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Abstract—Data-driven approaches are increasingly applied to
machine prognostics. More precisely, connexionist systems like
neural networks and neuro-fuzzy systems benefit from a growing
interest. Indeed, their approximation capability makes them as
powerful candidates to achieve the prediction step of prognostics.
Nevertheless, prognostic implies to be able to perform multi-
step ahead predictions whereas many works focus on short term
predictions. Following that, the aim of this paper is to review
and discuss the connexionist-systems-based approaches to ensure
long term predictions for prognostics. The paper emphasizes
on univariate time series forecasting. Five connexionist-systems-
based approaches are pointed and formalized, namely: the
iterative, direct, DirRec, parallel and MISMO approaches. Their
performances are analyzed according to three types of criteria:
those one of prediction accuracy, of complexity (computational
time) and of implementation requirements. In addition, simu-
lations are made among 111 times series prediction problems
in order to reinforce the discussion. These experiments are
performed by using the exTS (evolving extended Takagi-Sugeno
system). Finally developments are applied on a real engine fault
prognostics problem in order to validate conclusions on a real
world case and to point out some best practices for prognostics
applications.

I. INTRODUCTION

The main objective of prognostic is to estimate the remain-

ing useful life (RUL) of a system. Moreover, maintenance

managers need the RUL to be greater than the “decision,

scheduling and maintenance tasks” cumulated times, otherwise

prognostic would be useless since maintenance workers would

not be able to achieve maintenance before failure occurs. Fol-

lowing that, developing a suitable prognostic system implies

to be able to perform multi-step ahead predictions in order

to provide mid-term or long term estimation of the system’s

health.

According to literature, three main prognostic approaches

are generally retained [1]–[3]: model-based, data-driven and

experience-based prognostic approaches. In a few words,

experience-based prognostic methods are used in statistical

reliability applications to predict the probability of a fail-

ure at any time. Model-based approaches suppose that the

degradation process can be formalized in a mathematical

and analytical form. Data-driven prognostic methods rely on

the assumption that the statistical characteristics of data are

relatively unchanged unless a malfunctioning occurs. These

methods aim thereby at transforming raw monitoring data

into relevant information and behavior models (including the

degradation) of the system. They take as inputs the current

monitoring data and return as outputs predictions or trends

about the health state of the system. Data-driven approaches

offer an alternative to the others approaches, especially in

cases where obtaining reliable data is easier than construct-

ing physical or analytical behavior models. Indeed, in many

applications, measured input/output data is the major source

of information for a deeper understanding of the system degra-

dation. Following that, data-driven approaches are increas-

ingly applied to machine prognostic (mainly techniques from

artificial intelligence). More precisely, connexionist systems

like neural networks and neuro-fuzzy systems benefit from a

growing interest. Indeed, their approximation capability makes

them as powerful candidates to achieve the prediction step of

prognostics. Actual developments confirm the interest of using

this class of approaches in forecasting applications [4]–[7].

Nevertheless, many works focus on short term predictions

which is not really matching the requirement of a sufficient

forecasting horizon stated before. Furthermore, there is no

consensual way of building long term connexionist-based pre-

diction systems. Various architectures and learning processes

can be used whose accuracy performances depend on several

factors like the type of connexionist system, the nature of the

data to be predicted, the horizon of prediction. Applicability

characteristics like processing time and complexity also vary

from an extreme to an other. Following that, the aim of this

paper is to review and discuss the connexionist-systems-based

approaches to ensure long term predictions for prognostics.

Developments emphasize on univariate time series forecasting.

The paper is organized in four mains parts. First, the

multi-step ahead prediction problem with connexionist systems

is formalized and the underlying learning phase is shortly

explained. At this stage, differences between “prediction ap-

proaches, tools, learning algorithm and structure” are pro-

posed. In the second part, five types of connexionist-based

multi-step prediction approaches are presented and discussed.

For that purpose, performances criteria are proposed. The next



section aims at testing the five approaches on a benchmark

set of time series from NN3 competition (111 data series).

