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Abstract

In this work, we study a model of the chemostat where the species are present in two forms, isolated
bacteria and under an aggregated form like attached bacteria or bacteria in flocks. We show that our
general model contains a lot of models which were previously considered in the literature. Assuming that
flocculation and deflocculation dynamics are fast with respect to the growth of the species, we construct a
reduced chemostat-like model in which both the growth functions and the apparent dilution rate depend
on the density of the species. We also show that such a model involving monotonic growth rates may
exhibit bistability, while it may only occur in the classical chemostat model when the growth rate in non
monotonic.
Keywords. Chemostat, density dependent growth functions, flocculation.

1 Introduction

In culture of micro-organisms, the attachment of microbial individuals occurs frequently. The attachment
can be either a “wall attachment” such as in the growth of biofilms [5, 7], or simply an aggregation such as in
the formation of flocks or granules [48]. Flock or granule formation is often observed in microbial engineering
systems such as biological wastewater processing [33, 28, 6] and yeast fermentation [14]. It has a direct impact
on growth dynamics, as the access to the substrate is limited for micro-organisms inside such structures.
The mechanisms of attachment and detachment result from the coupling of hydrodynamics conditions and
biological properties, but are not yet completely understood at the level of microbial individuals. Several
attempts of computer models, using individual based representations, have been proposed and are under
investigation for the simulation of these phenomenons [24, 4, 41, 38, 19, 36, 35, 25, 39, 20, 37, 42]. At a
macroscopic level, substrate limitation can be measured experimentally in biofilms or flocks [50, 28, 6]. A
rough representation, suited to the macroscopic level, consists in splitting the overall biomass into two parts:
a “planktonic biomass”, composed of free individuals and an “attached biomass” composed of individuals
that are tied together [26]. This consideration leads to a significant change on the performances predicted
by the models, compared to purely planktonic cultures. In a chemostat-like device, planktonic cells are
expected to consume easily the substrates necessary for their growth, but are more keen to be carried
out by the flow. On the contrary, cells among aggregates or biofilms have a more difficult access to the
resources of the bulk fluid, but are more resistant to detachment induced by the hydrodynamical conditions.
Therefore, mathematical models are expected to understand and predict the issues of these trade-offs. Several
extensions of the well-known chemostat model [45], considering two compartments of free and attached
biomass for each species have been proposed and studied in the literature. In models with wall attachment
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[3, 40, 2, 47, 46, 1, 22], attached biomass is assumed to be fixed, and detached individuals return directly
to the planktonic compartment. In models with aggregation, aggregates are carried out by the flow but
bacteria inside flocks are assumed to have no or reduced access to bulk resources [15, 16]. Considering that
attachment and detachment processes are usually fast compared to biological time, it is shown in [16] that the
reduced dynamics of such systems amounts to have a single biomass compartment for each strain but with
a density dependent growth rate. This justifies the consideration of density dependent growth functions
in the chemostat model, as already introduced in the literature in the field of mathematical ecology [13]
or wastewater process engineering [17]. In [30, 31, 29, 27], it has been shown that this could lead to the
coexistence of several species in competition on a same limiting resource, thus invalidating the Competitive
Exclusion Principle [18].

In [16], the aggregates are assumed to have no biological growth (i.e. the attachment process is the only
source of increase of the attached biomass). Aggregates are also assumed to be washed-out with the same
dilution rate than planktonic cells. On the opposite, in wall attachment models, the attached biomass is not
washed out at all. We believe that these two opposite cases (same dilution rate than planktonic biomass
or no dilution rate) are too extreme to be fully realistic. We propose in this paper to revisit the chemostat
model with two compartments, planktonic and aggregated biomasses, but assuming that each biomass has
its own growth rate and apparent dilution rate. This generalizes the two kind of models that we mentioned
previously.

