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A MULTISCALE APPROACH TO OPTIMAL TRANSPORT

QUENTIN MERIGOT

Abstract. In this paper, we propose an improvement of an algorithm
of Aurenhammer, Ho mann and Aronov to nd a least square matching
between a probability density and nite set of sites with mass constraints,
in the Euclidean plane. Our algorithm exploits the multiscale nature of
this optimal transport problem. We iteratively simplify the target using
Lloyd's algorithm, and use the solution of the simpli ed problem as a
rough initial solution to the more complex one. This approach allows
for fast estimation of distances between measures related to optimal
transport (known as Earth-mover or Wasserstein distances). We also
discuss the implementation of these algorithms, and compare the original
one to its multiscale counterpart.

1. Introduction

Engineer and mathematician Gaspard Monge proposed the following prob-
lem [Mon81]: what is the cheapest way to transport a pile of sand into a
hole with minimum cost, knowing that moving an individual particle from
a position x to another position y has a costc(x;y) ? This problem gave
birth to the eld of optimal transport, which has been very vivid in the past
twenty years, with applications in geometry, probability and PDEs (see e.g.
[Vil09)).

However, Monge's problem was an engineering problem, and it is not very
surprising that various form of optimal transport appeared in many applied
elds. In computer vision, distances de ned using optimal transport have
been used as a way to compare the color histograms of images RIG00]
under the name ofEarth mover distance Optimal transport on the circle
has been used for transferring thénue of an image to another PSS1Q. In
combination with Lloyd's algorithm, optimal transport seems a interesting
tool for optimal quantization [ BSD09. More recently, methods inspired by
(or relying on) optimal transport have been proposed as a tool in several parts
of geometry processing: surface comparisohl)11], surface reconstruction
from data corrupted with outliers [CCSM10, MDGD 10Q], construction of
optimized primal-dual triangulations [ MMD11], reconstruction with sharp
corners and edges [dGCSAD11].

Yet, the lack of a practical method to compute optimal transports maps
except in 1D has hindered the development of many of these applications.
Even in the simplest planar situation, namely with ¢(x;y) = kx yk?, there is
a lack of reasonably fast and widely usable method able to e ciently compute
optimal transport maps.

1.1. L? optimal transport. In the remaining of the paper, we will deal
with the L? optimal transport, i.e. where the cost for moving a certain
1
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amount of mass from a pointx to a point y is proportional to square of the
Euclidean distancekx yk?. This model is well-understood theoretically, and
has several nice properties (such as unigueness of the solution) that follow
from strict concavity of the cost. Numerical schemes have been proposed by
Brenier-Benamou BBO00], Loeper LRO05] and Angenent-Haker-Tannenbaum
[AHTO03] to solve L? optimal transport. However, numerical instabilities
makes them di cult to use for general problems: for instance, LRO5] requires

a lower bound on the density of the source measure, while the gradient
descent algorithm of PHTO3] su ers from a drift e ect which produces
optimal maps that are not transport plans. Another possibility to nd
optimal transport plans is by discretizing the source and/or target measure.
These discrete approach include linear programming, the Hungarian method,
and a variant known as Bertsekas' auction algorithm Ber88. These methods
work for general cost functions, and are often unable to take advantage of
the geometric simpli cations that occur when working speci cally with the
squared Euclidean metric.

A promising approach, both from the practical and the theoretical point
of view has been proposed inAHA98]. In this approach, the source measure
has a density while the target measure is given by a sum of Dirac masses
supported on a nite set S. The fact that the source measure has a density
ensures the existence and uniqueness of the optimal transport map. In this
case, solving the optimal transport problem amounts to nding a weight
vector (Wp)p2s such that the power diagram of (S;w) has the following
property: for every point s in S, the proportion of the mass of contained in
the corresponding power cell should be equal to the mass of the Dirac mass at
s (see Section 2.2). In the same article, the authors also introduced a convex
function whose minimum is attained at this optimal weight vector, thus
transforming the optimal transport problem into an unconstrained convex
optimization problem on RN whereN is the number of points in the setS.

1.2. Contributions.  We revisit the approach of AHA98] with implemen-
tation in mind. Our main contribution is a multiscale approach for solving
the unconstrained convex minimization problem introduced in AHA98], and
thus to solve L2 optimal transport.

