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Abstract. In this paper, we propose an improvement of an algorithm
of Aurenhammer, Hoffmann and Aronov to find a least square matching
between a probability density and finite set of sites with mass constraints,
in the Euclidean plane. Our algorithm exploits the multiscale nature of
this optimal transport problem. We iteratively simplify the target using
Lloyd’s algorithm, and use the solution of the simplified problem as a
rough initial solution to the more complex one. This approach allows
for fast estimation of distances between measures related to optimal
transport (known as Earth-mover or Wasserstein distances). We also
discuss the implementation of these algorithms, and compare the original
one to its multiscale counterpart.

1. Introduction

Engineer and mathematician Gaspard Monge proposed the following prob-
lem [Mon81]: what is the cheapest way to transport a pile of sand into a
hole with minimum cost, knowing that moving an individual particle from
a position x to another position y has a cost c(x, y) ? This problem gave
birth to the field of optimal transport, which has been very vivid in the past
twenty years, with applications in geometry, probability and PDEs (see e.g.
[Vil09]).

However, Monge’s problem was an engineering problem, and it is not very
surprising that various form of optimal transport appeared in many applied
fields. In computer vision, distances defined using optimal transport have
been used as a way to compare the color histograms of images in [RTG00]
under the name of Earth mover distance. Optimal transport on the circle
has been used for transferring the hue of an image to another [DSS10]. In
combination with Lloyd’s algorithm, optimal transport seems a interesting
tool for optimal quantization [BSD09]. More recently, methods inspired by
(or relying on) optimal transport have been proposed as a tool in several parts
of geometry processing: surface comparison [LD11], surface reconstruction
from data corrupted with outliers [CCSM10, MDGD∗10], construction of
optimized primal-dual triangulations [MMD11], reconstruction with sharp
corners and edges [dGCSAD11].

Yet, the lack of a practical method to compute optimal transports maps
except in 1D has hindered the development of many of these applications.
Even in the simplest planar situation, namely with c(x, y) = ‖x−y‖2, there is
a lack of reasonably fast and widely usable method able to efficiently compute
optimal transport maps.

1.1. L2 optimal transport. In the remaining of the paper, we will deal
with the L2 optimal transport, i.e. where the cost for moving a certain
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amount of mass from a point x to a point y is proportional to square of the
Euclidean distance ‖x−y‖2. This model is well-understood theoretically, and
has several nice properties (such as uniqueness of the solution) that follow
from strict concavity of the cost. Numerical schemes have been proposed by
Brenier-Benamou [BB00], Loeper [LR05] and Angenent-Haker-Tannenbaum
[AHT03] to solve L2 optimal transport. However, numerical instabilities
makes them difficult to use for general problems: for instance, [LR05] requires
a lower bound on the density of the source measure, while the gradient
descent algorithm of [AHT03] suffers from a drift effect which produces
optimal maps that are not transport plans. Another possibility to find
optimal transport plans is by discretizing the source and/or target measure.
These discrete approach include linear programming, the Hungarian method,
and a variant known as Bertsekas’ auction algorithm [Ber88]. These methods
work for general cost functions, and are often unable to take advantage of
the geometric simplifications that occur when working specifically with the
squared Euclidean metric.

A promising approach, both from the practical and the theoretical point
of view has been proposed in [AHA98]. In this approach, the source measure
has a density ρ while the target measure is given by a sum of Dirac masses
supported on a finite set S. The fact that the source measure has a density
ensures the existence and uniqueness of the optimal transport map. In this
case, solving the optimal transport problem amounts to finding a weight
vector (wp)p∈S such that the power diagram of (S,w) has the following
property: for every point s in S, the proportion of the mass of ρ contained in
the corresponding power cell should be equal to the mass of the Dirac mass at
s (see Section 2.2). In the same article, the authors also introduced a convex
function whose minimum is attained at this optimal weight vector, thus
transforming the optimal transport problem into an unconstrained convex
optimization problem on R

N where N is the number of points in the set S.

1.2. Contributions. We revisit the approach of [AHA98] with implemen-
tation in mind. Our main contribution is a multiscale approach for solving
the unconstrained convex minimization problem introduced in [AHA98], and
thus to solve L2 optimal transport.

Let us sketch briefly the main idea. In order to solve the optimal transport
problem between a measure with density µ such as a grayscale image and
a discrete measure ν, we build a sequence ν0 = ν, . . . , νL of simplifications
of ν using Lloyd’s algorithm. We start by solving the much easier transport
problem between µ and the roughest measure νL using standard convex
optimization techniques. Then, we use the solution of this problem to build
an initial guess for the optimal transport between µ and νL−1. We then
proceed to convex optimization starting from this guess to solve the optimal
transport between µ and νL−1. This is repeated until we have obtained a
solution to the original problem. If the original target measure has a density,
we use Lloyd’s algorithm to obtain the first discretization ν. Note that this
idea was independently proposed in [Bos10].

