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Abstract : This article presents numerical methods in order to solve problems of 
tolerance analysis. A geometric specification, a contact specification and a functional 
requirement can be respectively characterized by a finite set of geometric constraints, a 
finite set of contact constraints and a finite set of functional constraints. Mathematically 
each constraint formalises a n-face (hyperplan of dimension n) of a n-polytope 
(1 ≤ n ≤ 6). Thus the relative position between two any surfaces of a mechanism can be 
calculated with two operations on polytopes : the Minkowski sum and the Intersection. 
The result is a new polytope: the calculated polytope. The inclusion of the calculated 
polytope inside the functional polytope indicates if the functional requirement is 
satisfied or not satisfied. Examples illustrate these numerical methods. 
Keywords: Three-dimensional Dimension-Chain - Geometric Specification - Contact 
Specification - Functional Requirement - Polytope - Tolerance. 

1. INTRODUCTION 

The variational classes by Requicha were introduced at the beginning of the 80’s and 
propose a model of tolerances of form, orientation, position and dimension [Requicha, 
1983]. A generalization of specifications by volume envelopes is based on  the works of 
Requicha [Srinivasan and al., 1989]. Fleming presents a model for geometric tolerances 
and constraints from contacts [Fleming, 1988]. Among the dimension-chains models 
based on Small Displacements Torsor concept [Clément and al., 1988], we note the 
Clearance Deviation Space by Giordano [Giordano and al., 1993]. The Clearance 
Deviation Space purposes an assembly method according to maximum material 
condition limit. 
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This article presents numerical methods in order to solve problems of tolerance 
analysis. These methods deal with Tolerance Zones constructed by offsetting as in 
[Requicha, 1983]. We use the Small Displacements Torsor [Bourdet and al., 1995]. 
Geometric specification and contact specification are characterised by the same model 
as in [Giordano and al., 1993].  

2. EXPRESSION OF CONSTRAINTS 

A Tolerancing Tool manipulates three sources of essential information:  
a. the geometric specifications (between associated surfaces of the same part). 
b. the contact specifications (between associated surfaces of two distinct parts),  
c. the functional requirements of an assembly (between any associated surfaces). 

2.1. Geometric constraints 

An associated surface is a surface of perfect form (i.e. an ideal surface: surface 
described with a finite number of geometric features). A nominal surface is an ideal 
surface by definition. 
A geometric specification is formalised by geometric constraints of position between a 
nominal surface S  and an associated surface : see figure 1. 0 S1

The tolerance zone (ZT) limit an area of space around S  within which S  must be 
situated: they are constructed by two (positive and negative) offsettings on S . 

0 1

0

Nz
real surface
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S0

tolerance zone : ZT

t (k-1)t

kt

N

S1 : associated surface

S0 : nominal surface

Figure 1: Geometric specification - geometric constraints. 
We define geometric constraints of position between S  and S  as follows [Teissandier 
et al., 1997]: 

1 0

( ) t.kz.t.1k1k0withSNZTS N0/1,N01 ≤ε≤−≤≤∈∀⇔⊂  (1) 
A unit vector  is constructed such as zN zN  is parallel to the local normal at any point N 
of  (see figure 1). Vector  is oriented in such a way that the positive direction 
corresponds to the side exterior of the material. 

S0 zN

6th CIRP Seminar on Computer Aided Tolerancing – Enschede, The Netherlands, March 22-24, 1999 2 



With: 

( )

.

MNSpaceEuclidean :EEM

.SandSbetween  vector rotation:

N.point at  expressed SandSbetween n vector translatio:

0/10/1,M0/1,N
33

010/1

010/1,N











×ρ+ε=ε∈∀

ρ

ε

 

We use the property of linearization of displacements into small displacements [Bourdet 
et al., 1995], [Clément et all., 1988].  
We get according to (1): 

( ) ( tk1z.MNkt1k0withEM,SNZTS N0/10/1,M
3

01 −≤×ρ+ε≤−≤≤∈∀∈∀⇔⊂ )  (2) 
In a base , the normal vector ( z,y,x Nz  of S  at point N can be written as follows: 
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≤≤∈∀∈∀⇔⊂⇒

 (3) 

We obtain an infinity of equations (3). The unknowns are the six components written at 
point M: 

εεερρρ z0/1,Mz0/1,My0/1,Mz0/1y0/1x0/1 ,,,,, . 
Any surface can be discretised into n points . So, it is possible to express a set of  
equations (3). The n  equations (3) characterize the n geometric constraints induced by 
the tolerance zone associated with S . 

Ni n

0

The vertices of this polytope correspond to the maximum and the minimum values of 
 εεερρρ z0/1,Mz0/1,My0/1,Mz0/1y0/1x0/1 ,,,,, .

This method can be applied on any ideal surface. We consider five types of surfaces: 
plane, cylindrical, conic and toric surfaces. 