This part enables to complete the discussion in order to point

out the most relevant approaches. Developments are finally

applied on a real engine fault prognostics problem in order to

validate conclusions on a real world case and to point out

some best practices for prognostics applications. Note that

all experiments are performed by using the exTS (evolving

extended Takagi-Sugeno system) as the basic tool of each one

of the approaches.

II. CONNEXIONIST SYSTEM BASED PREDICTIONS -

PROBLEM STATEMENT

A. Approximation approaches - a formalization

Connexionist systems like neural networks or neuro-fuzzy

systems aim at approximating an input-output function. This

kind of systems must be tuned to fit the studied problem

thanks to a learning phase of parameters (and/or structure).

This “identification problem” is defined as follows.

Let [X] be an input data set, [Y ] an output data set, and

r(.) the real function which governs the input/output law:

[Y ] = r([X]) (1)

The use of an approximation model aims at estimating the

output set [Y ] (let note it [Ŷ ]). For that purpose, the real

function r(.) is approximated (r̂(.)) so that the global model

can be expressed as follows.

[Ŷ ] = r̂([X]) (2)

The estimated input/output law r̂(.) is obtained thanks to a

learning phase. For that purpose, r̂(.) is expressed as the

combination of a structure f(.) and a set of parameters [θ]
that both are estimated by using a learning algorithm la(.)
that aims at making the residual ǫ = [Y ] − [Ŷ ] as close as

possible to the null vector.

{f, [θ]} = la ([X], [Y ])
r̂(.) = f ([θ])

(3)

The input-output law being estimated thanks to the learning

phase, the approximation function can finally be formalized as

follows:

[Ŷ ] = f([X], [θ]) (4)

As a short synthesis, building an approximation model re-

quires a structure and a set of parameters estimated thanks

to a learning algorithm. Various structures and algorithms

can be used to approximate a same input-output law. In the

following sections, we thereby distinguish the concepts of

“approximation approaches” and “approximation tools”. The

first one is the way of reaching r̂(.), the second one is the

basic connexionist system used for that purpose.

B. Multi-step ahead prediction with connexionist systems

Let now use the concepts introduced in section II-A to

formalize the problem of connexionist-based multi-step ahead

prediction of an univariate time series.

A univariate time series St is a chronological sequence of

values describing a physical observation made at equidistant

intervals [8]: St = {x1, x2, . . . , xt} (where t states for the

temporal index variable).

The multi-step ahead prediction problem consists in estimat-

ing a set of future values of the time series: [X̂t+1→t+H ] =
[x̂t+1 , x̂t+2 , x̂t+3 , . . . , x̂t+H ] where H states for the final

prediction horizon. According to eq. 2, this approximation can

be expressed as:

[X̂t+1→t+H ] = m̂sp([Xt]) (5)

where, “msp” states for “multi-step ahead prediction”, and

[Xt] ∈ St is known as the set of regressors used (for example

[Xt] = [xt , xt−1 , xt−2]).
Like in previous section, a multi-step ahead prediction ap-

proach m̂sp can be obtained in different manners and by using

different connexionist tools (structure + learning algorithm).

Furthermore, let also point out that various tools can be needed

for a single approach. As for an example, consider Figure 1.

In this illustration, n tools are needed to perform the global

approximation. Each tool has a specific set of inputs [Xi] and
provides an output set [Ŷ i] (where i = 1 . . . n). Depending on

the approach, the input set [Xi] can be composed of regressors

values of the time series and/or estimated values of other

tools. The global output approximation is a combination of

the elements of “local functions” outputs:

[X̂t+1→t+H ] ∈ [Ŷ 1] ∪ [Ŷ 2] ∪ . . . ∪ [Ŷ n] (6)

1
ˆ
t t HX
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Fig. 1. Representation of a multi-step ahead prediction approach based on
various approximation tools

C. First discussion

This first part of the paper enables to point out that there

is no unique way of performing multi-step ahead predictions.