This procedure provides a significant speedup, up to an order of magnitude,
for computing optimal transport plans. Moreover, at every step of the
algorithm it is possible to obtain a lower and upper bound on the Wasserstein
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Figure 1. Interpolation between the standard pictures Pho-
tograph and Peppers obtained with our algorithm (see Sec-
tion 5.3). The target image was quantized with 625 Dirac
masses for the first row, and 15625 Dirac masses for the second
row. The cells in these pictures are interpolation between
power cells (on the left) and Voronoi cells (on the right), ob-
tained by linearly varying the weights from their value on the
left picture to zero. Their color vary so that the product of
the area of a cell multiplied by its gray level remains constant
over time.

distance (also known as Earth-mover distances [RTG00]) between the source
measure µ and the original target measure ν. Using this approach, one can
obtain rough estimates of Wasserstein distances between two images with a
speedup of up to two order of magnitude over the simple convex optimization
approach.

2. Background

We briefly recap the few concepts of measure theory and optimal transport
that we use, before explaining the relation between the L2 optimal transport
and power diagrams. We also recall how optimal transport can be turned
into an unconstrained convex optimization problem.

2.1. Measure theory and Optimal transport. A non-negative measure
µ on the space R

d is a map from (measurable) subsets of Rd to a non-negative
numbers, which is additive in the sense that µ (∪i∈NBi) =

∑

i µ(Bi) whenever
(Bi) is a countable family of disjoint (measurable) subsets. The total mass of
a measure µ is mass(µ) := µ(Rd). A measure µ with unit total mass is called
a probability measure. The support of a measure µ, denoted by spt(µ) is the
smallest closed set whose complement has zero measure.

The optimal transport problem involves two probability measures: a source
measure µ, and a target measure ν. We will always suppose that the source
measure µ has a density, i.e. there exists a non-negative function ρ on R

d

such that for every (measurable) subset B of Rd,

µ(B) :=

∫

B
ρ(x)dx.



4 Q. MÉRIGOT

On the other hand, we will assume that the target measure ν is discrete,
supported on a finite set S of Rd. This means that there exists a family of
positive coefficients (λp)p∈S such that for every subset B,

ν(B) =
∑

p∈S∩B

λp.

The above formula is equivalent to writing ν as the sum
∑

p∈S λpδp, where
δp is the unit Dirac mass at p. The integral of a continuous function φ
with respect to these two measures is

∫

Rd φ(x)dµ(x) :=
∫

Rd φ(x)ρ(x)dx, and
∫

Rd φ(x)dν(x) :=
∑

p∈S λpφ(p).
In Section 3.1 we will see how to adapt the proposed method to the case

where the source and target measures both have density.

Transport map. The pushforward of a measure µ by a map T : Rd → R
d

is another measure T#µ defined by the equation T#µ(B) := µ(T−1(B)) for

every subset B of Rd. A map T is called a transport map between µ and ν if
the pushforward of µ by T is ν. We denote by Π(µ, ν) the set of transport
maps between µ and ν.

For instance, a map T is a transport map between the source measure µ
and the target measure ν described at the beginning of this paragraph if and
only if for every point p in the support S of ν,

λp = µ(T−1({p}))
[

=

∫

T−1({p})
ρ(x)dx

]

.

Optimal transport maps. The cost of a transport map T between the
source measure µ with density ρ and the target measure ν is defined by:

c(T ) :=

∫

Rd

‖x− T (x)‖2dµ(x)
[

=

∫

Rd

‖x− T (x)‖2ρ(x)dx
]

The problem of optimal transport, also called Monge’s problem, is to find a
transport map Topt whose cost is minimal among all transport maps between
µ and ν, i.e.

Topt := argmin{c(T ); T ∈ Π(µ, ν)}
The non-convexity of both the cost function c and of the set of transport
plans makes it difficult, in general, to prove the existence of a minimum.
However, in this specific case where µ has a density and the cost is the
squared Euclidean norm the existence follows from [Bre91].

Wasserstein distance. The Wasserstein distance between two probability
measures µ and ν, µ having a density, is the square root of the minimal
transport cost. We denote it by Wass2(µ, ν). Intuitively, the Wasserstein
distance measures the minimum global cost of transporting every bit of µ
onto ν, supposing that moving an infinitesimal amount dµ(x) from x to y is
equal to ‖x− y‖2dµ(x).

Note that our definition above is not symmetric, as it requires the source
measure to have a density. However, this restriction can be leveraged using
the notion of transport plan instead of transport map, leading to a definition
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of Wasserstein distance between any pair of probability measures [Vil09,
Ch. 6]).

2.2. Power diagrams. Let S be a finite set of points in R
d, and w : S → R

be a given weight vector. The power diagram or weighted Voronoi diagram
of (S,w) is a decomposition of the ambient space in a finite number of cells,
one for each point in S, defined by the property that a point x belongs to
VorwS (p) iff for every q in S, one has ‖x− p‖2−w(p) ≤ ‖x− q‖2−w(q). Note
that if the weights are all zero, this coincides with the usual Voronoi diagram.