Let us sketch brie y the main idea. In order to solve the optimal transport
problem between a measure with density such as a grayscale image and
a discrete measure , we build a sequenceg = ;:::; _ of simpli cations
of using Lloyd's algorithm. We start by solving the much easier transport
problem between and the roughest measure | using standard convex
optimization techniques. Then, we use the solution of this problem to build
an initial guess for the optimal transport between and | ;. We then
proceed to convex optimization starting from this guess to solve the optimal
transport between and | 1. This is repeated until we have obtained a
solution to the original problem. If the original target measure has a density,
we use Lloyd's algorithm to obtain the rst discretization . Note that this
idea was independently proposed in [Bos10].

This procedure provides a signi cant speedup, up to an order of magnitude,
for computing optimal transport plans. Moreover, at every step of the
algorithm it is possible to obtain a lower and upper bound on the Wasserstein
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Figure 1. Interpolation between the standard picturesPho-
tograph and Peppers obtained with our algorithm (see Sec-
tion 5.3). The target image was quantized with 625 Dirac
masses for the rst row, and 15625 Dirac masses for the second
row. The cells in these pictures are interpolation between
power cells (on the left) and Voronoi cells (on the right), ob-
tained by linearly varying the weights from their value on the
left picture to zero. Their color vary so that the product of
the area of a cell multiplied by its gray level remains constant
over time.

distance (also known as Earth-mover distancesRTGO0O0]) between the source
measure and the original target measure . Using this approach, one can
obtain rough estimates of Wasserstein distances between two images with a
speedup of up to two order of magnitude over the simple convex optimization
approach.

2. Background

We brie y recap the few concepts of measure theory and optimal transport
that we use, before explaining the relation between thé.2 optimal transport
and power diagrams. We also recall how optimal transport can be turned
into an unconstrained convex optimization problem.

2.1. Measure theory and Optimal transport. A non-negative measure

on the spaceRY is a map from (measurable) subsets de:‘, to a non-negative
numbers, which isadditive in the sense that ([ ion Bi) = ; (Bi) whenever
(Bj) is a countable family of disjoint (measurable) subsets. Theotal mass of
ameasure ismasg ):= (RY). A measure with unit total mass is called
a probability measure The support of a measure , denoted by spt( ) is the
smallest closed set whose complement has zero measure.

The optimal transport problem involves two probability measures: a source
measure , and a target measure . We will always suppose that the source
measure has a density, i.e. there exists a non-negative function on RY
such that for every (measurable) sut%seB of RY,

(B) := (x)dx:
B
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On the other hand, we will assume that the target measure is discrete,
supported on a nite set S of RY. This means that there exists a family of
positive coe cients ( p)p2s such that for every subsetB,
X
(B) = p:
p2S\ B

The above formula is equivalent to writing  as the sumP p2s p p» Where
p is the unit Dirac mass at p. Thegintegral of a coptinuous function
with respect to thgse two measures isps (X)d (X) == ga (X) (x)dX, and
re (00 ()= s p ().
In Section 3.1 we will see how to adapt the proposed method to the case
where the source and target measures both have density.

Transport map.  The pushforward of a measure by amapT :RY! RA
is another measureT;  de ned by the equation Ty (B):= (T %(B)) for
every subsetB of RY. A map T is called atransport map between and if
the pushforward of by T is . We denote by ( ; ) the set of transport
maps between and

For instance, a mapT is a transport map between the source measure
and the target measure described at the beginning of this paragraph if and
only if for every point p in the support S of , "

Z

p= (T Yfpy) = (x)dx
T 1(fpg)

Optimal transport maps. The cost of a transport map T between the
source measure with density and the target measure is de ned by:
z z

o(T) := kx TX)k’d (x) =  kx TX)k® (x)dx
Rd Rd

The problem of optimal transport, also calledMonge's problemis to nd a
transport map Tope Whose cost is minimal among all transport maps between
and |, i.e.
Topt :=argminfce(T); T2 ( ; )9

The non-convexity of both the cost function ¢ and of the set of transport
plans makes it di cult, in general, to prove the existence of a minimum.
However, in this specic case where has a density and the cost is the
squared Euclidean norm the existence follows from [Bre91].

Wasserstein distance. The Wasserstein distancebetween two probability
measures and , having a density, is the square root of the minimal
transport cost. We denote it by Wass(; ). Intuitively, the Wasserstein
distance measures the minimum global cost of transporting every bit of
onto , supposing that moving an in nitesimal amount d (x) from x to y is
equal tokx yk?d (x).