2.2. Contact constraints 

Amongst the five main types of surfaces considered in the previous paragraph : plane, 
cylindrical, conic and toric surfaces, figure 2 summarizes the possible cases of joint. 
Since complex surfaces are not used in a joint between two parts (with the exception of 
a few particular cases i.e. gearing ) they will not be considered. Each case in the above 
table can be sub-classified into several other cases according to the relative position of 
nominal surfaces. Any joint is characterized by the types of two considered surfaces 
with a set of mating conditions. A mating condition is a set of constraints between 
geometric features of two ideal surfaces [Teissandier, 1995]. An exhaustive list of the 
cases has been compiled by [Clément et al., 1997]: in order to define the relative 
position between two any surfaces 13 constraints has been identified.  
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Figure 2: Main cases of joints. 

Following the same method as in the previous paragraph, a contact specification can be 
formalised by a set of n contact constraints of position between two associated surfaces 
of two distinct parts. Let us consider a joint made up of two planes S  and S . S  and S  
are nominally parallel and separated by a distance « d  » (see figure 3). Vectors 

1 2 1 2

z1  and 
z2  are respectively constructed such as z1  and z2  are normal vectors of S  and S  (see 
figure 3) oriented in such a way that the positive direction corresponds to the side 
exterior to the material. 

1 2

Let us define surface S such as : S 0dwith  SS 21 =∩= . The set of mating conditions is: 

{ }surface  plane  a  is  S,0z.z,0zz 2121 <=×  (4) 
If the set of mating conditions is satisfied, we can express a constraint of 
positioning :  (5) Dd0 ≤≤
A permanent contact between S  and S  is such as: 1 2 0d0d00D =⇒≤≤⇒= . 
If S is not a plane (line, point or empty hole), the previous constraint can not be defined: 
the set of mating condition is not verified. 
Let us consider the boundary (C) of S. 
At any point M of the Euclidean space E3, it is therefore: 

( ) ( ) ( ) Dz.MN0dz.MN5,4EM,SN N2/12/1,MN2/12/1,M
3 ≤×ρ+ε≤⇒≤×ρ+ε⇒∈∀∈∀ (6) 

(S1)

(S2)

(S)

M

d(C)

Nz

N
1z

2z
 

Figure 3: Contact specification between two nominal parallel planes. 
Following the same method as geometric constraints, we can write: 

( )
( ) ( ) Dc.d.d.b.d.d.

a.d.d.0)6,5,4(:EM,SN

NMNx1/0yMNy1/0xM1/0z,NMNx1/0zMNz1/0xM1/0y,

NMNy1/0zMNz1/0yM1/0x,
3

≤ρ−ρ+ε+ρ+ρ−ε

+ρ−ρ+ε≤⇒∈∀∈∀
 (7) 
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If z zN = , this corresponds to the particular case where: a 1cand0b NNN === . 
Thus (7) can be written as follows: 

Dd.d.0)6,5,4(:EM,SN MNx1/0yMNy1/0xM1/0z,
3 ≤ρ−ρ+ε≤⇒∈∀∈∀  (8) 

Contact constraints (8) traduce the three degrees of freedom of the studied joint: 1 
displacement in rotation and 2 displacements in translation at point M. As in the 
previous paragraph, we can obtain a finite set of n equations (7). 

2.3. Functional constraints 

d

S1,0

S1,1

real surface « S1,1 »

(k-1)t
kt

ZT

S2,0

S2,1

ZT0

real surface « S2,1 »

 
Figure 4: Functional requirement. 

geometric specification
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Figure 5: Surface graph according to figure 4. 

The figure 4 illustrates an example of two surfaces S  and S  of any mechanism. S  
is an associated surface of nominal surface S  and S  is an associated surface of 
nominal surface : see figure 4. The relative position between  and  is the 
result of a combination of sets of contact specifications and geometric specifications on 
different parts: see figures 4 and 5. In the figure 4  and S  are two nominal parallel 
planes. A functional requirement between S  with regards to S  is defined by a 

2,1

S2,0

1,1

1,0

2,1

2,0

2,1

1,1

S1,0 S2,1

1,1

S1,1
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tolerance zone ZT which limits an area of space around  within which S  must be 
situated: see figure 4. ZT is composed of two parallel planes separated by the dimension 
t of ZT. These two surfaces are parallel to ZT

0ZT 2,1

0, a parallel plane to S . The relative 
position between S  and ZT

1,1

1,1 0 is specified by the dimension d. A functional requirement 
is formalised by a finite set of n functional constraints between any associated surface 
with regards to any surface of the same mechanism. The method is the same as 
geometric specification. 
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M2,1/1,1x,
3

1,2

≤ρ−ρ+ε+ρ+ρ−ε

+ρ−ρε≤−

⇒≤ε−≤≤∈∀∀⇔⊂

(9) 

We obtain a finite set of n equations (8). The surfaces S  and S  can be (or can not 
be) specified from the same part. That means that a functional requirement can be 
reduced to a combination of two geometric specifications. 

2,1

3. OPERATIONS ON POLYTOPES 

3.1. Definition of a polytope 

Geometric specifications, contact specifications and functional requirements can be 
respectively characterized by a finite set of geometric constraints (3), a finite set of 
contact constraints (8) and a finite set of functional constraints (9). 
Each constraint of (3), (8) and (9) corresponds to a n-face (hyperplan of dimension n: 
0≤ n ≤6) in the real affine space Rd . Mathematically, (3) defines a geometric n-
polytope (polytope of dimension n). By analogy, (8) defines a contact n-polytope and 
(9) defines a functional n-polytope. 