Given such a decomposition, we will consider the application Tw
S which

maps every point x in the power cell VorwS (p) to its center p. This map
is well-defined everywhere except on the boundary of the power cells, but
since this set has zero Lebesgue measure this has no consequence for us.
The pushforward of the source measure µ by the map Tw

S is a sum of Dirac
masses centered at every point p in the set S, whose mass is the µ-mass of
the corresponding power cell:

Tw
S |# µ =

∑

p∈S

µ(VorwS (p))δp,

In [AHA98], the following theorem was proven. Note that this result, as
well as Theorem 2, can be also obtained as a consequence of Brenier theorem
[Bre91].

Theorem 1. For any probability measure µ with density, and a weighted
set of points (S,w), the map Tw

S is an optimal transport map between the
measure µ and the pushforward measure Tw

S |# µ. Consequently,

Wass2

(

µ, Tw
S |# µ

)

=





∑

p∈S

∫

VorwS (p)
‖x− p‖2ρ(x)dx





1/2

.

This theorem gives examples of optimal transport plans and the discrete
probability measures supported on S that can be written as the pushforward
Tw
S |# µ, where w is a set of weights on S. As we will see in the next section

(Theorem 2), it turns out that every probability measure supported on S can
be written in this way. Said otherwise, the optimal transport maps between
µ and a measure supported on S can always be written as TS,w for some
weight vector w.

2.3. An unconstrained convex optimization problem. Adapted weight

vectors. Let µ be a probability measure with density ρ, and ν a discrete
probability measure supported on a finite set S, with ν =

∑

p∈S λpδp. A
weight vector w : S → R on S is called adapted to the couple of measures
(µ, ν) if for every site p in S, one has

λp = µ(VorwS (p))

[

=

∫

VorwS (p)
ρ(x)dx

]

. (1)
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By Theorem 1, if the weigh vector w is adapted to the couple (µ, ν) then the
optimal transport between µ and the discrete measure ν is given by the map
TS,w.

Moreover, Theorem 2 below asserts that finding a weight vector adapted
to the couple (µ, ν) amounts to finding a global minimum of the function
Φ below, thus turning the very constrained original problem (minimization
among convex maps) into an unconstrained convex optimization problem.
Note that this theorem follows from the discussion in Section 5 of [AHA98].

Φ(w) :=
∑

p∈S

(

λpw(p)−
∫

VorwS (s)
(‖x− s‖2 − w(p))dµ(x)

)

(2)

Theorem 2. Given a measure µ with density ρ on R
d, and ν =

∑

s∈S λpδp,
the following three statements are equivalent:

(i) the power map Tw
S realizes an optimal transport between the measures

µ and ν ;
(ii) w is adapted to the couple (µ, ν);
(iii) w is a global minimizer of the convex function Φ.

We will recall briefly how the value of the gradient of the function Φ can
be computed at a weight vector w. Incidentally, the steps necessary to this
computation almost sketch a complete proof of the theorem. Consider the
map

Ψ(w) :=
∑

p∈S

∫

VorwS (p)
(‖x− p‖2 − w(p))dµ(x)

which is related to the our function by the equation Φ(w) =
∑

p∈S λpw(p)−
Ψ(w). The map Ψ is concave, as we will show by writing it as an infimum
of linear functions. Consider any map T from R

d to the finite set S. By
definition of the power cell, for every point x in VorwS (p) one has

‖x− p‖2 − w(p) ≤ ‖x− T (x)‖2 − w(T (x))

As a consequence, the function Ψ can be rewritten as

Ψ(w) = inf
T

ΨT (w), where

ΨT (w) :=

∫

R2

(‖x− T (x)‖2 − w(T (x)))dµ(x).

Since the functions ΨT all depend linearly on w, the function Ψ is concave,
and Φ is convex. Moreover, it is easy to check that the values of the functions
Ψ and ΨTw

S
coincide for the weight vector w. Consequently, their gradient

coincide to at that point, and a simple computation shows :

∂Ψ

∂w(p)
(w) =

∫

VorwS (p)
ρ(x)dx (3)

∂Φ

∂w(p)
(w) = λp −

∫

VorwS (p)
ρ(x)dx (4)

In particular, the second equation shows that the gradient ∇Φ vanishes at a
weight vector w if and only if w satisfies Eq. (1).
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3. Multiscale Approach for Minimizing Φ

The efficiency of an optimization technique relies on two important choices.
The most important one is the choice of descent algorithm, as it is well-known
that the difference in efficiency between (for instance) the first order simple
gradient descent algorithm and the second order Newton methods can be
tremendous [Fle87].

The second one is the choice of the position from where the optimization
is started. Its importance shouldn’t be disregarded, even for convex optimiza-
tion, as the second-order convergence in Newton’s descent does only happen
in a small basin around the global minimizer.

In this section, we introduce our multiscale algorithm for finding a global
minimum of Φ. We start by building a decomposition of the target measure
ν, i.e. a sequence of discrete measures ν0 := ν, ν1, . . . , νL that are simpler
and simpler as L increases. The level ℓ of the decomposition is then used
to construct a good initial weight vector for the optimal transport problem
(µ, νℓ−1), in a hierarchical way.