Moreover, the performances of a specific approach depend on

many aspects such as the size of the set of regressors [Xt],
the final horizon H , the nature of the time series. The choice



of the basic prediction tool also is influent. As for an example

consider neuro-fuzzy systems. The same type of structure (a

first order Takagi Sugeno fuzzy inference model) can be tuned

with various algorithms like gradient descent or clustering

techniques which will imply very different approximation

(prediction) capabilities.

The aim of the following section of the paper is thereby

to identify and discuss the main multi-step ahead prediction

approaches based on connexionist systems. This requires some

performances criteria to be defined.

III. CONNEXIONIST-BASED MULTI-STEP AHEAD

PREDICTION APPROACHES - AN OVERVIEW

A. A taxonomy of multi-step ahead prediction approaches

Multi-step prediction approaches can be divided into two

main categories [9]: that ones that are based on the combina-

tion of single output tools (“iterative”, “direct” and “DirRec”

approaches), and that ones that requires multiple outputs

models (“parallel” and “MISMO” approaches). An illustration

of this taxonomy is given in Figure 2.
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Fig. 2. Taxonomy of multi-step ahead prediction approaches

Note that, as for the name of the approaches, there is

no absolute consensus in literature. The “parallel” approach

defined in this article is called “joint” approach in [10] and

“direct” approach in [11].

B. Iterative approach

The iterative approach is the most common one. Multi-step

predictions are provided by using a single tool that is tuned

to perform a one-step ahead prediction x̂t+1. This estimated

value is used as one of the regressors of the model to estimate

the following one and the operation is repeated until the

estimation of x̂t+H . The procedure is illustrated in Fig 3.

Formally:

x̂t+h =





* if h = 1,
f1

(
xt, . . . , xt+1−p, [θ

1]
)

* elseif h ∈ {2, . . . , p},
f1

(
x̂t+h−1, . . . , x̂t+1, xt, . . . , xt+h−p, [θ

1]
)

* elseif h ∈ {p + 1, . . . ,H},
f1

(
x̂t+h−1, . . . , x̂t+h−p, [θ

1]
)

(7)

where
{
f1, [θ1]

}
states for the one-step ahead prediction

model with its parameters set calculated during the learning

phase, p the number of regressors used, i.e. the number of

past discrete values used for prediction. Note that from the

time h > p, predictions are made only by using evaluated

data, i.e. without observed data.

1

1

t

t

t p

x

x

x

−

− +

� �
� �
� �
� �
� �
� �� �

�
{ }1 1,[ ]f θ

1
ˆ
tx +

1

2

ˆ
t

t

t p

x

x

x

+

− +

� �
� �
� �
� �
� �
� �� �

�
{ }1 1,[ ]f θ

2
ˆ
tx + 1

2

ˆ

ˆ

ˆ

t H

t H

t H p

x

x

x

+ −

+ −

+ −

� �
� �
� �
� �
� �
� �� �

�
ˆ
t Hx +{ }1 1,[ ]f θ

Fig. 3. Iterative approach representation

The iterative approach is the simplest to implement [12],

[13]. However this approach suffers from propagation error:

the accuracy decreases as the length of the prediction horizon

increases [9], [12], [14], [15]. Moreover, this approach does

not take into account the temporal behavior [9].

C. Direct approach

The direct approach is the combination of H models that

aim at predicting x̂t+h (with h ∈ [1, H]). All models use the

same observed data (see eq. 8 and Figure 4).
∣∣∣∣∣∣∣∣∣∣

x̂t+1 = f1(xt, xt−1, . . . , xt+1−p, [θ
1])

. . .
x̂t+h = fh(xt, xt−1, . . . , xt+1−p, [θ

h])
. . .
x̂t+H = fH(xt, xt−1, . . . , xt+1−p, [θ

H ])

(8)

where
{
fh, [θh]

}
states for the model tuned to provide pre-

dictions at t + h, and p the number of regressors used.
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Fig. 4. Direct approach representation

The direct model advantage is that each model is dedicated

to the prediction of its own horizon. However, the direct

approach does not take into account the complex dependencies

between variables, which influences the prediction accuracy

[9]. Moreover, this approach is not easy to implement [13].

