if
dF(Hp,1M) is a subbundle of the bundle T ;X of the holomorphic vertor fields of X and
dF(H071M) = T071X N TcF(M)
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Let F' be a CR embedding of an abstract CR manifold into a complex manifold X and
set M = F(M), then M is a CR manifold with the CR structure Ho M = Ty X NTcM.

Let U be a coordinate domain in X, then Fj 1w = (f1,..., fn), with N = dimcX,
and F is a CR embedding if and only if, for all 1 < j < N, d,f; = 0.

A CR embedding is called generic if dimcX — rkcHp,1 M = codimgM.

Definition 1.4. An almost CR structure Itlole on M is said an horizontal perturba-

tion of the CR structure Ho M if j-\IOJM can be represented as a graph in the com-
plex tangent bundle HM = H; (M @& Hy 1M over Hy 1M, which means that there exists
(S 6071(M, Hl,oM) such that

Ho M ={W € TcM | W = Z — ®(Z), Z € Hy M}. (1.3)

The horizontal perturbation Iflole of the CR structure Hy ;M will be integrable if the
form & satisfies some relation P(®) =0 (cf. [1]).

Assume M is an abstract CR manifold and j-\IOJM is an integrable horizontal pertur-
bation of the original CR structure Hp M on M. If 5;}) denotes the tangential Cauchy-
Riemann operator associated to the CR structure I;TOJM, then we have

By =0y — Bud = Ty — DDy, (1.4)

where 0y is the tangential Cauchy-Riemann operator associated to the original CR struc-
ture Ho 1M and 0, is defined by 0y f = df|H o for f € Qo’q( M).

Note that if HO 1M is an integrable horlzontal perturbation of Hy 1M, the space HM =
H, OM @ H,, 1M coincides with the space HM and consequently the two abstract CR
manifolds M and M have the same characteristic bundle and hence the same Levi form.
This implies in particular that if M satisfies condition Y(q) at each point, then M satisfies
also condition Y(q) at each point and that if M is g-concave then M is also g-concave.

2 Embedding of small horizontal perturbations in the case

of C"

Let (M, Ho1M) be an abstract compact CR manifold of class C* and & : M — My C X
be a C*°-smooth CR embedding in a complex manifold X, then M, is a compact CR
submanifold of X of class C* with the CR structure Ho 1Mo = d&(Ho,1M) = TcMo N
Tp,1X and the tangential Cauchy-Riemann operator Op.

Let fIO,lM be an horizontal perturbation of Hy M, we are looking for an embedding
£ : M — M cC X of class C', | > 1, such that dE(ﬁIOJM) =TcMNTp X, ie Eisa CR
embedding.

Set ﬁOJMO = dEo(PAfo,lM), as & is a CR embedding then I?IOJMO is an horizontal
perturbation of Hy 1My and consequently it is defined by a (0, 1)-form ® € Qg’l(HLOMO),
k > 1. We denote by 5;}) the associated tangential Cauchy-Riemann operator.
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We will consider only small (the sense will be precised later) perturbations of the origi-
nal structure, thus it is reasonable to assume that the diffeomorphism F' = £0&; LM, c
X — M C X is close to identity.

We equipped the manifold X with some Riemannian metric (for example, if X = CP"™,
take the Fubini-Study metric). The idea is to look for some F' in the subset of the
restrictions to My of Cl-diffeomorphisms of X parametrized by sections of the vector
bundle T'X by mean of the exponential map. Let us consider the following diagram where
U is a neighborhood of the zero section and o a section of T'X over M

exp

UcCTX X x X
(z,0(x)) — (2, F(2)) = exp, o(x)

MO — X

In fact £ will be a CR embedding if and only if EI?F = 0, which means that we have to
find a section o of T X over M such that the image of the new CR structure f-\IOJMO by
the map expo o is contained in Tp 1 (X x X).

As the new CR structure flo,lMo is an horizontal perturbation of the initial one,
it is natural to look for a section o of the bundle 77X My Such a section is com-
pletely determined by its coordinates in a holomorphic frame over a point x, which
can be expressed by mean of o.ud(Id) = o.0ld, where Id denotes any coordinate map
from a neighborhood of = in X into C". This means that if Id(z) = (z1,...,2n),
then o(x) = > p_i(o(z1,...,2n)d2y) % and in case of change of coordinates with
Id(z) = (Zy,...,2Zy), with Zy = fr(z1,...,2,), we get

O'(Zl, .. .,Zn)Jde = 0’(21, oo ,Zn)dek(Zh- .. ,Zn)

foreach k=1,...,n.