3.1. Decomposition of the target measure. A decomposition of the tar-
get measure ν =

∑

p∈S λpδp is a sequence of discrete probability measures

(νℓ)ℓ≥0 such that ν0 = ν and νℓ is supported on a set Sℓ:

νℓ =
∑

p∈Sℓ

λp,ℓδp.

Moreover, for every level ℓ we are given a transport map between νℓ and νℓ+1,
that is a map πℓ from the support Sℓ of νℓ to the (smaller) support Sℓ+1 of
νℓ+1 with the additional property that for every point p in Sℓ+1,

λp,ℓ+1 =
∑

q∈π−1

ℓ
(p)

λq,ℓ (5)

The decomposition that we will consider in practice are constructed using
Lloyd’s algorithm, as explained in Section 4.2. This means that the transport
map πℓ maps every point p in Sℓ to its nearest neighbor in Sℓ+1.

We remark that having access to such a transport map between νℓ and
νℓ+1 allows to bound the Wasserstein distance between these two measures.
By considering the composition of transport maps, it is also possible to bound
the distance between e.g. ν and νL. Letting π = πL−1 ◦ . . . ◦ π0 one has:

Wass2(ν, νL) ≤





∑

p∈S

λp‖p− π(p)‖2




1/2

(6)

3.2. Algorithm. We are given the source probability measure µ, and a
decomposition (νℓ)0≤ℓ≤L with L levels of the target measure. The goal is to
use the solution of the optimal transport problem from µ to νℓ+1 at level
ℓ+ 1 to construct the initial weight vector for the optimal transport problem
between µ and νℓ at level ℓ. As before, we will consider the weight vectors at
level ℓ as functions from the support Sℓ of µℓ to R. The function Φℓ that we
optimize at step ℓ is given by the same formula as in Eq. (2).
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The multiscale descent algorithm is summarized in Algorithm 1. Note
that the algorithm does not depend on the choice of the convex optimization
scheme (L-BFGS), which we will discuss later in Section 4.

Algorithm 1 Multiscale minimization of Φ := Φ0

wL := 0
for ℓ = L− 1 to 0 do

set wℓ,0(p) := wℓ+1(πℓ(p)) for every p ∈ Sℓ

k := 0
repeat

compute wℓ,k+1 from wℓ,k using L-BFGS on Φℓ

set vk+1 := ∇Φℓ(wℓ,k+1), k := k + 1
until ‖vk‖q > ε
set wℓ := wℓ,k

end for

In the stopping condition ‖.‖q denotes the usual Lq-norm where q > 1 or
q = +∞. In particular,

‖∇Φ(w)‖∞ = sup
p∈S

|λp − µ(VorwS (p))|

‖∇Φ(w)‖1 =
∑

p∈S

|λp − µ(VorwS (p))|

The first quantity measures the maximum error that has been made by
considering the weight vector w instead of the optimal one. In particular,
if ‖∇Φ(w)‖ ≥ minp∈S λp, then one is sure that all the cells in the power
diagram of (S,w) intersect µ non-trivially. This is important especially for
visualization purpose, as the existence of cells with zero µ-mass lead to black
spots in the interpolated pictures (see Section 5.3). The choice of ‖.‖1 plays
a different role which we describe in the next paragraph.

3.3. Computation of Wasserstein distances. Simple lower and upper
bounds on Wasserstein distance can be obtained at every step of the multiscale
algorithm, using the fact that ‖∇Φ(w)‖1 corresponds to the twice the amount
of mass that has been misaffected. This follows from the following proposition:

Proposition 1. Let w be the a weight vector on S, and consider the image
measure ν̃ := TS,w|# µ. Then,

Wass2(ν, ν̃) ≤ D × ‖∇Φ(w)‖2/11 ,

where D is the diameter of the support S of ν.

Proof. By definition, both this measure ν̃ and the target measure ν are
supported on the same set S. Moreover,

m := ‖∇Φ(w)‖1 =
∑

p∈S

∣

∣

∣

∣

∣

λp −
∫

VorwS (p)
ρ(x)dx

∣

∣

∣

∣

∣

corresponds to the amount of mass that has been mistransported. The cost of
transporting this mass back at the right place in S is at most

√
mD2, where

D = diam(S). �
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As a consequence of this proposition, stopping Algorithm 1 at level ℓ with
weight vector wℓ yields the following estimation of Wass2(µ, ν):

∣

∣

∣

∣

∣

Wass2(µ, ν)−
(∫

Rd

‖x− TSℓ,wℓ
(x)‖2ρ(x)dx

)1/2
∣

∣

∣

∣

∣

≤ D × ‖∇Φℓ(wℓ)‖1/21 +Wass2(ν, νℓ) (7)

Said otherwise, if one wants to compute the Wasserstein distance between µ
and ν up to a certain error ε, it is not necessary to consider the levels of the
decomposition below the first level ℓ0 such that Wass2(νℓ0 , ν) < ε. Note that
this quantity can be estimated thanks to Eq. (6). The effectiveness of this
approach is discussed in Section 5.2.