Note that our de nition above is not symmetric, as it requires the source
measure to have a density. However, this restriction can be leveraged using
the notion of transport plan instead of transport map, leading to a de nition
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of Wasserstein distance between any pair of probability measured/il09,
Ch. 6]).

2.2. Power diagrams. Let S be a nite set of points in RY, andw:S! R
be a given weight vector. Thepower diagram or weighted Voronoi diagram
of (S;w) is a decomposition of the ambient space in a nite number of cells,
one for each point inS, de ned by the property that a point x belongs to
Vor¥(p) i forevery qin S, one haskx pk?> w(p) k x ok?® w(g). Note
that if the weights are all zero, this coincides with the usual Voronoi diagram.
Given such a decomposition, we will consider the applicatiormg’ which
maps every pointx in the power cell Vord(p) to its center p. This map
is well-de ned everywhere except on the boundary of the power cells, but
since this set has zero Lebesgue measure this has no consequence for us.
The pushforward of the source measure by the map T is a sum of Dirac
masses centered at every poinp in the set S, whose mass is the -mass of

the corresponding power cell:
X

TSy = (Vors(p)) p;
p2S

In [AHA98], the following theorem was proven. Note that this result, as
well as Theorem 2, can be also obtained as a consequence of Brenier theorem
[Bre9l].

Theorem 1. For any probability measure with density, and a weighted
set of points (S;w), the map T’ is an optimal transport map between the
measure and the pushforward measureld’j, . Consequently,
O X Z l 1=2
Wasy ;T¥, =@ kx  pk? (x)dxA
p2s Vors(p)

This theorem gives examples of optimal transport plans and the discrete
probability measures supported onS that can be written as the pushforward
Tdj, ,wherew is a set of weights onS. As we will see in the next section
(Theorem 2), it turns out that every probability measure supported on S can
be written in this way. Said otherwise, the optimal transport maps between

and a measure supported or§ can always be written asTs., for some
weight vector w.

2.3. An unconstrained convex optimization problem. Adapted weight
vectors. Let be a probability measure with density , and a discrete
probability measure supported on a nite setS, with = ,5 pp. A
weight vectorw : S! R on S is called adapted to the couple of measures
(; ) iffor every site pin S, one has
" #
p= (Vors(p) = (x)dx - 1
Vor ¢ (p)
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By Theorem 1, if the weigh vectorw is adapted to the couple(; ) then the
optimal transport between and the discrete measure is given by the map
Tsw-

Moreover, Theorem 2 below asserts that nding a weight vector adapted
to the couple (; ) amounts to nding a global minimum of the function

below, thus turning the very constrained original problem (minimization
among convex maps) into an unconstrained convex optimization problem.
Note that this theorem follows from the discussion in Section 5'of [AHA98].

Z H

X
(w):= pW(p) (k< sk?  w(p)d (x) @)
p2S Vor ¥ (s)
P
Theorem 2. Given a measure with density onRY, and = 5 ; p,

the following three statements are equivalent:

(i) the power mapT¢' realizes an optimal transport between the measures
and ;
(i) w is adapted to the coupld ; );
(i) w is a global minimizer of the convex function .

We will recall brie y how the value of the gradient of the function  can
be computed at a weight vectorw. Incidentally, the steps necessary to this
computation almost sketch a complete proof of the theorem. Consider the
map ¥ Z
(w):= (kx  pk®  w(p)d (x)

p2s Vor ¢ (p)
which is related to the our function by the equation ( w) = P n2S pW(p)
( w). The map is concave, as we will show by writing it as an in mum
of linear functions. Considerany map T from RY to the nite set S. By
de nition of the power cell, for every point x in Vorg(p) one has

kx pk> w(p) k x TXkK* w(T(x))
As a consequence, the function can be rewritten as

(w)=inf 1(w); where

T(W) = Rz(kx TOOK® w(Te))d (x):

Since the functions 1 all depend linearly onw, the function is concave,
and is convex. Moreover, it is easy to check that the values of the functions
and 1w coincide for the weight vectorw. Consequently, their gradient

coincide to at that point, and a simple computation shows :

@ -
@V(IIO)(W)_ i (x)dx ®3)
@ _
@V(/p)(w)_ - (x)dx (4)

In particular, the second equation shows that the gradientr ~ vanishes at a
weight vector w if and only if w satis es Eq. (1).
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3. Multiscale Approach for Minimizing

The e ciency of an optimization technique relies on two important choices.
The most important one is the choice of descent algorithm, as it is well-known
that the di erence in e ciency between (for instance) the rst order simple
gradient descent algorithm and the second order Newton methods can be
tremendous [Fle87].