D. DirRec approach

DirRec approach has been presented by [16]. As shown

in eq. 9 and Figure 5, the DirRec approach is similar to the

iterative approach except that each prediction step forecasting

model is distinct. Learning procedure is quite different since

each model (
{
f1, [θ1]

}
, (
{
f2, [θ2]

}
, . . .) must be sequentially

tuned. Indeed, predictions at t+1 of
{
f1, [θ1]

}
are used to tune{

f2, [θ2]
}
, and so one until all prediction tools are trained.



x̂t+h =





* if h = 1,
fh

(
xt, . . . , xt+1−p, [θ

h]
)

* elseif h ∈ {2, . . . , p},
fh

(
x̂t+h−1, . . . , x̂t+1, xt, . . . , xt+h−p, [θ

h]
)

* elseif h ∈ {p + 1, . . . ,H},
fh

(
x̂t+h−1, . . . , x̂t+h−p, [θ

h]
)

(9)

where
{
fh, [θh]

}
states for the model tuned to provide pre-

dictions at t + h, and p the number of regressors used.
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Fig. 5. DirRec approach representation

According to [15], the DirRec approach has the same

disadvantage as the iterative approach with respect to the

propagation of the error, although the new model is created

after each step of the prediction process.

E. Parallel approach

The parallel approach is a multiple outputs prediction

model. This approach calculates all prediction steps with a

single model, as illustrated by eq. 10 and Figure 6.

[X̂t+1→t+H ] = [x̂t+1, . . . , x̂t+H ]
= f(xt, xt−1, . . . , xt+1−p, [θ])

(10)

where {f, [θ]} states for the model tuned to provide predic-

tions, and p the number of regressors used.
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Fig. 6. Parallel approach representation

This approach enables to provide all steps predictions with

less computing time than the direct approach since there is

only one model to tune [14]. But it raises serious rounding

errors: the number of output nodes is equal to the length of

the prediction horizon [17].

F. MISMO approach

MISMO (Multiple-input Several Multiple-outputs) approach

has been introduced in [18]. This approach consists of several

MIMO (Multiple-input Multiple-output) with a parameter (s)
that determines the output number for all MIMO. If s = 1,
this amounts to the direct approach, whereas if s = H this

corresponds to the parallel approach.
[
OUT

k
]

=
[
x̂t+ks, . . . , x̂t+(k−1)s+1

]

= fk
(
xt, xt−1, . . . , xt+1−p, [θ

k]
) (11)

where s is the number of outputs of each model, m = H/s
the total number of models, k ∈ [1, m] the model number.{
fk, [θk]

}
states for the kth model tuned, and p the number

of regressors used.
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Fig. 7. MISMO approach representation

According to [9], predictions are expected to be dependent

because of the stochastic properties of the series. At the same

time their degree of dependency is difficult to set a priori and

is typically unrelated to the horizon H fixed by the user. The

MISMO greater adaptability comes at the cost of an additional

parameter s.

G. Analysis criteria and discussion

The scientific literature does not suggest the superiority of

any approach upon the others ones. To evaluate and compare

the approaches, relevant criteria must be chosen. At least three

groups of criteria can be defined:

• prediction approach accuracy;

• computational complexity;

• implementation difficulty.

Prediction approach accuracy. In a general way, the choice

of an error measure to quantify the accuracy of predictions has

been much discussed (see for example [19], [20]). Prediction

performances are used to be assessed using the root mean

square error criterion (RMSE), which is the most popular

prediction error measure, the mean absolute percent error

(MAPE), the mean absolute scaled error (MASE), or the

coefficient of determination (R2) which is a measure of

how well future outcomes are likely to be predicted by the

model. In any case, those error measures are only intended

as summaries for the error distribution for a specific model.