Proof of Eq. (7). By Theorem 1, the map TSℓ,wℓ
is an optimal transport

between the measure µ and ν̃ = TSℓ,wℓ
|# µ. This means that the Wasser-

stein distance Wass2(µ, ν̃) is equal to cℓ. Moreover, by the reverse triangle
inequality,

|Wass2(µ, ν)−Wass2(µ, ν̃)| ≤ Wass2(ν̃, νℓ) +Wass2(νℓ, ν).

One then concludes using the previous proposition. �

3.4. Convergence of Optimal Transport Maps. In this paragraph, we
discuss the soundness of constructing an initial weight vector for the optimal
transport problem (µ, νℓ) from an adapted weight vector for the problem
(µ, νℓ+1). The result of this section are summarized in the following theorem.
Note that the definition of zero-mean convex potential is given below, and is
necessary to define uniquely the adapted weight vector: without this, adapted
weight vectors are defined up to an additive constant.

Theorem 3. Let ν and (νn)n≥1 be discrete probability measures supported on
finite sets S and (Sn)n≥1 respectively, such that limnWass2(ν, νn) = 0. Let:

wn :Sn → R be adapted to (µ, νn)

w :S → R be adapted to (µ, ν)

Suppose that both weight vectors yield zero-mean convex potentials (see below),
and that the assumptions of Proposition 2 are satisfied. Then, for every
sequence of points pn ∈ Sn converging to a point p in S, one has w(p) =
limwn(pn).

Before proving this theorem, we need to introduce a few definitions and
auxiliary results.

Convex potential. Let ν be a probability measure supported on a finite
set S, and let w denote the weight vector adapted to the optimal transport
problem between µ and ν. Set

φw
S (x) :=

1

2

(

‖x‖2 −min
p∈S

‖x− p‖2 − w(p)

)

(8)

= max
p∈S

〈x|p〉+ 1

2
(w(p)− ‖p‖2) (9)
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where 〈v|w〉 =
∑

i viwi denotes the usual Euclidean scalar product. From
these two formulations, it is easy to see that the function φw

S is convex, and
that its gradient ∇φw

S coincides with the transport map Tw
S . We call such a

function a convex potential for the optimal transport plan. Since adding a
constant to the weight vector (or to φw

S ) does not change the transport plan,
we consider the zero-mean convex potential which is uniquely defined by the
extra assumption that

∫

Rd φ
w
S (x)ρ(x)dx = 0.

Proposition 2. Let µ and ν be two probability measures, µ having density
ρ and ν supported on a finite set S. Let (νn) be a sequence of probability
measures supported on finite sets (Sn), s.t. limnWass2(νn, ν) = 0. Assume
that:

(i) the support of ρ is the closure of a connected open set Ω with regular
(piecewise C1) boundary ;

(ii) there exists a positive constant m such that ρ ≥ m on Ω;
(iii) the support of all the measures νn is contained in a fixed ball B(0, L) ;

Denote φ := φw
S (resp. φn := φwn

Sn
) the zero-mean convex potential of the

optimal transport between µ and ν (resp. νn). Then, φn converges to φ
uniformly on Ω as n grows to infinity.

This proposition is similar to [Bos10, Theorem 1], but without the require-
ment that the source and target measure have to be supported on convex
sets. It relies on the following result (cf [Vil09], Corollary 5.23):
Fact. Let νn be a sequence of measures converging to µ, and Tn (resp. T )
denotes the optimal optimal transport map between µ and νn (resp. ν). Then,
for every positive ε,

lim
n→+∞

µ(∆ε(T, Tn)) = 0 (10)

where ∆ε(T, Tn) := {x ∈ R
d; ‖T (x)− Tn(x)‖ ≥ ε}.

Proof of Proposition 2. For almost every x in Ω, the gradient ∇φn(x) = Tn(x)
is included in the support of νn, hence in the ball B(0, L) by (iii). The same
holds for T , so that the inequality ‖T − Tn‖ ≤ 2L holds for almost every x
in Ω. For every p ≥ 1,

‖T − Tn‖Lp(µ) :=

∫

Ω
‖T (x)− Tn(x)‖pρ(x)dx

=

∫

Ω\∆ε(T,Tn)
‖T (x)− Tn(x)‖pρ(x)dx

+

∫

∆ε(T,Tn)
‖T (x)− Tn(x)‖pρ(x)dx

≤ εp + (2L)pµ(∆ε(T, Tn))

Using Eq. (10), we obtain the convergence of Tn to T in the Lp(µ)-sense.
Thanks to the the assumptions (i) and (ii), we can apply the Poincaré
inequality on the domain (Ω, µ) to the zero-mean potentials φn and φ to get:

‖φn − φ‖Lp(µ) :=

∫

Rd

‖φn(x)− φ(x)‖ρ(x)dx

≤ const(Ω, ρ)‖Tn − T‖Lp(µ).
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In other words, φn converges to φ in the Lp(µ)-sense. Since the support of
all target measures is contained in a ball of size L, ‖∇φn‖ ≤ L, and φw

S is
L-Lipschitz. Hence, φn also converges uniformly to φ on the support of µ. �

Proof of Theorem 3. We begin by proving that there for every point p in S,
there exists a sequence of points qn ∈ Sn converging to p such that wn(qn)
also converges to w(p). Applying Eq. (10) with ε equal to half the minimum
distance between two points in S ensures that Tn converges to T on a set F
with full Lebesgue measure in Ω. Choose a point x in the intersection of the
cell VorwS (x) and of F , and consider the sequence qn = Tn(p). This sequence
converges to p, and by definition one has :

φn(pn)− φ(p) =
1

2
(‖x− p‖2 − ‖x− pn‖2 + w(p)− w(pn))

Using the uniform convergence of φn to φ, one deduces that w(qn) converges
to w(p).

We now prove by contradiction that if (pn) converges to p, then lim supwn(pn)
is at most w(p). Suppose not: taking subsequence if necessary, the limit of
wn(pn) is larger than w(p) by a positive η. For every point x in Ω, we use
the triangle inequality to get

‖x− pn‖2 − wn(pn) ≤ ‖x− qn‖2 − wn(qn) + rn (11)

with rn := ‖qn − pn‖2 + 2D‖pn − qn‖+ wn(qn)− wn(pn)

and D is the maximum distance between a point in Ω and a point in the ball
B(0, L) defined by the assumption (iii). Using the convergence of (pn) and
(qn) to the same point p, and the assumption on the limits of wn(pn) and
wn(qn), we obtain limn→+∞ rn ≤ −η. Combining this with Eq. (11) shows
that the cell of pn in the power diagram Vorwn

Sn
does not intersect Ω for n

large enough. This contradicts the hypothesis that pn is a Dirac with positive
mass in the support of νn.

The proof that lim inf wn(pn) is larger than w(p) is very similar but a bit
longer, as it requires the use of the zero-mean assumption for the convex
potentials. These two bounds for lim inf / supwn(pn) conclude the proof. �

4. Implementation

In the first paragraph, we give some details our implementation of the
convex optimization method proposed in [AHA98] for a fixed target measure.
Then, we explain how we compute the hierarchical decomposition of the
target measure needed for the multiscale algorithm.

4.1. For a fixed target measure. Solving optimal transport between a
probability measure µ with density ρ and a discrete measure ν =

∑

p∈S λpδp
amounts to finding the minimum of the convex function Φ given in Theo-
rem 2.(iii):

Φ(w) =
∑

p∈S

(

λpw(p)−
∫

VorwS (p)
(‖x− p‖2 − w(p))ρ(x)dx

)

with
∂Φ

∂w(p)
(w) = λp −

∫

VorwS (p)
ρ(x)dx
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We need three ingredients to achieve this goal: an efficient and robust
implementation of power diagram computation, robust numerical integration
functions, and convex optimization software. In this paragraph, we discuss
and motivate our choices regarding these three aspects.

Power diagrams. We use the Regular_triangulation_2 package from CGAL
[cga]. It is tempting to try to avoid recomputing the whole power diagram
for every evaluation of the function Φ by using the same approach that was
used in [MMdCTAD09] to maintain the Delaunay triangulation. However,
as shown in Figure 3(a), the topology of the power diagram keeps changing
until the very last steps of the optimization, thus discarding this approach.

Numerical integration. In our C++ implementation, a measure µ with
density ρ is represented by an object which can answer the following two
queries. Given a convex polygon P = [a0, . . . , aN = a0], and a function f
from P to R, the class should provide a way to compute:

(1) the mass of P , i.e.
∫

P ρ(x)dx ;
(2) the integral of f over P , i.e.

∫

P f(x)ρ(x)dx.

In practice, we only use it the second query for the functions f : x 7→ ‖x−x0‖2.
We developped two different models of measure with density.

The first one is the uniform measure on a convex polygon R. In this case,
computing the mass of a polygon P amounts to computing the area of the
intersection P∩R of two convex polygons. The integral of the squared distance
function x 7→ ‖x−x0‖2 over the polygon P ∩R is computed by triangulating
P and summing the integral over each triangle T . The integral on T can be
obtained in closed-form: if one denotes by cov(T, x0) the covariance matrix
of T with base point x0, then

∫

T
‖x− x0‖2dx = cov(T, x0)11 + cov(T, x0)22

The second model corresponds to the density obtained from a grayscale
image. We assume that the density ρ is constant on each square pixel
pi,j = [i, i+ 1)× [j, j + 1), equal to the value ai,j . We then consider:

∫

P
ρ(x)dx =

∑

i,j

ai,j area(P ∩ pi,j) (12)

∫

P
f(x)ρ(x)dx ≃

∑

i,j

ai,j area(P ∩ pi,j)f(i, j) (13)