The second one is the choice of the position from where the optimization
is started. Its importance shouldn't be disregarded, even for convex optimiza-
tion, as the second-order convergence in Newton's descent does only happen
in a small basin around the global minimizer.

In this section, we introduce our multiscale algorithm for nding a global
minimum of . We start by building a decomposition of the target measure

, i.e. a sequence of discrete measureg ;= ; 1;:::; L that are simpler
and simpler asL increases. The level of the decomposition is then used
to construct a good initial weight vector for the optimal transport problem
(; - 1), in a hierarchical way.

3.1 Decompositi(?_n of the target measure. A decomposition of the tar-
get measure = ,5 p pis asequence of discrete probability measures
(*) osuchthat = and - is supported on a setS-:

X

T = P p-

p2S
Moreover, for every level” we are given a transport map between- and -1,
that is a map - from the support S: of - to the (smaller) support S-41 of

*+1 with the additional property that for every point pin S,
X

pr+l = q; (5)
a2 - *(p)

The decomposition that we will consider in practice are constructed using
Lloyd's algorithm, as explained in Section 4.2. This means that the transport
map - maps every pointp in S to its nearest neighbor inS-4; .
We remark that having access to such a transport map between- and
-+1 allows to bound the Wasserstein distance between these two measures.
By considering the composition of transport maps, it is also possible to bound

the distance between e.g. and . Letting = | 1 ::: oone has:
0 1=
X 2
Wasg(; 1) @ pkp  (pK*A (6)
p2S

3.2. Algorithm.  We are given the source probability measure , and a
decomposition( -)o * L with L levels of the target measure. The goal is to
use the solution of the optimal transport problem from to -i; at level
" +1 to construct the initial weight vector for the optimal transport problem
between and - atlevel *. As before, we will consider the weight vectors at
level * as functions from the supportS: of - to R. The function - that we
optimize at step " is given by the same formula as in Eq. (2).
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The multiscale descent algorithm is summarized in Algorithm 1. Note
that the algorithm does not depend on the choice of the convex optimization
scheme (L-BFGS), which we will discuss later in Section 4.

Algorithm 1 Multiscale minimization of = g
w, =0
for =L 1to0Odo
setwo(p) .= W41 ( ~(p) foreveryp2 S
k:=0
repeat
compute w41 from w- using L-BFGS on
setvksr =1 ~(Wekser), K= k+1
until kvikq >"
setw: = wy
end for

In the stopping condition k:kq denotes the usualL9-norm whereq > 1 or
g=+ 1. In particular,

kr (w)ky =SL2121' p (Vors(p)j

ke (Wki=jp  (Vors(p)j
p2Ss

The rst quantity measures the maximum error that has been made by
considering the weight vectorw instead of the optimal one. In particular,
if kr (w)k minps p, then one is sure that all the cells in the power
diagram of (S;w) intersect non-trivially. This is important especially for
visualization purpose, as the existence of cells with zero-mass lead to black
spots in the interpolated pictures (see Section 5.3). The choice &fk; plays
a di erent role which we describe in the next paragraph.

3.3. Computation of Wasserstein distances. Simple lower and upper
bounds on Wasserstein distance can be obtained at every step of the multiscale
algorithm, using the fact that kr ( w)k; corresponds to the twice the amount
of mass that has been misa ected. This follows from the following proposition:

Proposition 1. Let w be the a weight vector or§, and consider the image
measure ~ := Ts;wj# . Then,

Wass(; ~) D kr (W)kizli
where D is the diameter of the supportS of

Proof. By de nition, both this measure ~ and the target measure are
supported on the same seS. Moreover,

X Z

m:= kr ( w)ky = P (x)dx

p2S Vor¥ (p)
corresponds to the amount of mass that has been mistranspoged. The cost of
transporting this mass back at the right place inS is at most mD 2, where
D =diam(S).
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As a consequence of this proposition, stopping Algorithm 1 at level with
weight vector w- yields the following estimation of Wass(; ):
z 1=2
Wass(; ) kx  Tsow (X)k? (x)dx
Rd
D kr  ~(w)ki 2 +Wassy(; ) @)

Said otherwise, if one wants to compute the Wasserstein distance between
and up to a certain error ", it is not necessary to consider the levels of the
decomposition below the rst level "¢ such that Wass( -,; ) <". Note that
this quantity can be estimated thanks to Eq. (6). The e ectiveness of this
approach is discussed in Section 5.2.