Thereby, the use of the mean (µe) and standard deviation (σe)

of the errors of prediction is also of interest. Moreover and

according to section II-A, the approaches can be compared if

the same basic connexionist tool is used.

Computational complexity. A complexity criterion aims at

assessing the amount of committed computing resources or

time that are necessary during the learning and execution

phases, or the number of evaluated parameters. From this point

of view, the multiple-tools approaches (direct, DirRec and

MISMO) should take more time when learning than the single-

tool approaches (iterative and parallel) since various models

have to be tuned. If the learning time is a critical criterion,

these three first approaches should be avoided.



Implementation difficulty. The implementation difficulty cri-

terion is a more subjective criterion: its aim is to quantify

the effort in implementing the prediction approach. Whatever

the ability of the practitioner is, it seems adequate to sort

the approaches from the most simple to the most complex

like this: the parallel approach, the iterative approach, the

direct approach, the DirRec approach and finally the MISMO

approach.

According to all this, parallel and iterative approaches seem

interesting from the complexity and implementation points of

view. However, prediction accuracy is a critical performance

criterion, and definitive conclusions can not be done until

tests are made. This is the aim of the remaining paper:

the approaches are first compared on prediction benchmarks

(section IV) and then on a real prognostic problem (section

V).

IV. COMPARING THE APPROACHES WITH THE NN3

COMPETITION DATA SETS

A. NN3 data sets

To compare different multi-step prediction approaches, tests

are made on data sets form the NN3 competition which was

provided to test the accuracy of computational intelligence

methods (notably neural networks) in time series forecasting

[21]. The advantage of using NN3 resides in the quantity

and diversity of time series: these data sets consist in 111

monthly time series derived from the homogeneous population

of empirical time series. Figure 8 depicts time series number

53 and 88 (taken randomly). It allows to show the diversity of

data. Note that NN3 has been used in [9] for the same type

of analysis as in this paper.
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Fig. 8. Two NN3 time series

B. Simulation conditions

Basic connexionist tool. As stated in section II-A, a ba-

sic connexionist tool has to be chosen to test the different

approaches. In this paper, experiments have been made by

using the exTS (evolving extended Takagi-Sugeno system)

proposed by [22], [23]. The exTS approximation tool consists

of a first order Takagi-Sugeno inference structure whose pa-

rameters are learned thanks to the combination of a clustering

algorithm with the RLS (Recursive Least Squares) algorithm.

This tool has been used in several application areas such as

fault detection and diagnosis and has shown good prediction

performances. In previous work, we proposed to use it for

prognostics [24].

Horizon of prediction and set of regressors. Tests were

carried out on all 111 NN3 time series, without data processing

than a data normalization, and with identical initial conditions

for each approach. As for the horizon of prediction (and

according to NN3 competition [21]), the last 18 values of each

time series where used for test (H = 18). In order to extract

more solid conclusions on the comparison of the approaches,

the numbers of inputs used has been set from 1 to 5 (regressors

p).
Accuracy criteria. The accuracy criteria retained were the

RMSE, µe and σe of the errors of prediction (for the 111

time series tests) (eq. 12). Since the MISMO approach is

based on the generation of various models that perform the

same predictions (parameter s), the most suitable model for

each series (that one with the lowest RMSE) has been retained

before calculating the global accuracy criteria.

RMSE =

√√√√ 1

H

h=H∑

h=1

(xt+h − x̂t+h)
2

µe =
1

H

h=H∑

h=1

(xt+h − x̂t+h)

σ2
e =

1

H

h=H∑

h=1

(xt+h − x̂t+h − µe)
2

(12)

Complexity criterion. Complexity has been assessed by esti-

mating the processing time, i.e., the required time to transform

time series into interpretable data, to learn the models and

to perform the predictions. For each prediction approach, the

complexity criterion is thereby the cumulate processing time

to test the 111 time series.

