
HAL Id: hal-00604633
https://hal.science/hal-00604633v3

Preprint submitted on 9 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extensions of the chemostat model with flocculation
Radhouane Fekih-Salem, Jérôme Harmand, Claude Lobry, Alain Rapaport,

Tewfik Sari

To cite this version:
Radhouane Fekih-Salem, Jérôme Harmand, Claude Lobry, Alain Rapaport, Tewfik Sari. Extensions
of the chemostat model with flocculation. 2011. �hal-00604633v3�

https://hal.science/hal-00604633v3
https://hal.archives-ouvertes.fr


Extensions of the chemostat model with flocculation

R. Fekih-Salema,b, J. Harmandb,c, C. Lobryb, A. Rapaporta,b∗ and T. Sarib,d

a UMR INRA-SupAgro MISTEA, 1 p. Viala, 34060 Montpellier, France
b EPI INRA-INRIA MODEMIC, route des Lucioles, 06902 Sophia-Antipolis, France

c INRA LBE, Avenue de Etangs, 11100 Narbonne, France
d Irstea, UMR ITAP, 361 rue Jean-François Breton, 34196 Montpellier

March 9, 2012

Abstract

In this work, we study a model of the chemostat where the species are present in two forms, isolated
and aggregated individuals, such as attached bacteria or bacteria in flocks. We show that our general
model contains a lot of models that were previously considered in the literature. Assuming that floccula-
tion and deflocculation dynamics are fast compared to the growth of the species, we construct a reduced
chemostat-like model in which both the growth functions and the apparent dilution rate depend on the
density of the species. We also show that such a model involving monotonic growth rates may exhibit bi-
stability, while it may occur in the classical chemostat model, but when the growth rate is non monotonic.

Keywords. Chemostat, density dependent growth functions, flocculation.

1 Introduction

In culture of micro-organisms, the attachment of microbial individuals occurs frequently. The attachment
can be either a “wall attachment” such as in the growth of biofilms or simply an aggregation such as in the
formation of flocks or granules [5, 38]. Flock or granule formation has a direct impact on growth dynamics,
as the access to the substrate is limited for micro-organisms inside such structures. The mechanisms of
attachment and detachment result from the coupling of hydrodynamics conditions and biological properties,
but are not yet completely understood at the level of microbial individuals. Several attempts of computer
models, using individual based representations, have been proposed and are under investigation for the
simulation of these phenomenons, cf. for instance [16, 34]. At a macroscopic level, substrate limitation
can be measured experimentally in biofilms or flocks [4, 25, 40]. A rough representation, suited to the
macroscopic level, consists in splitting the overall biomass into two parts: a “planktonic biomass”, composed
of free individuals and an “attached biomass” composed of individuals that are tied together [23]. This
consideration leads to a significant change on the performances predicted by the models, compared to purely
planktonic cultures. In a chemostat-like device, planktonic cells are expected to consume easily the substrates
necessary for their growth, but are more keen to be carried out by the flow. On the contrary, cells among
aggregates or biofilms have a more difficult access to the resources of the bulk fluid, but are more resistant
to detachment induced by the hydrodynamical conditions. Therefore, mathematical models are expected to
understand and predict the issues of these trade-offs. Several extensions of the well-known chemostat model
[35], considering two compartments of free and attached biomass for each species have been proposed and
studied in the literature. In models with wall attachment, attached biomass is assumed to be fixed while
detached individuals return directly to the planktonic compartment [32, 36]. In models with aggregation,
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aggregates are carried out by the flow but bacteria inside flocks are assumed to have no or reduced access
to bulk resources [10, 11].

Literature reports flocculation time scales of the order of 1 to 10 min [6, 41] to be compared with bacterial
growth times of 1 h to 1 day, and with retention times of a few hours to a few days. Thus, considering that
attachment and detachment processes may be fast compared to biological time, it is shown in [11] that the
reduced dynamics of such systems amounts to have a single biomass compartment for each strain but with a
density dependent growth rate. This justifies the consideration of density dependent growth functions in the
chemostat model, as already introduced in the literature in the field of mathematical ecology [1] or waste-
water process engineering [12]. In [24, 26, 27, 28], it has been shown that this could lead to the coexistence
of several species in competition on a same limiting resource, thus invalidating the Competitive Exclusion
Principle [13] (different mechanisms with considerations on the nutrient uptake could also lead to species
coexistence [2]).

In [11], the aggregates are assumed to have no biological growth (i.e. the attachment process is the only
source of increase of the attached biomass). Aggregates are also assumed to be washed-out with the same
dilution rate than planktonic cells. On the opposite, in wall attachment models, the attached biomass is not
washed out at all. We believe that these two opposite cases (same dilution rate than planktonic biomass or
no dilution rate) are too extreme to be fully realistic. In this paper, we revisit the chemostat model with
two compartments, planktonic and aggregated biomass, but assuming that each biomass has its own growth
rate and apparent dilution rate. This generalizes the two kind of models that we mentioned previously.

The paper is organized as follows. In the Section 2, the general model of the system under interest is
presented. In particular, for specific choices of different kinetics and mortality terms, it is shown that this
model captures in fact many models of literature. In Section 3, this general model is reduced assuming the
attachment/detachment processes are fast with respect to others. In the Section 4, the reduced model is
analyzed for a specific class of models while its extension to the multi-species case and its analysis are carried
out in Sections 5 and 6, respectively. Finally, discussion and conclusions are drawn in the last section.