Note that the differential of the map exp at a point is given by the map (u,&) —
(u,u + &), so if o solves the problem, then it results from a calculation in coordinates
that o must satisfy gf(O'Jd(I d)) = ®.d(Id). Moreover since Id is an holomophic map,
®,d(Id) = —gzpld and consequently gg(fbjd(ld)) = —gf(gffd) = 0, because the new CR
structure flo,lMO is integrable.

Finally all this means that our problem is reduced to the following dp-problem for
sections of the bundle 71 o X| My

Jyoc=®, with 9, =0. (2.1)

2.1 Reduction to a fixed point theorem

Let E be a CR bundle over My which satisfies H%!(My, E) = 0 and g be a gf—closed
(0,1)-form in Céﬁz(MO, E) and let us consider the following equation:

5?1} =g. (2.2)
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By definition of the gg—operator, the equation 551} = g is equivalent to the equation
Opv = g + ®_L0pv. (2.3)

A natural tool to solve such an equation is a global homotopy formula for the d;-operator
with good estimates.

Assume M is 2-concave, then M is also 2-concave and we may apply the results in
[2] and [10] on local estimates and global homotopy formulas for the tangential Cauchy-
Riemann operator or assume M satisfies condition Y(q) for 0 < ¢ < 2, then we can use
the results in [12].

In [2] the following result is proved

Proposition 2.1. Let My be a 2-concave CR generic submanifold of X of class C*°. For
each point in My, there exist a neighborhood U and linear operators

T, : Cp . (Mo) = Cy, 1(U), 1<r<2

n,r—1

with the following two properties :
(i) For alll e N and 1 <r <2,

T,.(CL . (Mp)) € CLH3(T)

n,r—1

and T, is continuous as an operator between Ciw(Mo) and Cf;;,l_/ ? ).

(i) If f € C}W(Mo), 0 <r <1, has compact support in U, then, on U,

= {T15bf ifr=0, (2.4)

nglf + ngbf ifr=1.

and in [10] we have derived from the previous proposition a global homotopy formula by
mean of a functional analytic construction.

Theorem 2.2. Let EE be an holomorphic vector bundle over X and My be a compact 2-
concave generic CR submanifold of X of class C*° such that H%'(My, E) = 0. Then there
exist continuous linear operators

AT’ : CS,T(M()’E) _>68,r71(M07E)7 1 STSQ

such that
(i) For allle N and 1 <r <2,

A (Ch (M, E)) € CoF3 (Mo, E)

and A, is continuous as an operator between Cf)’r(Mo,E) and Céﬁ,lf/f(Mo,E).
(i) For all f € Cj (Mo, E)

f=0pA1f + A0, f (2.5)
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On an other hand, a stong Hodge decomposition theorem is proved in [12] for abstract
CR manifold satisfying some Y(q) condition.

Theorem 2.3. Let M be a compact CR manifold. Suppose that the Levi form of M
satisfies condition Y(1), then there exists a compact operator Gy : L (M) — Dom(C,)
such that

(i) For all s € N, Gy, is continuous from W, (M) into WOS&H(M).

(ii) for any f € L%,l(M)

f = 040,Gyf + 9,0,Gpf + Hyf,

where Hy is the orthogonal projection on the harmonic (0,1)-forms.

(iii) GyHyp = HpyGy = 0, Gp0y = 0pGy = I — Hy, on Dom(0y) and if Gy, is also defined
on L§o(M) (respectively Lgo(M)), GOy = 0yGy on Dom(dy) (respectiely Gydy, = 9, Gy
on Dom(dy)).

When M satisfies condition Y(q) for 1 < g < 2, which is the case in particular if M
is 3-concave or if M is stictly pseudoconvex of hypersurface type and of real dimension
greater or equal to 7, global homotopy formulas can be deduced from Theorem 2.3.