C. Results and discussion

Simulation results are given in Table I. From this table, we

can see that, whatever the set of regressors is, the MISMO

approach appears to be the most accurate (with the lowest

RMSE), then the direct and parallel approaches. The iterative

approach has the worst results. As the RMSE is an aggregated

measure, it does not allow to study the dispersion of the

error (couple (µe, σe)). Figure 9 depicts the probability density

function (pdf) of the errors of prediction for the three more

accurate approaches (MISMO, direct and parallel). One can

notice that these pdfs are very similar, the main difference of

accuracy being a slight difference between the corresponding

spread deviations. However, whatever the number of inputs is,

the MISMO approach still presents the lowest error deviation

and appears again to be the most accurate one. Table II enables



TABLE I
RESULTS ON NN3 FROM 1 TO 5 INPUTS

1 input 

2 inputs 

3 inputs 

4 inputs 

5 inputs 

Approach RMSE µ σ Proc. time 

Iterative 0,24017 -0,04062 0,23676 8,35 

Direct 0,20496 -0,01252 0,20462 130,48 

DirRec 0,22686 -0,00979 0,22670 183,91 

Parallel 0,19845 -0,01620 0,19784 7,59 

MISMO 0,18421 -0,01559 0,18359 282,00 

Approach RMSE µ σ Proc. time 

Iterative 2,03104 -0,03647 2,03122 9,09 

Direct 0,21253 -0,01018 0,21234 141,13 

DirRec 0,35858 -0,00581 0,35862 197,19 

Parallel 0,22399 -0,01680 0,22342 8,18 

MISMO 0,18700 -0,01615 0,18634 304,36 

Approach RMSE µ σ Proc. time 

Iterative 2,41402 -0,06499 2,41375 9,46 

Direct 0,23584 -0,00765 0,23577 147,97 

DirRec 1,13689 -0,01070 1,13712 204,36 

Parallel 0,26894 -0,01397 0,26865 8,69 

MISMO 0,20720 -0,01584 0,20664 323,44 

Approach RMSE µ σ Proc. time 

Iterative 2,97077 0,04149 2,97122 10,16 

Direct 0,27990 -0,01120 0,27975 156,13 

DirRec 1,56018 -0,04948 1,55979 212,53 

Parallel 0,32049 -0,01164 0,32036 9,44 

MISMO 0,23741 -0,01401 0,23706 339,53 

Approach RMSE µ σ Proc. time 

Iterative 3,30838 -0,16983 3,30484 10,80 

Direct 0,28882 -0,00780 0,28879 164,12 

DirRec 0,88700 0,01866 0,88702 219,38 

Parallel 0,32231 -0,01245 0,32215 10,11 

MISMO 0,24670 -0,00675 0,24667 359,27 

to have a closer look on these results. This table depicts the

percent of time series that have been best predicted (thanks

to the RMSE) with regard to the s parameter of the MISMO

approach. According to this table and reminding that if s = H ,

the MISMO is equivalent to the parallel approach (section

III-F), one can notice that the best predictions are achieved

with the parallel approach: whatever the number of regressors

is, the MISMO model with s = 18 (the parallel approach)

outperforms all other MISMO for more than 50% of the NN3

time series. This strengthens the parallel approach capacity for

prediction accuracy.

As for the execution time (see Table I), the iterative and

parallel approaches are equivalently the fastest ones, and

thereby the most suitable ones with respect to implementation
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Fig. 9. NN3 error dispertion from 1 to 5 inputs

TABLE II
MISMO APPROACH - % OF TIME SERIES BEST PREDICTED ACCORDING TO

s AND p PARAMETERS
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constraints. From this point of view, the MISMO approach

is the worst one. It balances the results on accuracy and

there is no way to optimize both criteria. Figure 10 offers a

clear representation of this problem. According to this figure

(and according to previous conclusions), the parallel approach

appears to be the one which offers the greater compromise

between accuracy and complexity, regardless of the number

of inputs.