2 Modelling flocks or aggregates in the chemostat

Consider the following model of the chemostat in which a population of microorganisms compete for a single
growth-limiting substrate [34, 45]:

{

S′ = D(Sin − S)− kµ(S)x
x′ = (µ(S)−Dx)x

In these equations, S(t) denotes the concentration of the substrate at time t; x(t) denotes the concentration
of the population of microorganisms at time t; µ(·) represents the per-capita growth rate of the population
and so Y = 1/k is the growth yield; Sin and D denote, respectively, the concentration of substrate in the
feed bottle and the dilution rate of the chemostat; Dx represents the removal rate of the population.

Assume that the species is present in two forms: isolated or planktonic bacteria, of density u, and attached
bacteria or flocks of bacteria, of density v. Isolated bacteria and flocks can stick together to form new flocks,
with rate α(·)u, and flocks can split and liberate isolated bacteria, with rate β(·)v:

u
α(·)u
−−−→ v, u

β(·)v
←−−− v.

One obtains the following equations [43]:







Ṡ = D(Sin − S)− f(S)u− g(S)v
u̇ = (f(S)−Du)u− α(·)u + β(·)v
v̇ = (g(S)−Dv)v + α(·)u − β(·)v

(1)

In these equations, S(t) denotes the concentration of the substrate at time t; u(t) and v(t) denote, respectively,
the concentration of the population of planktonic microorganisms and flocks of bacteria at time t; f(S) and
g(S) represent, respectively, the per-capita growth rate of the populations; Sin and D denote, respectively,
the concentration of substrate in the feed bottle and the dilution rate of the chemostat; Du and Dv represent,
respectively, the removal rate of the microorganisms.

The dot in attachment rate α(·) and detachment rate β(·) means that these rates can depend on the state
variables, so that system (1) recovers some of the models which were considered in the existing literature.
For instance, the model of adaptive nutrient uptake, where u denotes the low growing cells and v denotes
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the fast growing cells considered in [44] is obtained with attachment and detachment rates depending only
on S

α(·) = α(S), β(·) = β(S).

The model of wall growth, where u denotes the density of planktonic bacteria, and v denotes the density of
wall-attached bacteria, considered by Pilyugin and Waltman [40], is obtained with constant rates

α(·) = a, β(·) = b.

The model (1) is also a particular case of the Freter model [11, 12]







Ṡ = D(Sin − S)− f(S)u− g(S)v
u̇ = (f(S)−Du)u − a(1−W )u+ bv + g(S)(1−G(W ))v
v̇ = (g(S)G(W )−Dv − b)v + a(1−W )u

(2)

with
α(·) = a(1−W ), β(·) = b+ g(S)(1−G(W ))

where W = v/vmax and G(·) is decreasing. Actually, if vmax = ∞ one obtains W = 0 and if G(0) = 1 then
α(·) = a, β(·) = b, and (2) is simply the model of Pilyugin and Waltman [40].

A model with flocks of two bacteria has been considered in [16, 10]







Ṡ = D(Sin − S)− f(S)u− g(S)v
u̇ = (f(S)−Du)u − au2 + bv
v̇ = (g(S)−Dv)v + au2 − bv

(3)

that is a particular case of model (1) obtained with

α(·) = au, β(·) = b.

This model has been studied by Haegeman and Rapaport [16] in the case of g(·) = 0 where the bacteria in
flocks are assumed to do not consume any substrate, and by Fekih-Salem and al [10] in the more general
case of 0 ≤ g(·) ≤ f(·) where the bacteria in flocks consume less substrate than the isolated bacteria. This
model has been also extended to the case of flocks with an arbitrary numbers of bacteria in [15].