Corollary 2.4. Let M be a compact CR manifold of class C* satisfying condition Y(q)
for 1 < q < 2. Then there exist continuous linear operators

A s Lg,(M) = L3, (M), 1<r<2

and a continuous linear projection Hy in L | (M) with ITm Hy C Z§%(M) and dim Im H; <
oo such that
(i) For alls €e N and 1 <r <2,

A (W3, (M) C Wo 22 (v)

and A, is continuous as an operator between W (M) and WOS:E/S(M)
(ii) For all f € C&l(M, E)

f=0pA1f + Adpf + Hif (2.6)

Proof. If the Levi form of M satisfies condition Y(q) for 0 < g < 2, then G} is defined for
(0, 1)-forms and (0, 2)-forms and G0y, = 0,Gy, so if we set A, = EZGb for r = 1,2 we get
the homotopy formula (2.6).

The continuity properties of the A,’s in the Sobolev spaces are proved in [12]. O

In fact we need better estimates than the previous ones to reduce the solvability of our
equation 2.3 to a fixed point theorem.

Assume there exist Banach spaces B'(Mj), | € N, with the following properties :

(i) Cl+2(M0) C BQlJrl(Mo) C BQI(M()) C Cl(Mo) ;

(i) MenB'(Mo) = C>® (M) ;

(iii) B!(Mp) is invariant under horizontal perturbations of the CR structure
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(iv) If f € B (My), 1 > 1, Xcf € BI=Y(My) when X¢ is a complex vector field tangent
to MO

and that the previous operators A,, r = 1,2 are linear continuous operators from
Bl (Mo, E) into BitL (Mo, E)

Since My is 2-concave and generic or satisfies both conditions Y (1) and Y(2) and E
satisfies H%!(My, E) = 0, under this additional hypothesis, if v is a solution of (2.2), then
0y(g + ®.0yv) = 0 and by (2.5) or (2.6)

55,(141(9 + @J@b?})) =g+ Puoyv.
Assume ® is of class C'*2, then the map

0 : BN My, E) — B*Y( My, E)
UV A1g + Al(‘l>_labv) .

is continuous, and the fixed points of © are good candidates to be solutions of (2.2).

2.2 A fixed point theorem

In this section we assume that all the assumptions of the previous section are satisfied.
Let 0 such that, if || ®||;12 < do, then the norm of the bounded endomorphism A;o® 9y
of B2+ (My, E) is equal to ¢y < 1. We shall prove that, if || ®|/;;2 < do, the map © admits

. . Do . . =D
a unique fixed point, which is a solution of the equation 9, v = g.
Consider first the uniqueness of the fixed point. Assume v; and vy are two fixed points
of ©, then

v = (“)(’01) =Aig+ Al(‘l)_lab’vl)
Vg = (“)(’02) =Aig+ Al(‘l)_lab’vg).
This implies
V1 — Vg = A1 (‘Ihab(vl — 1)2))
and, by the hypothesis on ®,

||v1 — 1)2||821+1 < ||v1 — 1)2||821+1

or v1 = v2 and hence v; = vq.
For the existence we proceed by iteration. We set vy = ©(0) = A;(g) and, for n > 0,
Unt+1 = O(vy,). Then for n > 0, we get

Upt1 — Up = A1 (PL0 (v, — vp—1)).

Therefore, if ||®||;12 < o, the sequence (v, )nen is a Cauchy sequence in the Banach
space B2*1(My, E) and hence converges to a form v, moreover by continuity of the map
©, v satisfies O(v) = v.

It remains to prove that v is a solution of (2.2). Since H%!(My, E) = 0, it follows from
(2.5) or (2.6) and from the definition of the sequence (v, )nen that

g— Efvnﬂ = @0 (Vg1 — Un) + A20y(g + PLOyV,,)
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and since
gb(g + @J@bvn) = gbg — 55@{; — @J@b)vn
= = =d
= Opg — Op(0 vn)
= —d —d
= Obg — (0y, + ®0p)(0y vn)
= Opg — @J@b(g;,bvn), since (55)2 =0
= P.0y(g — Efvn), since gg)g =0,
we get

9= Ty vni1 = ©ad(vnr1 — vn) + Ax(DBy(g — Ty vn)). (2.7)
Note that since g € Céﬁz(MO,E) and @ is of class C'*2, then Oyvg = g — A2(PLOhg)
belongs to Bgffl(Mo, E) and consequently dyvg — ® 0509 = 551}0 is in Bgfl(MO, E).
Thus by (2.7), it follows by induction that Egvn € Bg, (Mo, E) for all n € N and we
have the estimate