V. APPLICATION ON A REAL DEGRADATION DATASET

A. Data sets on a real engine health

Developments were applied on the challenge dataset of di-

agnostic and prognostics of machine faults from the first Inter-

national Conference on Prognostics and Health Management

(2009) [25]. The dataset consisted of multiple multivariate

time series (26 variables) with sensor noise (see Figure 11

for an example). Each time series was from a different engine

of the same fleet and each engine started with different degrees

of initial wear and manufacturing variation unknown by the

user. The engine was operating normally at the begining and

developed a fault. The fault grew then in magnitude until

system failure.

B. Simulation conditions

Among the 26 variables, experiments have been made on

the fourth feature. As for the number of inputs, two regressors
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Fig. 11. Real degradation dataset - example of feature

have been used in addition to a third input which is the time

index as suggested in [26]. The learning data set was composed

of 40 runs from previous degraded systems. During the test,

15 distinct degradations have been predicted. For that purpose,

the first 50 values of each feature were learned as if they have

been provided by a monitoring system, and predictions were

made with an horizon of 80 steps-ahead (from time 51 to 130).

Considering the results of section IV, the MISMO approach

has been removed from tests. Indeed, its processing time is

prohibitive with regard to a real world case study. Also, the

DiRec approach, that neither appears to be accurate nor has

a slight computation time, has also been excluded from tests.

Finally, experiments have been made with the iterative, the

TABLE III
RESULTS ON REAL DEGRADATION DATA

Approach RMSE µ σ Proc. time 

Iterative 0,04601 -0,00985 0,04496 384,74 

Direct 0,02658 0,00404 0,02628 15923,32 

Parallel 0.02504 0,00409 0,02471 133,26 

direct and the parallel approaches.

Similarly to the NN3 competition experiments, the ap-

proaches have been assessed by using the accuracy criteria

RMSE, µe and σe and by calculating the overall processing

time.

C. Results and discussion

Figure 12 depicts an example of results. Whereas the first

50 values were used for training for each multi-step prediction

approach, the remaining 80 were predicted at time 50. Even

if the prediction curves are quite close together, it appears

that the parallel approach provides bests results. That can be

more closely discussed by considering the whole tests on 15

degradations time series.
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Fig. 12. Real degradation feature - example of predictions

Table III resumes the performances criteria obtained by

considering 15 degradations for test. Figure 13 depicts the

dispersion of the errors of prediction. One can note that the

parallel and direct approach have quite the same accuracy and

are roughly equivalent whatsoever in dispersion or average.

However, the direct approach is much more long to deploy

than the two others approaches (until 120 times). Following

that, the most suitable approach for real world problems seems

to be the parallel one since it is the one that offers the

best compromise between accuracy and complexity. Those

experiments confirm the NN3 tests.

VI. CONCLUSION AND WORK IN PROGRESS

The aim of this paper is to try to point out an efficient

connexionist-systems-based approaches to ensure long term
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predictions for prognostics. The paper emphasizes on univari-

ate time series forecasting.

Five connexionist-system-based approaches have been stud-

ied, namely: the iterative, direct, DirRec, parallel and MISMO

approaches. After defining and formalizing each approach,

experiments have been made by using two type of data. First,

the NN3 competition dataset has been used to discuss the

accuracy and complexity performances of each approach. On

this basis, three types of approaches have been applied on a

real degradation problem. On both tests, the exTS neuro-fuzy

system has been used as the basic tool of each one of the

approaches.

Whatever the experiments were, conclusions are similar.

The approach that came out is the parallel approach since it

provides a compromise in between accuracy and complexity.

However, an important point must be raised. The iterative

approach is the only one to be able to predict at any horizon of

prediction. Indeed, in the others approaches, the practitioner

must set in advance the final horizon of prediction he would

like. This can be embarrassing since the time of failure is

in essence uncertain. Following that, a good practice could

be to implement both approaches: the parallel approach in

order to get accurate predictions for a limited critical horizon,

and the iterative approach in order to provide more long term

tendencies.

The work must be reinforced by analyzing the influence of

the learning size and of the basic connexionist tool notably. An

extension to multidimensional predictions is also scheduled.
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