2 Modeling flocks or aggregates in the chemostat

Consider the following model of the chemostat in which a population of microorganisms compete for a single
growth-limiting substrate [35, 31]:

{

Ṡ = D(Sin − S)− kµ(S)x
ẋ = (µ(S)−Dx)x

.

In these equations, S(t) denotes the concentration of the substrate at time t; x(t) denotes the concentration
of the population of microorganisms at time t; µ(·) represents the per-capita growth rate of the population
and so Y = 1/k is the growth yield; Sin and D denote, respectively, the concentration of substrate in the
feed bottle and the dilution rate of the chemostat; Dx represents the removal rate of the population.

Assume that the species is present in two forms: isolated or planktonic bacteria, of density u, and attached
bacteria or flocks of bacteria, of density v. Isolated bacteria and flocks can stick together to form new flocks,
with rate α(·)u, and flocks can split and liberate isolated bacteria, with rate β(·)v:

u
α(·)u
−−−→ v, u

β(·)v
←−−− v.

One obtains the following equations :







Ṡ = D(Sin − S)− f(S)u− g(S)v
u̇ = (f(S)−D0)u− α(·)u + β(·)v
v̇ = (g(S)−D1)v + α(·)u − β(·)v

. (1)

In these equations, S(t) denotes the concentration of the substrate at time t; u(t) and v(t) denote, respectively,
the concentration of the population of planktonic microorganisms and flocks of bacteria at time t; f(S) and
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g(S) represent, respectively, the per-capita growth rate of the populations; Sin and D denote, respectively,
the concentration of substrate in the feed bottle and the dilution rate of the chemostat; D0 and D1 represent,
respectively, the removal rate of the microorganisms.

The dot in attachment rate α(·) and detachment rate β(·) means that these rates can depend on the state
variables, so that system (1) recovers some of the models which were considered in the existing literature.
For instance, the model of adaptive nutrient uptake, where u denotes the low growing cells and v denotes
the fast growing cells considered in [37] is obtained with attachment and detachment rates depending only
on S

α(·) = α(S), β(·) = β(S).

The model of wall growth, where u denotes the density of planktonic bacteria, and v denotes the density of
wall-attached bacteria, considered by Pilyugin and Waltman [32], is obtained with constant rates

α(·) = a, β(·) = b.

The Freter model [8] is given by






Ṡ = D(Sin − S)− f(S)u− g(S)v
u̇ = (f(S)−D0)u− a(1 −W )u+ bv + g(S)(1−G(W ))v
v̇ = (g(S)G(W )−D1 − b)v + a(1−W )u

(2)

where W = v/vmax and G(·) is decreasing. Notice that this model is a particular case of the model (1) with

α(·) = a(1 −W ), β(·) = b+ g(S)(1 −G(W )) .

Actually, if vmax = ∞ one obtains W = 0 and if G(0) = 1 then α(·) = a, β(·) = b, and (2) is simply the
model of Pilyugin and Waltman [32].

A model with flocks of two bacteria has been considered in [11]






Ṡ = D(Sin − S)− f(S)u− g(S)v
u̇ = (f(S)−D0)u − au2 + bv
v̇ = (g(S)−D1)v + au2 − bv

(3)

that is a particular case of model (1) obtained with

α(·) = au, β(·) = b.

This model has been studied by Haegeman and Rapaport [11] in the case of g(·) = 0 where the bacteria in
flocks are assumed to do not consume any substrate, and by Fekih-Salem and al [7] in the more general case
of 0 6 g(·) 6 f(·) where the bacteria in flocks consume less substrate than the isolated bacteria. This model
has been also extended to the case of flocks with an arbitrary numbers of bacteria in [10].

In the present paper we will not consider the size or the number of bacteria in flocks in our model. We
simply distinguish the biomass in flocks and the isolated biomass. The biomass of isolated bacteria is denoted
by u and the biomass in flocks is denoted by v. Hence isolated bacteria and isolated bacteria or flocks can
stick together to form new flocks, with rate a(u+v)u, where a is a constant, proportional to both the density
of isolated bacteria, that is u, and the total biomass density, that is u+ v, and flocks can split and liberate
isolated bacteria, with rate bv, where b is a constant, proportional the their density v. Hence, taking

α(·) = a(u + v), β(·) = b

in model (1), one obtains the following dynamical system






Ṡ = D(Sin − S)− f(S)u− g(S)v
u̇ = (f(S)−D0)u− a(u+ v)u + bv
v̇ = (g(S)−D1)v + a(u+ v)u− bv

(4)

that we aim to study in the present paper, as well as its extensions to multi-species populations.
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3 A two time scales dynamics

The general model for the flocculation is







Ṡ = D(Sin − S)− f(S)u− g(S)v
u̇ = (f(S)−D0)u− α(S, v, u)u + β(S, u, v)v
v̇ = (g(S)−D1)v + α(S, v, u)u − β(S, u, v)v

.

If we assume that the dynamics of flocculation and deflocculation is much faster than the growth of the
species, one can write the model the following way



















Ṡ = D(Sin − S)− f(S)u− g(S)v

u̇ = (f(S)−D0)u−
α(S, u, v)

ε
u+

β(S, u, v)

ε
v

v̇ = (g(S)−D1)v +
α(S, u, v)

ε
u−

β(S, u, v)

ε
v

(5)

where ε is expected to be a small non-negative number. Notice that the dynamics of the total biomass
x = u+ v is given by the equation

ẋ = (f(S)−D0)u+ (g(S)−D1)v.