Note that it is not possible to simply replace the area of P ∩ pi,j by zero
or one depending on whether P intersects pi,j or not, thus disallowing a
more efficient GPU implementation. However, since the area of P ∩ pi,j
needs to be computed only for pixels containing edges or vertices of P the
algorithm we use remains rather efficient. Pixels on edges are dealt with while
applying Bresenham’s algorithm to raster the polygon. The coverage of pixels
containing vertices of P is obtained simply by computing the intersection of
the polygon P with the square pi,j .
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Convex optimization. We tried several approaches for the actual convex
optimization. All of these methods use the following rough scheme to construct
the sequence of weight vectors (wk):

(i) Determine a descent direction dk ;
(ii) Determine a timestep sk, and set wk+1 = wk + skdk.

Methods to choose the descent direction dk include gradient methods, where dk
is simply −∇Φ(wk), Newton methods for which dk = −[D2Φ(wk)]

−1∇Φ(wk))
and quasi-Newton methods. In quasi-Newton methods D2Φ(wk) is not
computed exactly, but estimated from previous evaluations of the gradients.
We chose the widely used low-storage version of the BFGS scheme [Fle87],
implemented in C in libLBFGS.

The timestep sk is determined by a search along the line starting from wk

with direction dk. Here again, the literature is very vast, as there is a trade-
off between finding a good step size (the best choice would be to minimize
the function s 7→ Φ(wk + sdk)) and requiring as few functions evaluations
as possible — recall that in our case a function evaluation requires the
construction of a complete Power diagram!

Figure 2.(a) shows that gradient descent methods are outperformed by
quasi-Newton ones, regardless of the choice of line search. It also shows that
the choice of line search method is not as important — barring the fixed-step
scheme. For all remaining experiments, we use the low-storage BFGS method
with Moré-Thuente line search [MT94].

4.2. Decomposition of the target measure. Suppose for now that the
measure ν is discrete; we will explain in the next paragraph how to convert
an image to such a measure. From this measure, we construct a sequence of
discrete probability measures (νℓ), with

νℓ =
∑

p∈Sℓ

λp,ℓδp

such that ν0 = ν, and that the number of points of the support of νℓ decreases
as ℓ increases. The parameters of our algorithm are the number L of levels
in the decomposition, and for each level ℓ, the number of points n(ℓ) in the
support of the measure νℓ. In practice, we found that choosing n(ℓ) = n(0)/kℓ

with k = 5 usually provides good results.

Lloyd’s algorithm. Theorem 3 suggests that if we want to be able to
construct a good initial weight vector for the problem (µ, νℓ) from a weight
vector adapted to (µ, νℓ+1) we need to have νℓ+1 as close as possible to νℓ
in the Wasserstein sense. Given the constraints that νℓ+1 is supported on
n(ℓ+ 1) points, this means

νℓ+1 ∈ argmin{Wass2(ν̄, νℓ); | spt(ν̄)| ≤ n(ℓ+ 1)}.
This minimization problem is equivalent to a weighted k-means problem,
with k = n(ℓ+ 1). Since it is hopeless to solve this problem exactly, we use
the standard Lloyd’s iterative algorithm to find a good local minimum.

We initialize the algorithm using a random sample S0
ℓ+1 of n(ℓ+ 1) points

drawn independently from νℓ. We then apply Lloyd’s descent step to Sn
ℓ+1

to obtain Sn+1
ℓ+1 , stopping when the points do not move more than a given
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Figure 2. Speed of convergence, measured by the L∞ dis-
tance between the weight vector at a given time/step and
the optimal one. (a) Comparison of simple convex optimiza-
tion algorithms: gradient descent (red) with fixed step (solid)
or strong Wolfe line search (dashed), and low-storage BFGS
algorithm (blue) with strong Wolfe (solid) or Moré-Thuente
line-search (dashed). (b) and (c) Comparison between the
original algorithm of [AHA98] (red) and the multiscale one
(blue).

threshold between two successive steps. This procedure provides us with the
support Sℓ+1 of our measure. We define πℓ to be the application which maps
a point p in Sℓ to its nearest neighbor in Sℓ+1. The values of (λp,ℓ+1)p∈Sℓ+1

are defined by Eq. (5).

Initial quantization of the target measure. Often, the target measure
is not a discrete measure but a measure νI with density σ : Ω → R (such as
a grayscale image). In this case we apply Lloyd’s algorithm to the measure
ρ′ in order to obtain an initial quantization ν =

∑

p∈S λpδp of the original
measure νI with a prescribed number of points N .