In the present paper we will not consider the size or the number of bacteria in flocks in our model.
Following [43] we simply distinguish the biomass in flocks and the isolated biomass. The biomass of isolated
bacteria is denoted by u and the biomass in flocks is denoted by v. Hence isolated bacteria and isolated
bacteria or flocks can stick together to form new flocks, with rate a(u+v)u, where a is a constant, proportional
to both the density of isolated bacteria, that is u, and the total biomass density, that is u + v, and flocks
can split and liberate isolated bacteria, with rate bv, where b is a constant, proportional the their density v.
Hence, taking

α(·) = a(u + v), β(·) = b

in model (1), one obtains the following dynamical system







Ṡ = D(Sin − S)− f(S)u− g(S)v
u̇ = (f(S)−Du)u− a(u+ v)u + bv
v̇ = (g(S)−Dv)v + a(u+ v)u− bv

(4)

that we aim to study in the present paper, as well as its extensions to multispecies populations.
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3 A two time scales dynamics

The general model for the flocculation is







Ṡ = D(Sin − S)− f(S)u− g(S)v
u̇ = (f(S)−Du)u− α(S, v, u)u+ β(S, u, v)v
v̇ = (g(S)−Dv)v + α(S, v, u)u− β(S, u, v)v

if we assume that the dynamics of flocculation and deflocculation is much faster than the growth of the
species, one can write the model the following way



















Ṡ = D(Sin − S)− f(S)u− g(S)v

u̇ = (f(S)−Du)u −
α(·)

ε
u+

β(·)

ε
v

v̇ = (g(S)−Dv)v +
α(·)

ε
u−

β(·)

ε
v

(5)

where ε is expected to be a small non-negative number. Notice that the dynamics of the total biomass
x = u+ v is given by the equation

ẋ = (f(S)−Du)u+ (g(S)−Dv)v

Thus, u and v are fast variables, while S and x are slow ones. The fast dynamics is given by

u′ = −α(·)u+ β(·)v ,

and the slow manifold is defined by the positive solutions of the system

α(S, u, v)u = β(S, u, v)v with u+ v = x .

Hence one has
u = p(S, x)x, v = (1− p(S, x))x.

Assuming that this slow manifold is asymptotically stable for the fast equation, the reduction of the system
to the slow system gives an approximation of the solutions of (5) for arbitrarily small ε. The reduced model
is obtained by replacing the fast variables u and v in the equations of S and x:

{

Ṡ = D(Sin − S)− µ(S, x)x
ẋ = (µ(S, x)− d(S, x)) x

(6)

where
µ(S, x) = p(S, x)f(S) + (1 − p(S, x))g(S),

d(S, x) = p(S, x)Du + (1 − p(S, x))Dv.

Notice that p(·) depends on functions α(.) and β(.). Consequently the growth function µ(·) is a density
dependent growth function model, as already studied in [29, 30, 31]. But, here the removal rates are replaced
by a function d(·) that depends also on functions α(.) and β(.). This last property is new in the literature,
to our knowledge.

Examples For system (3) one has

α(·)

ε
=

a

ε
u,

β(·)

ε
=

b

ε
and p(x) =

2

1 +
√

1 + 4a/bx
.

For system (4) one has
α(·)

ε
=

a

ε
x,

β(·)

ε
=

b

ε
and p(x) =

b

b + ax
.
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In the rest of the section, we use Tikhonov’s theory [32, 49, 51] and we justify the reduction (6) in the
case of system (4). In this case, the reduced model is written as

{

Ṡ = D(Sin − S)− µ(S, x)x
ẋ = (µ(S, x)− d(x)) x

(7)

where

µ(S, x) =
bf(S) + axg(S)

b+ ax
, d(x) =

bDu + axDv

b+ ax
.