Proof of Eq. (7). By Theorem 1, the map Ts..». IS an optimal transport

between the measure and ~= Ts..j, . This means that the Wasser-
stein distanceWass(; ~) is equal toc. Moreover, by the reverse triangle
inequality,

jWass(; ) Wass(; ~)j Wasg(s -)+Wassy( ; )

One then concludes using the previous proposition.

3.4. Convergence of Optimal Transport Maps. In this paragraph, we
discuss the soundness of constructing an initial weight vector for the optimal
transport problem (; -) from an adapted weight vector for the problem
(; -+1). The result of this section are summarized in the following theorem.
Note that the de nition of zero-mean convex potential is given below, and is
necessary to de ne uniquely the adapted weight vector: without this, adapted
weight vectors are de ned up to an additive constant.

Theorem 3. Let and( n)n 1 be discrete probability measures supported on
nite sets S and (Sy)n 1 respectively, such thatim, Wass(; ,)=0. Let:

Wh :Sp ! R be adapted to( ; p)

w:S! R be adapted to(; )
Suppose that both weight vectors yield zero-mean convex potentials (see below),
and that the assumptions of Proposition 2 are satis ed. Then, for every
sequence of pointg, 2 S, converging to a pointp in S, one hasw(p) =
lim wn (pn).

Before proving this theorem, we need to introduce a few de nitions and
auxiliary results.

Convex potential. Let be a probability measure supported on a nite
set S, and let w denote the weight vector adapted to the optimal transport
problem between and . Set

)=

< 2 : 2
5 kxk rrpzlgkx pks  w(p) (8)

_ o1 5
= rgggmml * 5w(p) k pk) 9)
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where hvjwi = P i Viw; denotes the usual Euclidean scalar product. From
these two formulations, it is easy to see that the function ¢ is convex, and
that its gradient r & coincides with the transport map T&'. We call such a
function a convex potential for the optimal transport plan. Since adding a
constant to the weight vector (or to ) does not change the transport plan,
we consider thezero-mgan convex potentialwhich is uniquely de ned by the

extra assumption that 4 J(x) (x)dx =0.

Proposition 2. Let and be two probability measures, having density

and supported on a nite setS. Let ( ,) be a sequence of probability
measures supported on nite set{S;), s.t. lim, Wass( n; )=0. Assume
that:

(i) the support of is the closure of a connected open set with regular
(piecewiseCl) boundary ;
(ii) there exists a positive constant such that mon ;
(i) the support of all the measuresy, is contained in a xed ball B(O; L) ;
Denote := ¢ (resp. p = ‘g:) the zero-mean convex potential of the

optimal transport between and (resp. ). Then, , converges to
uniformly on  asn grows to in nity.

This proposition is similar to [Bos1Q Theorem 1], but without the require-
ment that the source and target measure have to be supported on convex
sets. It relies on the following result (cf [Vil09], Corollary 5.23):

Fact. Let , be a sequence of measures converging tpand T, (resp. T)
denotes the optimal optimal transport map between and , (resp. ). Then,
for every positive",

lim  ( ~(T;Ta)) =0 (10)

nl +1
where «(T;Tp):= fx 2 RY; kT(x) Ta(X)k "g.

Proof of Proposition 2. For almost everyx in , the gradientr (x) = Th(x)
is included in the support of |, hence in the ballB(0; L) by (iii). The same
holds for T, so that the inequality kKT Tpk 2L holds for almost everyx
in . Foreveryp 1,

Z
KT Takip( )=  KT(X)  Ta(x)kP (x)dx
Z
= KT(x) Tah(X)kP (x)dx
Zn “(T;Tn)
+ KT(x) Ta(x)kP (x)dx

“(T:Tn)
"P+2L)P ( (TiTh)

Using Eqg. (10), we obtain the convergence off, to T in the LP( )-sense.
Thanks to the the assumptions (i) and (ii), we can apply the Poincaré
inequality on the domain ( ; ) toZthe zero-mean potentials , and to get:

K n Kiogy = | k n(x) (x)k (x)dx
R
const( ; )KTn  Tkyp(y:
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In other words, , converges to inthe LP( )-sense. Since the support of
all target measures is contained in a ball of siz&, kr nk L, and ¥ is
L-Lipschitz. Hence, | also converges uniformly to on the support of .