Thus, u and v are fast variables, while S and x are slow ones. The fast dynamics is given by

u′ = −α(S, u, v)u+ β(S, u, v)v ,

and the slow manifold is defined by the positive solutions of the system

α(S, u, v)u = β(S, u, v)v with u+ v = x .

Hence one has
u = p(S, x)x, v = (1− p(S, x))x.

Assuming that this slow manifold is asymptotically stable for the fast equation, the reduction of the system
to the slow system gives an approximation of the solutions of (5) for arbitrarily small ε, in accordance with
the theories of singular perturbations or variables aggregation [30, 3, 33]. The reduced model is obtained by
replacing the fast variables u and v in the equations of S and x:

{

Ṡ = D(Sin − S)− µ(S, x)x
ẋ = (µ(S, x)− d(S, x)) x

(6)

where
µ(S, x) = p(S, x)f(S) + (1 − p(S, x))g(S),

d(S, x) = p(S, x)D0 + (1 − p(S, x))D1.

Notice that p(·) depends on functions α(.) and β(.). Consequently the growth function µ(·) is a density
dependent growth function model, as already studied in [26, 27, 28]. But, here the removal rates are replaced
by a function d(·) that depends also on functions α(.) and β(.). This last property is new in the literature,
to our knowledge.

For the slow and fast case of (3) one has, see [11]

α(·)

ε
=

a

ε
u,

β(·)

ε
=

b

ε
and p(x) =

2

1 +
√

1 + 4a
b
x
.
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The slow and fast case of (4) is given by







Ṡ = D(Sin − S)− f(S)u− g(S)v
u̇ = (f(S)−D0)u−

a
ε
(u+ v)u + b

ε
v

v̇ = (g(S)−D1)v +
a
ε
(u+ v)u − b

ε
v

. (7)

The slow manifold is defined by the positive solutions of the system

a(u+ v)u = bv with u+ v = x .

Hence one has

u = p(x)x, v = (1− p(x))x, where p(x) =
b

b+ ax
.

Hence, the reduced model corresponding to (7) is given by

{

Ṡ = D(Sin − S)− µ(S, x)x
ẋ = (µ(S, x)− d(x)) x

(8)

where

µ(S, x) =
bf(S) + axg(S)

b+ ax
, d(x) =

bD0 + axD1

b+ ax
. (9)

In the rest of the section, we use Tikhonov’s theory [29, 39, 42] (see also [20]), and we justify that the
solutions of (7) are approximated by the solutions of the reduced model (8,9).

Theorem 3.1 Let (S(t, ε), u(t, ε), v(t, ε)) be the solution of (7) with initial condition (S0, u0, v0) satisfying
S0 > 0, u0 > 0, and v0 > 0. Let (S(t), x(t)) be the solution of the reduced problem (8) with initial conditions

S(0) = S0, x(t) = u0 + v0.

Then as ε→ 0,
S(t, ε) = S(t) + o(1), x(t, ε) = x(t) + o(1) (10)

uniformly for t ∈ [0, T ], and

u(t, ε) =
b

b+ ax(t)
x(t) + o(1), v(t, ε) =

ax(t)

b+ ax(t)
x(t) + o(1) (11)

uniformly for t ∈ [t0, T ], where 0 < t0 < T are arbitrary but fixed and independent of ε. If the solution
(S(t), x(t)) of the reduced problem converges to an asymptotically stable equilibrium, then we can put T = +∞
in the the approximations (10) and (11) given.

Proof. In the variables S, x = u+ v and u, system (7) is written











Ṡ = D(Sin − S)− f(S)u− g(S)(x− u)
ẋ = f(S)u+ g(S)(x− u)−D0u−D1(x− u)

u̇ = (f(S)−D0)u−
a

ε
xu +

b

ε
(x− u)

. (12)

This is a slow and fast system with two slow variables S and x and one fast variable, u. The fast equation is

u′ = −axu+ b(x− u) = bx− (ax+ b)u. (13)

The slow manifold (or quasi-steady-state) is given by

u = xp(x), where p(x) =
b

b+ ax
.
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Since ax + b > 0 this slow manifold is globally asymptotically stable. Thus, the Tikhonov’s Theorem
[29, 39, 42] applies and asserts that after a fast transition toward the slow manifold, the solutions are
approximated by a solution of the reduced equation, which is obtained by replacing the fast variable u in
(12) by the quasi steady state u = xp(x). This reduced system is

{

Ṡ = D(Sin − S)− (f(S)p(x) + g(S)(1− p(x))) x
ẋ = (f(S)p(x) + g(S)(1− p(x))−D0p(x)−D1(1 − p(x))) x

.

This is system (8,9). The approximations (10) and (11) follow from the Tikhonov’s Theorem. Recall that
when the reduced problem has an asymptotically stable equilibrium, then these approximations hold for all
t > 0 and not only on a compact interval [0, T ). Recall also that there is a boundary layer for the fast
variables u and v, that is the approximations (11) hold only for t > t0 where t0 > 0 can be arbitrarily small
but fixed. Therefore, very quickly, the density v(t) of flocks tends to

a(x(0))2

b+ ax(0)
,

and the density u(t) of planktonic bacteria tends toward

bx(0)

b+ ax(0)
.

These values depend only on the initial total biomass x(0) = u(0) + v(0), and on the ratio a/b between the
rate of flocculation and deflocculation. After this boundary layer, one has a slow variation of the densities
of flocks and isolated bacteria according to the density dependent reduced model (8,9).