Theorem 3.1 Let (S(t), u(t), v(t)) be the solution of (4) with initial condition

S(0) ≥ 0, u(0) > 0, v(0) ≥ 0

Let (S(t), x(t)) be the solution of the reduced problem (7) with initial conditions

S(0) = S(0), x(t) = u(0) + v(0)

Then we have
S(t) ≈ S(t), x(t) ≈ x(t)

uniformly for t ∈ [0,+∞), and

u(t) ≈
b

b+ ax(t)
x(t), v(t) ≈

ax(t)

b+ ax(t)
x(t)

uniformly for t ∈ [t0,+∞), where t0 > 0 is arbitrarily small,

Proof. In the variables S, x and u, system (4) is written










Ṡ = D(Sin − S)− f(S)u− g(S)(x− u)
ẋ = f(S)u+ g(S)(x− u)−Duu−Dv(x− u)

u̇ = (f(S)−Du)u−
a

ε
xu+

b

ε
(x− u)

(8)

This is a slow/fast system with two slow variables S and x and one fast variable, u. The fast equation is

u′ = −axu+ b(x− u) = bx− (ax+ b)u. (9)

The slow manifold (or quasi-steady-state) is given by

u = xp(x), where p(x) =
b

b+ ax

Since ax + b > 0 this slow manifold is globally asymptotically stable. Thus, the Theorem of Tikhonov
[32, 49, 51] applies and asserts that after a fast transition toward the slow manifold, the solutions are
approximated by a solution of the reduced equation, which is obtained by replacing the fast variable u in
(8) by the quasi steady state u = xp(x). This reduced system is

{

Ṡ = D(Sin − S)− (f(S)p(x) + g(S)(1− p(x))) x
ẋ = (f(S)p(x) + g(S)(1− p(x))−Dup(x)−Dv(1− p(x))) x

This is system (7). Hence, very quickly, the density v(t) of flocks tends to

a(x(0))2

b+ ax(0)
,

and the density u(t) of planktonic bacteria tends toward

bx(0)

b+ ax(0)
.

These values depend only on the initial total biomass x(0) = u(0) + v(0), and on the ratio a/b between the
rate of flocculation and deflocculation. After this boundary layer, one has a slow variation of the densities
of flocks and isolated bacteria according to the density dependent reduced model (7).
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4 Study of the reduced model for one species

We consider in this section the mathematical analysis of the reduced model (7). We assume that

H0 µ(0, x) = 0 and µ(S, x) > 0 for all S > 0 and all x ≥ 0.

H1
∂µ

∂S
> 0 and

∂µ

∂x
< 0 for all S > 0 and all x ≥ 0.

H2 d(0) = D0, d(+∞) = D∞ < D0 ≤ D, d(x) > 0, d′(x) < 0 and [xd(x)]′ > 0 for all x ≥ 0.

Let us denote by
µ0(S) = µ(S, 0), and µ∞(S) = µ(S,+∞).

The functions µ0(·) and µ∞(·) are increasing and positive for all S > 0. If equations µk(S) = Dk, k = 0,∞,
have solutions, one let

λ0 = µ−1
0 (D0), and λ∞ = µ−1

∞
(D∞).

otherwise one let λk = +∞. We add the following assumption

H3 If λ0 < λ∞, then for all S ∈ [λ0, λ∞) and x ≥ 0 one has d′(x) >
∂µ

∂x
(S, x)

H4 If λ∞ < λ0, then for all S ∈ (λ∞, λ0] and x ≥ 0 one has d′(x) <
∂µ

∂x
(S, x)

Lemma 4.1 Assumptions H0-H4 are satisfied in the case

µ(S, x) = µ0(S)p(x) + µ∞(S)(1 − p(x)), d(x) = D0p(x) +D∞(1− p(x))

where µ0(·) > µ∞(·) are increasing functions and p(x) is a decreasing functions such that p(0) = 1, p(+∞) =
0 with [xp(x)]′ > 0.

Proof. Since p′(x) < 0 and µ0(S) > µ∞(S) for all S > 0, one has

∂µ

∂S
= µ′

0(S)p(x) + µ′

∞
(S)(1− p(x)) > 0,

∂µ

∂x
= (µ0(S)− µ∞(S))p′(x) < 0.