Proof of Theorem 3. We begin by proving that there for every pointpin S,
there exists a sequence of pointg, 2 S, converging to p such that w,(q,)

also converges tov(p). Applying Eqg. (10) with " equal to half the minimum

distance between two points inS ensures thatT,, converges toT on a setF

with full Lebesgue measure in . Choose a pointx in the intersection of the

cell Vorg(x) and of F, and consider the sequence, = T,(p). This sequence
converges top, and by de nition one has :

n(Pn) (p):%(kx pk* k x  pnk?+ w(p)  w(pn))

Using the uniform convergence of , to , one deduces thatw(g,) converges
to w(p).

We now prove by contradiction that if (p,) converges tgp, then lim sup wn (pn)
is at most w(p). Suppose not: taking subsequence if necessary, the limit of
Wn(pn) is larger than w(p) by a positive . For every point X in , we use
the triangle inequality to get

kx  pnk®  Wn(pn) K X thk®  wn(th)+ ry (11)
with 1y == kth  pak®+2Dkpn  GhK+ Wn(Gh)  Wn(pn)

and D is the maximum distance between a point in and a point in the ball
B(0; L) de ned by the assumption (iii). Using the convergence of(p,) and
(o) to the same point p, and the assumption on the limits ofw,(p,) and
Wn(0h), we obtain limp +1 rp . Combining this with Eq. (11) shows
that the cell of p, in the power diagram Vor‘évnn does not intersect for n
large enough. This contradicts the hypothesis thatp, is a Dirac with positive
mass in the support of .

The proof that liminf wn(p,) is larger than w(p) is very similar but a bit
longer, as it requires the use of the zero-mean assumption for the convex
potentials. These two bounds forlim inf =supw, (pn) conclude the proof.

4. Implementation

In the rst paragraph, we give some details our implementation of the
convex optimization method proposed in AHA98] for a xed target measure.
Then, we explain how we compute the hierarchical decomposition of the
target measure needed for the multiscale algorithm.

4.1. For a xed target measure. Solving optimal transport petween a
probability measure with density and a discrete measure = 5 pp
amounts to nding the minimum of the convex function  given in Theo-

rem 2.(iii): |

« z

(w)= pW(p) (kx  pk?  w(p)) (x)dx
p2s Vorg (p)

with -2 _wy= , (x)dx

@V(’p) Vor ¢ (p)
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We need three ingredients to achieve this goal: an e cient and robust
implementation of power diagram computation, robust numerical integration
functions, and convex optimization software. In this paragraph, we discuss
and motivate our choices regarding these three aspects.

Power diagrams. We use the Regular_triangulation_2 package from CGAL
[cgd. It is tempting to try to avoid recomputing the whole power diagram
for every evaluation of the function by using the same approach that was
used in MMdCTADOQ9 ] to maintain the Delaunay triangulation. However,
as shown in Figure 3(a), the topology of the power diagram keeps changing
until the very last steps of the optimization, thus discarding this approach.

Numerical integration. In our C++ implementation, a measure  with
density is represented by an object which can answer the following two
gueries. Given a convex polygorP =[ap;:::;an = ag], and a function f
from P to R, the class should provide a way to compute:

(1) the mass of P, i.e.  (x)dx R
(2) the integral of f overP,i.e. ,f(x) (x)dx.

In practice, we only use it the second query for the function$ : x 7' kx xok2.
We developped two di erent models of measure with density.

The rst one is the uniform measure on a convex polygorR. In this case,
computing the mass of a polygorP amounts to computing the area of the
intersection P\ R of two convex polygons. The integral of the squared distance
function x 7! kx  xgk? over the polygonP \ R is computed by triangulating
P and summing the integral over each triangleT. The integral on T can be
obtained in closed-form: if one denotes bgov(T; Xg) the covariance matrix
of T with base point xg, then

Z

kx  Xok?dx = cov(T;Xg)11 + cov(T; Xg)22
-

The second model corresponds to the density obtained from a grayscale
image. We assume that the density is constant on each square pixel
pij =[i;i +1) [j;j +1), equal to the valuea;j . We then consider:

z X
(x)dx = aij areaP \ pi;) (12)
P
z %
f(x) (x)dx"' aij areaP \ pij)f (i;j) (13)
P i5j
Note that it is not possible to simply replace the area ofP \ p;; by zero
or one depending on whethelP intersects p;; or not, thus disallowing a
more e cient GPU implementation. However, since the area of P \ p;
needs to be computed only for pixels containing edges or vertices Bf the
algorithm we use remains rather e cient. Pixels on edges are dealt with while
applying Bresenham's algorithm to raster the polygon. The coverage of pixels

containing vertices of P is obtained simply by computing the intersection of
the polygon P with the square p; .
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Convex optimization.  We tried several approaches for the actual convex
optimization. All of these methods use the following rough scheme to construct
the sequence of weight vectorgwy):