4 Study of the reduced model for one species

We consider in this section the mathematical analysis of the reduced model (8). We do not assume that the
functions µ(S, x) and d(x) are of the particular form (9). We assume that

H0: µ(0, x) = 0 and µ(S, x) > 0 for all S > 0 and all x > 0.

H1:
∂µ

∂S
> 0 and

∂µ

∂x
< 0 for all S > 0 and all x > 0.

H2: d(0) = D0, d(+∞) = D1 < D0 6 D, d(x) > 0, d′(x) < 0 and [xd(x)]′ > 0 for all x > 0.

Let us denote by
f(S) = µ(S, 0), and g(S) = µ(S,+∞).

The functions f(·) and g(·) are increasing and positive for all S > 0. If equations f(S) = D0 and g(S) = D1

have solutions, one lets
λ0 = f−1(D0), and λ1 = g−1(D1).

Otherwise one lets λk = +∞, k = 0, 1. We add the following assumption

H3: If λ0 < λ1, then for all S ∈ [λ0, λ1) and x > 0 one has d′(x) >
∂µ

∂x
(S, x).

H4: If λ1 < λ0, then for all S ∈ (λ1, λ0] and x > 0 one has d′(x) <
∂µ

∂x
(S, x).

Lemma 4.1 Assumptions H0-H4 are satisfied in the case

µ(S, x) = f(S)p(x) + g(S)(1− p(x)), d(x) = D0p(x) +D1(1− p(x))

where f(·) > g(·) are increasing functions and p(x) is a decreasing functions such that p(0) = 1, p(+∞) = 0
with [xp(x)]′ > 0.
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Proof. Since p′(x) < 0 and f(S) > g(S) for all S > 0, one has

∂µ

∂S
= f ′(S)p(x) + g′(S)(1 − p(x)) > 0,

∂µ

∂x
= (f(S)− g(S))p′(x) < 0.

Thus H1 is satisfied. On the other hand

d′(x) = (D0 −D1)p
′(x) < 0, [xd(x)]′ = D1 + (D0 −D1)[xp(x)]

′ > 0

since p′(x) < 0, [xp(x)]′ > 0 and D0 > D1. Thus H2 is satisfied. Moreover

∂µ

∂x
(S, x)− d′(x) = [f(S)−D0 +D1 − g(S)]p′(x) < 0

for all S ∈ [λ0, λ1) and x > 0, since p′(x) < 0 and f(S) > D0, D1 > g(S) for λ0 6 S < λ1, see Figure 1.
Thus Assumption H3 is also satisfied. Similarly one has

f(S)

g(S)

f(S)

g(S)
D0

D1

D0

D1

λ0 λ1 λ0λ1
S S

Figure 1: On the left, the case λ0 < λ1. On the right, the case λ1 < λ0.

∂µ

∂x
(S, x)− d′(x) = [f(S)−D0 +D1 − g(S)]p′(x) > 0

for all S ∈ (λ1, λ0] and x > 0, since p′(x) < 0 and f(S) 6 D0, D1 < g(S) for λ1 < S 6 λ0, see Figure 1.
Thus Assumption H4 is satisfied.

Notice that, if p(x) = b
b+ax

, then the properties of p(·) stated in the lemma are satisfied. Indeed

p′(x) =
−ab

(b+ ax)2
, [xp(x)]′ =

b2

(b + ax)2
.

4.1 Existence of equilibria

The equilibria of the system are solutions of the set of equations

{

D(Sin − S)− µ(S, x)x = 0
(µ(S, x) − d(x))x = 0

The second equation is equivalent to x = 0 or µ(S, x) = d(x). If x = 0 then from the first equation one has
S = Sin. This is the washout equilibrium

E0 = (Sin, 0).

7



If µ(S, x) = d(x), the first equation gives D(Sin − S) = xd(x). Hence

S = γ(x) := Sin −
xd(x)

D
.

Since

γ(0) = Sin, and γ′(x) = −
[xd(x)]′

D
< 0

the function γ(·) is decreasing. Thus one have to solve the equation

µ(S, x) = d(x). (14)

Since ∂µ
∂S

> 0, by the implicit function theorem, thus equation defines a function

S = φ(x), such that λ0 = φ(0),

and

φ′(x) =
d′(x) −

∂µ

∂x
(φ(x), x)

∂µ

∂S
(φ(x), x)

.

The sign of φ′(·) is given by assumptions H1, H3 and H4. The cases λ0 < λ1 and λ0 > λ1 have to be
distinguished.

When λ0 < λ1 the function S = φ(x) is defined for all x > 0 and satisfies

λ0 = φ(0), λ1 = φ(+∞), φ′(x) > 0.

The equilibria are the intersection points of the graphs of functions

S = φ(x) and S = γ(x).

Since the first function is increasing and the second one is decreasing, there is a unique solution if λ0 < Sin,
and no solution if λ0 > Sin, see Figure 2.

Sin

S = φ(x)

S = γ(x)

λ0

S = φ(x)

S = γ(x)

Sin λ0

S

x

S

x

Figure 2: Null-clines S = φ(x) and S = γ(x) in the case λ0 < λ1. On the left, the case λ0 < Sin with a
unique intersection point. On the right, the case λ0 > Sin with no intersection point.