5. Results

We will use the following datasets in our experiments. We denote by λU
the uniform probability measure on the square λS = [0, λ512] × [0, λ512].
For λ = 1 we will simply write U and S. By L, we denote is the standard
grayscale picture of Lena on the square S. Given a measure with density D,
we will denote by DN a quantization of this measure with N points, obtained
using Lloyd’s algorithm. The decomposition of measures we work with are all
obtained with the same parameters: 5 levels in the decomposition (including
the original one), and level ℓ being made of N/5ℓ Dirac masses.
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Figure 3. (a) Percentage of points in the support of the
target measure whose Power cell intersects the support of
the source measure during the execution of various convex
optimization algorithms (colors are the same as in Fig. 2(a)).
(b) and (c) Estimation of Wasserstein distance: in red (resp.
blue), the lower and upper bounds obtained by the multiscale
(resp. original) algorithm as a function of time, and in green
the correct value.

5.1. Comparisons with the original approach. In Figure 2(b) and 2(c)
we show the evolution of the ‖.‖∞ distance between the weight vector obtained
at a given time, and the optimal one wsol. This optimal weight vector had
been previously obtained by running the algorithm with a target accuracy of
‖∇Φ(w)‖∞ < 10−9.

The advantage of our multiscale method over the original convex optimiza-
tion is especially important when the source and target measure are far from
each other. Table 1 compares the running time of the original and multires-
olution algorithms to compute a weight vector adapted to the problem of
optimally transporting λU to U1000 with a given accuracy ‖∇Φ(w)‖∞ < ε.
The speedup increases as λ goes to zero, i.e. as the measure λU becomes
more concentrated around the lower-left corner of the original square S.

5.2. Computation of Wasserstein distances. We use the approach de-
scribed in Section 3.3 to obtain lower and upper bounds on the Wasserstein
distance between µ and ν at every step of the algorithm. Figure 3(b) and
3(c) compare the evolution of these two bounds as a function of the runtime
of the original and the multiscale algorithm.

5.3. Displacement interpolation of images. The concept of displacement
interpolation of two probability measures was introduced in [McC97]. It
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source/target original multiscale speedup
1
2U / U10000 577s 143s 4.0
1
4U / U10000 1180s 189s 6.2
1
8U / U10000 1844s 241s 7.6
U / L10000 216s 52s 4.1

Table 1. Running time of the original and multiscale algo-
rithm to find a weight vector such that ‖∇Φ(w)‖∞ < 10−6.

Figure 4. First and second rows: An interpolation between
a picture of G. Monge and photograph of B. Riemann (with
N =625 and 15k respectively). The intermediary steps are
obtained using McCann’s displacement interpolation [McC97]
of the two corresponding measures, which can be computed
from the L2 optimal transport.

uses optimal transport maps as a replacement for the linear interpolation
µt = (1 − t)µ + tν. Displacement interpolation can be a useful tool for
the interpolation of grayscale image, when the gray value of a pixel can
be interpreted as a density of some quantity (e.g. satellite views of clouds,
preprocessed so that the gray level ranges from black to white depending on
the thickness of the cloud). We make use of the transport map computed
using the multiscale algorithm. Recall that in order to apply this algorithm
to a target measure with density σ : Ω → R, we had to compute a first
quantization of σ, ν =

∑

p∈S λpδp using Lloyd’s algorithm. By construction
of ν, and by definition of the optimal weight vector ω, one has for every point
p in S

∫

VorS(p)∩Ω
σ(x)dx = λp =

∫

VorS,w(p)∩Ω
ρ(x)dx.

This suggests a way to construct an interpolation between σ and ρ. Given
a time t, consider the weight vector wt = tw, and the corresponding Power
diagram (VorS,wt

). Now, we define the interpolant ρt at time t as the
only piecewise-constant function ρt on Ω obtained by spreading the mass
of λp on the intersection of the cell VorS,wt

(p) with Ω, i.e. for every point
x in VorS,wt

(p), define ρt(x) := λp/ area(VorS,wt
(p)). An example of this

interpolation is presented in Figure 4.
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6. Discussion

In this paper we have presented a simple way to increase the efficiency of
the convex optimization algorithm introduced in [AHA98] to solve the optimal
transport problem. We also discussed how our multiscale approach can be
used to obtain fast estimation of Wasserstein distances between images.

This first step suggests that, in order to obtain faster computations of
optimal transport, one has to better understand the geometry of the function
Φ. For instance, it is currently not possible to obtain complexity estimates
for this approach because: (i) nothing is known about the shape and size
of the basin around the minimizer where Newton’s method has quadratic
convergence and (ii) the stability result (Theorem 3) is not quantitative.
Understanding these two problems could open the way to even more efficient
computations of optimal transport maps.

We also believe that this multiscale approach can be useful in the solution
of more geometric problems with a similar structure. An example of such a
problem is Minkowski’s problem: given a set of normals ~n1, . . . , ~nN and a set
of areas λ1, . . . , λN such that

∑

i λi~ni vanishes, find a convex polytope whose
facets normals are among the (~ni), and such that the facet corresponding to ~ni

has an area of exactly λi. This problem has a similar multiscale structure as
optimal transport, and can be also solved by minimizing a convex functional
[LRO06], and would probably benefit from a multiscale approach. A second
example is the problem of designing a reflector antenna with prescribed image
measure at infinity, which can also be formally cast as an optimal transport
problem (Section 4.2.5 in [Oli03]).
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