(i) Determine a descent directiond ;

(i) Determine a timestep sk, and setwy+1 = Wy + Skd.
Methods to choose the descent directiody include gradient methods, wheredy
is simply r  ( wg), Newton methods for whichd, = [D? ( wi)] *r ( wy))
and quasi-Newton methods. In quasi-Newton method®D? ( wy) is not
computed exactly, but estimated from previous evaluations of the gradients.
We chose the widely used low-storage version of the BFGS schentde87],
implemented in C in libLBFGS.

The timestep si is determined by a search along the line starting fromwy
with direction dx. Here again, the literature is very vast, as there is a trade-
0 between nding a good step size (the best choice would be to minimize
the function s 7! ( wy + sdy)) and requiring as few functions evaluations
as possible recall that in our case a function evaluation requires the
construction of a complete Power diagram!

Figure 2.(a) shows that gradient descent methods are outperformed by
guasi-Newton ones, regardless of the choice of line search. It also shows that
the choice of line search method is not as important barring the xed-step
scheme. For all remaining experiments, we use the low-storage BFGS method
with Moré-Thuente line search [MT94].

4.2. Decomposition of the target measure. Suppose for now that the
measure is discrete; we will explain in the next paragraph how to convert
an image to such a measure. From this measure, we construct a sequence of
discrete probability measures( -), vg(ith

T PP
p2S:
such that o= , and that the number of points of the support of - decreases
as’ increases. The parameters of our algorithm are the numbedr of levels
in the decomposition, and for each level, the number of pointsn(’) in the
support of the measure -. In practice, we found that choosingn(*) = n(0)=k
with k =5 usually provides good results.

Lloyd's algorithm. Theorem 3 suggests that if we want to be able to
construct a good initial weight vector for the problem (; -) from a weight
vector adapted to (; -+1) we need to have -1 as close as possible to
in the Wasserstein sense. Given the constraints that-.1 is supported on
n(C +1) points, this means

w1 2 argminfWass,(; ), jspt( )i n(C +1)g:

This minimization problem is equivalent to a weighted k-means problem,
with k = n(" +1). Since it is hopeless to solve this problem exactly, we use
the standard Lloyd's iterative algorithm to nd a good local minimum.

We initialize the algorithm using a random samplesp+1 of n(" +1) points
drawn independently from -. We then apply Lloyd's descent step toS",;

to obtain Sf‘:ll, stopping when the points do not move more than a given
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Figure 2. Speed of convergence, measured by the dis-
tance between the weight vector at a given time/step and
the optimal one. (a) Comparison of simple convex optimiza-
tion algorithms: gradient descent (red) with xed step (solid)
or strong Wolfe line search (dashed), and low-storage BFGS
algorithm (blue) with strong Wolfe (solid) or Moré-Thuente
line-search (dashed). (b) and (c) Comparison between the

original algorithm of [AHA98] (red) and the multiscale one
(blue).

threshold between two successive steps. This procedure provides us with the
support S-4+1 of our measure. We de ne - to be the application which maps

a point pin S to its nearest neighbor inS-.;. The values of( p;+1)p2s
are de ned by Eg. (5).

Initial quantization of the target measure. Often, the target measure
is not a discrete measure but a measure; with density : ! R (such as
a grayscale image). In this case we apply Lloyd's algorithm to the measure
%in order to obtain an initial quantization = n2s p p Of the original
measure | with a prescribed number of pointsN.

5. Resuls

We will use the following datasets in our experiments. We denote byU
the uniform probability measure on the square S =[0; 512] [0; 512]
For =1 we will simply write U and S. By L, we denote is the standard
grayscale picture of Lena on the squar&. Given a measure with densityD,
we will denote by Dy a quantization of this measure withN points, obtained
using Lloyd's algorithm. The decomposition of measures we work with are all
obtained with the same parameters:5 levels in the decomposition (including
the original one), and level’ being made ofN=5 Dirac masses.
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Figure 3. (a) Percentage of points in the support of the
target measure whose Power cell intersects the support of
the source measure during the execution of various convex
optimization algorithms (colors are the same as in Fig. 2(a)).
(b) and (c) Estimation of Wasserstein distance: in red (resp.
blue), the lower and upper bounds obtained by the multiscale
(resp. original) algorithm as a function of time, and in green
the correct value.