Proposition 4.2 If λ0 < min(λ1, Sin), there exists a unique positive equilibrium. If Sin < λ0 < λ1, there is
no positive equilibrium.

When λ1 < λ0 the function S = φ(x) is defined for all x > 0 and satisfies

λ0 = φ(0), λ1 = φ(+∞), φ′(x) < 0.
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Sin

S = φ(x)

S = γ(x)

λ0λ1

S = φ(x)

S = γ(x)

Sin λ0λ1

Figure 3: Null-clines S = φ(x) and S = γ(x) in the case λ0 > λ1. On the left, the case λ0 < Sin with at
least one intersection point. On the right, the case λ0 > Sin with no intersection point. In the second case
it is possible to have two intersection points, see Figure 4.

Both functions S = φ(x) and S = γ(x) are decreasing and

φ(0) = λ0, Sin = γ(0).

Thus, if λ0 < Sin the graphs intersect at at least one non-negative point (see Figure 3). If λ0 > Sin, the
graphs of functions S = φ(x) and S = γ(x) can interest or not (see Figures 3 and 4).

Proposition 4.3 If λ1 < λ0 < Sin, then there exists at least one positive equilibrium. Generically one has
an odd number of positive equilibria. If λ1 < Sin < λ0, then the system has generically no positive equilibrium
or an even number of positive equilibria.

S
0 0,5 1,0 1,5 2,0

0

0,2

0,4

0,6

0,8

1,0

1,2

S
0 0,2 0,4 0,6 0,8 1,0

0

0,5

1,0

1,5

2,0

D0

D1

f(S)

g(S)
S = φ(x)

S = γ(x)

λ1 Sin λ0

Figure 4: On the left, the growth functions f(·) and g(·) given by (15). On the right, the corresponding null-
clines S = φ(x) and S = γ(x) for the parameter values(16), showing the existence of two positive equilibria
in the case when λ0 > Sin.

4.2 Stability of equilibria

The Jacobian matrix of (8) is given by

J =







−D − x
∂µ

∂S
(S, x) −x

∂µ

∂x
(S, x)− µ(S, x)

x
∂µ

∂S
(S, x) µ(S, x) − d(x) + x

∂µ

∂x
(S, x)− xd′(x)







9



At washout E0 = (Sin, 0) this matrix is

J0 =

[

−D −f(Sin)

0 f(Sin)−D0

]

The eigenvalues are −D and f(Sin)−D0. Hence one has the following result

Proposition 4.4 If λ0 < Sin, then E0 is unstable (saddle point). If λ0 > Sin, then E0 is locally exponen-
tially stable (stable node).

At a positive equilibrium E1 = (S, x), one has necessarily µ(S, x) = d(x), and the Jacobian matrix is

J1 =







−D − x
∂µ

∂S
(S, x) −x

∂µ

∂x
(S, x)− µ(S, x)

x
∂µ

∂S
(S, x) x

∂µ

∂x
(S, x) − xd′(x)







The trace of J1 is

tr(J1) = −D − x
∂µ

∂S
(S, x) + x

∂µ

∂x
(S, x)− xd′(x).

Since [xd(x)]′ = d(x) + xd′(x), one has

tr(J1) = −D + d(x) − x
∂µ

∂S
(S, x) + x

∂µ

∂x
(S, x) − [xd(x)]′ < 0

since d(x) 6 D, ∂µ
∂S

> 0, ∂µ
∂x

< 0 and [xd(x)]′ > 0. The determinant of J1 is

det(J1) = Dx

(

d′(x) −
∂µ

∂x

)

+ x
∂µ

∂S
[xd(x)]′.

One can write this determinant as

det(J1) = Dx
∂µ

∂S







d′(x)−
∂µ

∂x
∂µ

∂S

+
[xd(x)]′

D






= Dx

∂µ

∂S
(φ′(x) − γ′(x)) .

Thus, If φ′(x) > γ′(x), then the determinant is positive and hence the eigenvalues are of negative real parts:
the equilibrium E1 is locally asymptotically stable. On the other hand, if φ′(x) < γ′(x), then the determinant
is negative, and the eigenvalues are of opposite sign: the positive equilibrium is a saddle point. Thus we
have shown the following result

Proposition 4.5 The following cases occur.

1. If λ0 < min(λ1, Sin), the unique positive equilibrium is locally asymptotically stable (and fulfills φ′(x) >
0 > γ′(x)).

2. If λ1 < λ0 there are possibilities of multiple positive equilibria, that are saddle points when φ′(x) < γ′(x)
or stable nodes when φ′(x) > γ′(x):

- when λ0 < Sin, there exists at least one positive equilibrium and one has an odd number of
equilibria which are alternatively stable and unstable,

- when λ0 > Sin, there is no or an even number of equilibria which are alternatively stable and
unstable.
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One concludes that in the case λ1 < λ0, the system can exhibits bi-stability of the washout equilibrium
and a positive equilibrium. If the initial density of flocks is small enough, the solutions will converge to the
washout equilibrium, otherwise it will converge to the positive equilibrium, see Figure 5. In this figure we
notice that the washout equilibrium is stable together with the positive equilibrium corresponding the lowest
value of S. The domains of attraction of the stable equilibria are separated by the stable separatrix of the
positive saddle node. The simulations shown in Figures 4 and 5 where obtained for (8,9), with the following
Monod functions

f(S) =
2S

1 + S
, g(S) =

1.5S

0.8 + S
(15)

and the following values of the parameters

D0 = D = 1, D1 = 0.5, a = 4, b = 1, Sin = 0.9. (16)

0 0,5 1,0 1,5
0

0,5

1,0

1,5
x

S

Figure 5: For the Monod functions (15) and the parameters values (16), the system exhibits bi-stability.