Convex hull o nite set points in R2 Intersectio  finitely osed
halspaces

 
Figure 6: Definition of a 2-polytope in R2. 
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Figure 7: 3-polytope in R3 from contact specification between two rectangular planes. 
A polytope is a point set  which can be presented either as [Ziegler, 1995]: dRP ⊆
- a bounded intersection of finitely many closed halfspaces in some Rd , 
- a convex hull of a finite set of points in some Rd . 
The figure 6 illustrates the two definitions of a polytope. The dimension of a polytope is 
the dimension of its affine hull. A n-polytope is a polytope of dimension n in some Rd . 
For example, we have defined a finite set of contact constraints (7) specified on two 
nominal parallel planes. (7) is a finite set of 3-faces in R6  and (8) is a finite set of 
3-faces in R3 . It is possible to give a graphic representation of a n-polytope if 1 ≤ n ≤ 3. 
A 0-polytope is a point, a 1-polytope is a segment line and a 2-polytope is a polygon. 
For example, the finite set of contact constraints (7) (i.e. finite set of 3-faces) between 
two nominal parallel planes such as S is rectangular plane can be illustrated in R3 by 
figure 7. 

3.2. Minkowski sums of polytopes 

2,2 2,0 2,1 1,1 1,0 1,2

Part 2 Part 1

Geometric specification

Contact specification

Functional requirement

d

kt
(k-1)t

S1,2

S1,1

S2,1

2,2

z y

x

S2,2

Figure 8: Association of specifications in series. 
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Let us consider the mechanism of figure 8. The contact specification between S  and 
 is a permanent contact. The corresponding contact polytope is a 0-polytope (i.e. a 

point). We can express the relative position of S  with regards to . We have 
according to the properties of small isplacements: 

2,1

S1,1

2,2 S1,2

d
( ) t.kz.t.1kZTSSN N2,1S/2,2S,N2,22,2 ≤ε≤−⇔⊂∈∀  (10) 

( )

( ) ( )

( ) ( )

( ) 

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
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





≤ε≤−≤≤∈∀

≤−ε≤−≤≤∈∀

=ε∈∀

≤−ε≤−≤≤∈∀

≤ε≤−≤≤∈∀

ε+ε+ε+ε+ε=ε

1,10,1/1,1N1,11,1

2,10,1/2,1N2,12,1

2,2/2,1,N1,1/1,2

1,20,2/1,2,N1,21,2

2,20,2/2,2,N2,22,2

2,1/0,1,M0,1/1,1,M1,1/1,2,M1,2/0,2,M0,2/2,2,M2,1/2,2,M

t.kz.t1k:1k0withSN

t.kz.t1k:1k0withSN

0z.SN

t.kz.t1k:1k0withSN

t.kz.t1k:1k0withSN

 (11) 

+

+

+
=

 
Figure 9: Minkowski sum of 3-polytopes in R3. 

(11) characterizes the Minkowski sum of five polytopes. These five polytopes are the 
geometric specifications of S , , ,  and the contact polytope between S  
and  (in this case this polytope is a 0-polytope). The Minkowski sum of a two 
polytopes  and P  is a polytope 

2,2 S2,1

P1

S1,1

P2

S1,2 1,2

S2,2

P1 2 +  [Gritzmann et al., 1993]: 
{ 212211

d
21 xxx:Px,Px/RxPP }+=∈∃∈∃∈=+  (12) 

The association of geometric specifications and contact specifications in series are 
mathematically formalised by Minkowski sums of d-polytopes [Srinivasan, 1993]. In 
the example of figure 8, we can illustrate the Minkowski sum of five 3-polytopes in R3: 
see figure 9. The Minkowski sum is an commutative and associative operation. 

3.3. Intersection of polytopes 

In the example presented in figures 10 and 11, the relative position between S  and 
 must satisfy the two following relations: 

1,0

S2,0







ε+ε+ε=ε

ε+ε+ε=ε
∈∀

0,1/2,1,N2,1/2,2,M2,2/0,2,M0,1/0,2,M

0,1/1,1,N1,1/1,2,M1,2/0,2,M0,1/0,2,M
3EM  (13) 
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Figure 10: Association of specifications in parallel. 

=∩

 
Figure 11: Intersection of 3-polytopes. 

Each relation of (12) can be formalised by a Minkowski sum of three 3-polytopes. The 
result of (12) is an Intersection of two Minkowski sums of 3-polytopes: see figure 11. 

4. CONCLUSION: TOLERANCING ANALYSIS WITH POLYTOPES 

With Minkowski sums and Intersections of geometric d-polytopes and contact 
d-polytopes, the relative position between any surfaces of a mechanism can be 
calculated. The result is a new polytope: the calculated polytope. If the calculated 
polytope is included inside the functional polytope, the functional requirement is 
satisfied: see figure 12. 
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⊂ ?

Functional 3-Polytope
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Figure 12: Verification of inclusion of 3-polytope. 
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