5.1. Comparisons with the original approach. In Figure 2(b) and 2(c)
we show the evolution of thek:k; distance between the weight vector obtained
at a given time, and the optimal onews°'. This optimal weight vector had
been previously obtained by running the algorithm with a target accuracy of
kr ( w)ky < 10 9,

The advantage of our multiscale method over the original convex optimiza-
tion is especially important when the source and target measure are far from
each other. Table 1 compares the running time of the original and multires-
olution algorithms to compute a weight vector adapted to the problem of
optimally transporting U to Ujggo With a given accuracykr ( w)k; <".
The speedup increases as goes to zero, i.e. as the measuré) becomes
more concentrated around the lower-left corner of the original squars.

5.2. Computation of Wasserstein distances. We use the approach de-
scribed in Section 3.3 to obtain lower and upper bounds on the Wasserstein
distance between and at every step of the algorithm. Figure 3(b) and
3(c) compare the evolution of these two bounds as a function of the runtime
of the original and the multiscale algorithm.

5.3. Displacement interpolation of images. The concept of displacement
interpolation of two probability measures was introduced in McC97]. It
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source/target | original | multiscale | speedup
iU/ U10000 577s 143s 4.0
zU / U1o000 1180s 189s 6.2
gU / U1oooo 1844s 241s 7.6
U/ L10000 216s 52s 4.1

Table 1. Running time of the original and multiscale algo-
rithm to nd a weight vector such that kr ( w)k; < 10 ©.

LR

LTIV

Figure 4. First and second rows: An interpolation between
a picture of G. Monge and photograph of B. Riemann (with
N =625 and 15k respectively). The intermediary steps are
obtained using McCann's displacement interpolation McC97]
of the two corresponding measures, which can be computed
from the L? optimal transport.

uses optimal transport maps as a replacement for the linear interpolation

t = (@ t) +t . Displacement interpolation can be a useful tool for
the interpolation of grayscale image, when the gray value of a pixel can
be interpreted as a density of some quantity (e.g. satellite views of clouds,
preprocessed so that the gray level ranges from black to white depending on
the thickness of the cloud). We make use of the transport map computed
using the multiscale algorithm. Recall that in order to apply this algorithm
to a target measure vlgth density : ! R, we had to compute a rst
gquantization of , = p2S P P using Lloyd's algorithm. By construction
of , and by de nition of the optimal weight vector ! , one has for every point
pinS

z z
(x)dx = ,= (x)dx:
Vor s (p)\ Vor s (P)\

This suggests a way to construct an interpolation between and . Given
a time t, consider the weight vectorw; = tw, and the corresponding Power
diagram (Vors.,). Now, we de ne the interpolant  at time t as the
only piecewise-constant function { on  obtained by spreading the mass
of , on the intersection of the cellVors,y, (p) with , i.e. for every point
X in Vors., (p), dene (x) := p=areaVors.w,(p)). An example of this
interpolation is presented in Figure 4.
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6. Discussion

In this paper we have presented a simple way to increase the e ciency of
the convex optimization algorithm introduced in [AHA98] to solve the optimal
transport problem. We also discussed how our multiscale approach can be
used to obtain fast estimation of Wasserstein distances between images.

This rst step suggests that, in order to obtain faster computations of
optimal transport, one has to better understand the geometry of the function

. For instance, it is currently not possible to obtain complexity estimates
for this approach because: (i) nothing is known about the shape and size
of the basin around the minimizer where Newton's method has quadratic
convergence and (ii) the stability result (Theorem 3) is not quantitative.
Understanding these two problems could open the way to even more e cient
computations of optimal transport maps.

We also believe that this multiscale approach can be useful in the solution
of more geometric problems with a similar structure. An example of such a

of areas 1;:::; n suchthat ; #; vanishes, nd a convex polytope whose
facets normals are among th€+;), and such that the facet corresponding tor;
has an area of exactly ;. This problem has a similar multiscale structure as
optimal transport, and can be also solved by minimizing a convex functional
[LROO06], and would probably bene t from a multiscale approach. A second
example is the problem of designing a re ector antenna with prescribed image
measure at in nity, which can also be formally cast as an optimal transport

problem (Section 4.2.5 in [Oli03]).
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