=® =
lg = Oy vnsrllgz < | @0h[[[[(vns1 = vn)llgaier + ([ A2 © @aDy[lllg = O vallg  (2:8)

Let ¢ such that if ||®]|;32 < J, then the maximum of the norm of the bounded endomor-
phisms A, o ®.0,, r = 1,2, of Bgf:rfl(Mo,E) is equal to € < 1. Assume ||®||;42 < J, then
by induction we get

—P =P
lg = By vnsallgzr < (04 D" H|@18,||vo | g2ier + € g — Ty vo|gar- (2.9)

—P =
But g — 0, v9 = ®10pA19 + A2(PL0yg) and hence ||g — Oy vollgar < || Pa0s]|||A19g] g1 +
€||g||gz:. This implies

=0
lg = By vns1llg < (0 + 2)e™ | @B 1| A gl 52t + €| gl 521 (2.10)

Since € < 1, the righthand side of (2.10) tends to zero, when n tends to infinity and by
continuity of the operator 523 from B2+1(Mjy, E) into Bgfl_l(Mo,E), we get that v is a
solution of (2.2).

2.3 Solution of the embedding problem

In the setting of the beginning of section 2, let us consider the following anisotropic Hoélder
spaces of functions:
- A%(Mp), 0 < a < 1, is the set of continuous functions on My which are in C*/?(My).
- A (M), 0 < a < 1, is the set of functions f such that f € CU+®)/2(My) and
Xcf € CY%(My), for all complex tangent vector fields Xc¢ to M. Set

Ifllaa = Ifla+a)2 + sup (1 Xcfllayo (2.11)
[Xcll<1
- AF(Mg), 1 > 2,0 < a < 1, is the set of functions f of class C/2 such that
Xf e A2t (My), for all tangent vector fields X to M and Xcf € A=1(My), for all
complex tangent vector fields X¢ to M.
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Fix some 0 < o < 1 and set B!(My) = A**(Mp). This sequence (B'(My),l € N) is a
sequence of Banach spaces which satisfies properties (i) to (iv) listed in section 2.1

Moreover it is proved in [9] that the operators A,, r = 1,2, from Theorem 2.2
are linear continuous operators between the anisotropic Holder spaces BlOJ(MO,E) and
Bt (Mo, E).

One can also consider the anisotropic Hélder spaces introduced by Folland and Stein
when they studied the tangential Cauchy-Riemann complex on the Heisenberg group and
more generally on strictly pseudoconvex CR manifolds.

Let M be a generic C'R manifold of class C* of real dimension 2n and CR dimension
2n — k and D be a relatively compact domain in M. Let Xi,..., X9, o1 be a real basis
of HM. A C! curve v : [0,7] — M is called admissible if for every ¢ € [0,7],

2n—2k

Z_Z(t) = Z cj(t) X;(y(t))

J=1

where " |¢;(t)]? < 1.

The Folland-Stein anisotropic Hélder spaces I'"**(D N M) are defined in the following
way:

-T*(DN M), 0 < a < 1, is the set of continuous fonctions in D N M such that if for

every o € DN M
£ (y(t) — f(=0)]
p (0%
7() i

for any admissible complex tangent curve v through xg.

TP (DN M), p>1,0 < a<1,is the set of continuous fonctions in M such that
Xcf € TP~1*+9(D N M), for all complex tangent vector fields X¢ to M.

Fix some 0 < a < 1 the sequence (I'?T p € N) is also a sequence of Banach spaces
which satisfies properties (i) to (iv) listed in section 2.1

Continuity properties for the operators A, and B,, r = 1,2, defined in Theorem 2.2
and 2.4 are proved in [9] and [12]. More precisely, for all p € N and 0 < a < 1, the
operators A,, r = 1,2, from Theorem 2.2 and Corollary 2.4 are continuous from I’gj;a(M )

into I’gj;l_ta(M).

< o0

We can apply now the method developed in section 2.2 with E' = Tj oX| ay 1O solve
the equation

5?02@

and a unique solution is given by a fixed point of the map © if ||®||;1 5 is sufficiently small,
and then & = F o0&, with F defined by F(z) = exp,, o(z), is the embedding we are looking
for, which ends the proof of Theorem 1.
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