5 Flocculation with several species

We assume that n species are competing on a same limiting resource, and that each species is present in
two forms: isolated bacteria, of density ui, and bacteria in flocks, of density vi, for i = 1 · · ·n. We assume
that isolated bacteria can stick with isolated bacteria with flocks to form new flocks, with rate αi(·)ui. We
assume also that flocks can split and liberate isolated bacteria with rate βi(·)vi.

ui
αi(·)ui

−−−−→ vi, ui
βi(·)vi
←−−−− vi .

Then the equations are


















Ṡ = D(Sin − S)−

n
∑

i=1

(fi(S)ui + gi(S)vi)

u̇i = (fi(S)−D0i)ui − αi(·)ui + βi(·)vi, 1 6 i 6 n
v̇i = (gi(S)−D1i)vi + αi(·)ui − βi(·)vi

(17)

The dynamics of the total biomass densities xi = ui + vi of the species i is

ẋi = fi(S)ui + gi(S)vi −D0iui −D1ivi .

We consider here the case where

αi(·) =
n
∑

j=1

Aijxj , βi(·) = Bi

where Aij and Bi are non-negative constants.
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Remark 5.1 By letting the functions αi(·) depending on xj with j 6= i, we implicitly consider that flocks or
aggregates can incorporate individuals of different species.
The removal rate D1i has to be interpreted as the sum of the removal rate of the aggregates and the mortality
rate of each species i in its attached form.

Moreover, we assume that the dynamics of flocculation and deflocculation are fast compared with the
dynamics of the growth of bacteria, that is

Aij =
aij
ε
, Bi =

bi
ε

.

In the variables S, xi, ui, the system is written






























Ṡ = D(Sin − S)−

n
∑

i=1

[fi(S)ui + gi(S)(xi − ui)]

ẋi = fi(S)ui + gi(S)(xi − ui)−D0iui −D1i(xi − ui), i = 1 · · ·n

u̇i = (fi(S)−D0i)ui −
1

ε

n
∑

j=1

aijxjui +
bi
ε
(xi − ui)

(18)

This is a slow/fast system with the variables S, xi are slow and the variables ui fast. The fast equations are

u′

i = −

n
∑

j=1

aijxjui + bi(xi − ui), i = 1 · · ·n (19)

where xi are considered as parameters. The slow manifold (or quasi steady-state) is given by

ui =
bixi

bi +

n
∑

j=1

aijxj

, i = 1 · · ·n . (20)

Since one has
∑n

j=1 aijxj > 0, for i = 1 · · ·n, this slow manifold is globally asymptotically stable for (19).
Thus, the Tikhonov’s Theorem [29, 39, 42] applies and asserts that, after a fast transition toward the slow
manifold, the solutions are approximated by a solution of the reduced equation, which is obtained by replacing
the fast variables ui in (18) by the quasi steady states (20). One obtains the following reduced model











Ṡ = D(Sin − S)−

n
∑

i=1

µi(S, x)xi

ẋi = (µi(S, x) − di(x)) xi, i = 1 · · ·n

(21)

where

µi(S, x) = fi(S)pi(x) + gi(S)(1 − pi(x)), di(x) = D0ipi(x) +D1i(1− pi(x)), i = 1, · · · , n (22)

with

pi(x) =
bi

bi +
n
∑

j=1

aijxj

, x = (x1, · · · , xn). (23)

Hence, we have shown the following result

Theorem 5.2 Let (S(t, ε), u1(t, ε), v1(t, ε), · · · , un(t, ε), vn(t, ε)) be the solution of (17) with initial condi-
tions S(0) > 0 and ui(0) > 0, vi(0) > 0, for 1 6 i 6 n. Let

(

S(t), x1(t), · · · , xn(t)
)

be the solution of the
reduced problem (21) with initial conditions

S(0) = S(0), xi(t) = ui(0) + vi(0), 1 6 i 6 n.

12



Then as ε→ 0
S(t, ε) = S(t) + o(1), xi(t, ε) = xi(t) + o(1), 1 6 i 6 n

uniformly for t ∈ [0, T ], and for all 1 6 i 6 n, as ε→ 0

ui(t, ε) =
bixi(t)

bi +
∑n

j=1 aijxj(t)
+ o(1), vi(t, ε) =

(

∑n
j=1 aijxj(t)

)

xi(t)

bi +
∑n

j=1 aijxj(t)
+ o(1)

uniformly for t ∈ [t0, T ], where T > t0 > 0 are arbitrarily fixed. If the solution of the reduced problem tends
to an asymptotically stable equilibrium, then we can put T = +∞ in the approximations given above.

Since the planktonic bacteria have a better access to the substrate than the bacteria in flocks one assumes
fi(S) > gi(S). Notice that one has ∂pi

∂xj
< 0 for any i, j. Hence

∂µi

∂xj

= (fi(S)− gi(S))
∂pi
∂xj

< 0

with
∂µi

∂S
= f ′

i(S)pi(x) + g′i(S)(1 − pi(x)) > 0 .

As for the one species case this approach give a motivation to density dependent growth function models,
that may lead to species coexistence [26, 27, 28].

6 Study of the reduced model for several species

The results of this section apply to the reduced model (21,22,23) in the particular case where the rate of
attachment and detachment of species xi with species xj are negligible for i 6= j, that is to say aij = 0 for
i 6= j. In that case the function pi depends only on xi and is given by

pi(x) =
bi

bi + aiixi

so that the growth function µi and removal rates di in (21) depend only on xi. We consider then the model










Ṡ = D(Sin − S)−

n
∑

i=1

µi(S, xi)xi

ẋi = [µi(S, xi)− di(xi)]xi i = 1, · · · , n

(24)

This model was studied in [26], in the case when di(xi) = D. We do not assume that the functions µi(S, xi)
and di(xi) are of the particular form given by (22). We assume that

H5: µi(0, xi) = 0 and µi(S, xi) > 0 for all S > 0 and all xi > 0.

H6:
∂µi

∂S
> 0 and

∂µi

∂xi

< 0 for all S > 0 and all xi > 0.

H7: di(0) = D0i, di(+∞) = D1i < D0i 6 D, di(xi) > 0, d′i(xi) < 0 and [xidi(xi)]
′ > 0 for all xi > 0.

Let us denote by
fi(S) = µi(S, 0) and gi(S) = µi(S,+∞).

The functions fi(.) and gi(.) are increasing and positive for all S > 0. If equations fi(S) = D0i and
gi(S) = D1i have solutions, one let

λ0i = f−1
i (D0i) and λ1i = g−1

i (D1i)

otherwise one let λki = +∞, k = 0, 1. As for the case of one species (see Assumption H3), we add the
following assumption

13



H8: λ0i < λ1i for i = 1 · · ·n. For all S ∈]λ0i, λ1i[ and xi > 0, one has d′i(xi) >
∂µi

∂xi
(S, xi).

If the inequality λ0i < λ1i is reversed for some i = 1 · · ·n, then the situation is much more difficult and will
be studied in the future. Denote

λ̃0 = max{λ0i; i = 1, · · · , n} and λ̃1 = min{λ1i; i = 1, · · · , n}.

We assume that

H9: λ̃0 < min(λ̃1, Sin).

We consider here the existence of a positive equilibrium. The equilibria of (24) are solutions of the set of
equations











D(Sin − S) =

n
∑

i=1

µi(S, xi)xi

µi(S, xi) = di(xi) or xi = 0 i = 1, · · · , n.

(25)

Thus we have to solve the equations
µi(S, xi) = di(xi).

Since H6, by the implicit function theorem, this equation gives a function S = φi(xi) defined for all xi > 0,
such that φi(0) = λ0i, φi(+∞) = λ1i and

φ′

i(xi) =
d′i(xi)−

∂µi

∂xi

(S, xi)

∂µi

∂S
(S, xi)

> 0.

The sign of φ′(·) is given by assumptions H8. We define the function Xi : S 7→ Xi(S) on [0, λ1i[ by

Xi : [0, λ1i[ −→ R+

S −→ Xi(S) =

{

0 if 0 6 S 6 λ0i

xi = φ−1
i (S) if λ0i 6 S < λ1i.

Let hi(S) = µi(S,Xi(S))Xi(S). Since Xi(·) is increasing over [λ0i, λ1i[, so is hi(·) over this interval. Indeed,
one has

h′

i(S) =

(

∂µi

∂S
+

∂µi

∂xi

X ′

i(S)

)

Xi(S) + µi (S,Xi(S))X
′

i(S).

Moreover, for S ∈]λ0i, λ1i[, µi (S,Xi(S)) = di(Xi(S)) and

X ′

i(S) =

∂µi

∂S
(S,Xi(S))

d′i(Xi(S))−
∂µi

∂xi

(S,Xi(S))

> 0.

Then
h′

i(S) = [d′i (Xi(S))Xi(S) + di (Xi(S))]X
′

i(S), for S ∈]λ0i, λ1i[.

Using H7,
[di(xi)xi]

′ = d′i(xi)xi + di(xi) > 0, for xi > 0.

Hence the sign of h′

i(S) is the same as the sign of X ′

i(S), that is, hi(·) is increasing over [λ0i, λ1i[ (see Fig.
6).
Consider now the function

H(S) =

n
∑

i=1

hi(S)−D(Sin − S).
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DSin

D(Sin − λ03)

h1(λ03) + h2(λ03)

D(Sin − S)

∑
3

i=1
hi(S)

h1(S)

h3(S) h2(S)

λ01 λ02 λ03S
∗ λ11 Sinλ13 λ12

S

•

•

•

•

Figure 6: Condition of existence of the positive equilibrium of (24) for n = 3.

Lemma 6.1 Equation H(S) = 0 admits a unique solution S∗ ∈]0, λ̃1[.

Proof. Since hi(S) = 0 for S ∈ [0, λ0i] and hi(S) is increasing over [λ0i, λ1i[ (see Fig. 6), the function H(·)
is increasing over (0, λ̃1), and

H(0) = −DSin < 0 and lim
S→λ̃1

H(S) = +∞.

Hence, there exists a unique S∗ ∈]0, λ̃1[ such that H(S∗) = 0. We have the following result :

Proposition 6.2 Assume that H5-H9 hold. System (24) has a unique positive equilibrium if and only if

n
∑

i=1

µi

(

λ̃0, Xi(λ̃0)
)

Xi(λ̃0) < D(Sin − λ̃0). (26)

Proof. A positive equilibrium E∗ = (S∗, x∗

1, · · · , x
∗

n), must satisfy

D(Sin − S∗) =

n
∑

i=1

µi(S
∗, x∗

i )x
∗

i (27)

and

µi(S
∗, x∗

i ) = di(x
∗

i ). (28)

Equation (28) is equivalent to x∗

i = Xi(S
∗). Thus, (27) can be written

D(Sin − S∗) =

n
∑

i=1

µi(S
∗, Xi(S

∗))Xi(S
∗) =

n
∑

i=1

hi(S
∗),

that is H(S∗) = 0. Since
∑n

i=1 hi(S
∗) > 0, then one must have

S∗ < Sin and S∗ > λ̃0.

Notice that λ̃0 < S∗ < λ̃1 and S∗ < Sin are satisfied if H9 holds. Then, since H(S) est increasing over
[0, λ̃1[,

λ̃0 < S∗ ⇐⇒ H(λ̃0) < H(S∗) = 0.

Therefore there exists a unique positive equilibrium S∗ exactly when H(λ̃0) < 0, which is equivalent to (26).

We study now the asymptotic behavior of the positive equilibrium. First, we establish the following result
:
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Lemma 6.3 Consider the matrix

A =















−D −
∑n

i=1 ai c1 c2 · · · cn
a1 −b1 0 · · · 0
a2 0 −b2 · · · 0
...

...
...

. . .
...

an 0 0 · · · −bn















(29)

Assume that D > 0 and for i = 1 · · ·n, ai > 0, bi > 0 and ci 6 bi. Then all eigenvalues of A have negative
real part.

Proof. Let λ be an eigenvalue of A and V = (v0, v1, · · · , vn) 6= 0 a corresponding eigenvector. Hence we
have















(

−D −

n
∑

i=1

ai

)

v0 +

n
∑

i=1

civi = λv0

aiv0 − bivi = λvi i = 1, · · · , n.

(30)

Assume that α = Re(λ) > 0. Since bi > 0, then λ+ bi 6= 0. Therefore,

vi =
aiv0
λ+ bi

for i = 1 · · ·n.

If v0 = 0 then vi = 0 for i = 1 · · ·n, so that V = 0 which is impossible. Thus v0 6= 0 and from the first
equation of (30), we deduce, after simplification by v0 that

−D −

n
∑

i=1

ai +

n
∑

i=1

ai
ci

λ+ bi
= λ.

Let λ = α+ iβ. Taking real part of both sides one obtains

α = −D −

n
∑

i=1

ai +

n
∑

i=1

ai
ci(bi + α)

(bi + α)2 + β2
·

Since ci 6 bi and bi + α > 0 then

ci(bi + α)

(bi + α)2 + β2
6

bi(bi + α)

(bi + α)2 + β2
6

bi(bi + α)

(bi + α)2
=

bi
bi + α

6 1.

Since ai > 0 then

ai
ci(bi + α)

(bi + α)2 + β2
6 ai for i = 1 · · ·n.

Hence

α 6 −D −

n
∑

i=1

ai +

n
∑

i=1

ai < 0

which contradicts α > 0.

Then, we state the following result :

Proposition 6.4 If E∗ exists, then it is locally exponentially stable.

Proof. Since µi(S
∗, x∗

i ) = di(x
∗

i ), the Jacobian of the system (24) at E∗ is of the form (29) where

ai =
∂µi

∂S
(S∗, x∗

i )x
∗

i bi = −
∂µi

∂xi

(S∗, x∗

i )x
∗

i + x∗

i d
′

i(x
∗

i ), ci = −
∂µi

∂xi

(S∗, x∗

i )x
∗

i − di(x
∗

i ).

Since H6, ai > 0. Since H7, di(x
∗

i ) + x∗

i d
′

i(x
∗

i ) > 0, then −di(x
∗

i ) < x∗

i d
′

i(x
∗

i ) and hence ci < bi. Since H8,
bi > 0. The result follows from Lemma 6.3.
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7 Discussion and conclusion

In this work, we considered a general model of a bio-process with three compartments involving the sub-
strate, the planktonic and the attached biomass densities, respectively. Each compartment of the biomass
is characterized by its own specific growth rate and apparent dilution rate, generalizing previous models of
biofilms (with no dilution rate for the attached bacteria) or models of perfect flocks (with no growth rate for
aggregated individuals). We have analyzed a class of such models with planktonic and structured biomass,
under the assumption that attachment and detachment processes are fast compared to the biological scale.
Notice that it is only under this assumption that the main results of the paper are valid, notably the fact
that the three order model (1) can be reduced to the second order model (6). If it is not the case, the analysis
of the original three order model must be done to establish its qualitative behavior.
Our study reveals two main characteristics of this model:

1. the reduced dynamics may exhibit a bi-stable behavior even though each growth function is monotonic.
This phenomenon is new and is usually met in the chemostat but when the growth function is non-
monotonic (such as the Haldane law);

2. for bio-processes in which part of the biomass is under a structured form (in flocks or biofilm), the
macroscopic models (with reduced dynamics involving only the aggregated biomass and the substrate)
should include a growth rate and an apparent dilution rate that are both density dependent. This
result contributes to the actual debate in biotechnological engineering involving bio-processes with
structured biomass, where it was not clear whether it is better to modify the growth rate functions or
the hydrodynamical terms in the macroscopic equations of the system, to cope with the specificity due
to the attachment process.
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Structure COupling in biofilms) project, granted by the French National Research Agency ANR (AAP215-
SYSCOMM-2009).
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