Thus H1 is satisfied. On the other hand

d′(x) = (D0 −D∞)p′(x) < 0, [xd(x)]′ = D∞ + (D0 −D∞)[xp(x)]′

since p′(x) < 0, [xd(x)]′ > 0 and D0 > D∞. Thus H2 is satisfied. Moreover

∂µ

∂x
(S, x) − d′(x) = [µ0(S)−D0 +D∞ − µ∞(S)]p′(x) < 0

for all S ∈ [λ0, λ∞) and x ≥ 0, since p′(x) < 0 and µ0(S) > D0, D∞ > µ2(∞) for λ0 < S < λ∞, see Figure
1. Thus Assumption H3 is also satisfied. Similarly one has

∂µ

∂x
(S, x) − d′(x) = [µ0(S)−D0 +D∞ − µ∞(S)]p′(x) > 0

for all S ∈ (λ∞, λ0] and x ≥ 0, since p′(x) < 0 and µ0(S) < D0, D∞ < µ∞(S) for λ∞ < S < λ0, see Figure
1. Thus Assumption H4 is satisfied.

Notice that, if p(x) = b
b+ax

, then the properties of p(·) stated in the lemma are satisfied. Indeed

p′(x) =
−ab

(b+ ax)2
, [xp(x)]′ =

b2

(b + ax)2
.
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µ0(S)

µ∞(S)

µ0(S)

µ∞(S)
D0

D∞

D0

D∞

λ0 λ∞ λ0λ∞

S S

Figure 1: On the left, the case λ0 < λ∞. On the right, the case λ∞ < λ0.

4.1 Existence of equilibria

The equilibria of the system are solutions of the set of equations
{

D(Sin − S)− µ(S, x)x = 0
(µ(S, x) − d(x))x = 0

The second equation is equivalent to x = 0 or µ(S, x) = d(x). If x = 0 then from the first equation one has
S = Sin. This is the washout equilibrium

E0 = (Sin, 0).

If µ(S, x) = d(x), the first equation gives D(Sin − S) = xd(x). Hence

S = γ(x) := Sin −
xd(x)

D
.

Since

γ(0) = Sin, and γ′(x) = −
[xd(x)]′

D
< 0

the function γ(·) is decreasing. Thus one have to solve the equation

µ(S, x) = d(x). (10)

Since ∂µ
∂S

> 0, by the implicit function theorem, thus equation defines a function

S = φ(x), such that λ0 = φ(0),

and

φ′(x) =
d′(x) −

∂µ

∂x
(φ(x), x)

∂µ

∂S
(φ(x), x)

.

The sign of φ′(·) is given by assumptions H3 and H4. The cases λ0 < λ∞ and λ0 > λ∞ have to be
distinguished.

When λ0 < λ∞ the function S = φ(x) is defined for all x ≥ 0 and satisfies

λ0 = φ(0), λ∞ = φ(+∞), φ′(x) > 0.

The equilibria are the intersection points of the graphs of functions

S = φ(x) and S = γ(x).

Since the first function is increasing and the second one is decreasing, there is a unique solution if λ0 < Sin,
and no solution if λ0 > Sin, see Figure 2.
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Sin

S = φ(x)

S = γ(x)

λ0

S = φ(x)

S = γ(x)

Sin λ0

S

x

S

x

Figure 2: Null-clines S = φ(x) and S = γ(x) in the case λ0 < λ∞. On the left, the case λ0 < Sin with a
unique intersection point. On the right, the case λ0 > Sin with no intersection point.

Proposition 4.2 If λ0 < min(λ∞, Sin), there exists a unique positive equilibrium. If Sin < λ0 < λ∞, there
is no positive equilibrium.

When λ∞ < λ0 the function S = φ(x) is defined for all x ≥ 0 and satisfies

λ0 = φ(0), λ∞ = φ(+∞), φ′(x) < 0.

Both functions S = φ(x) and S = γ(x) are decreasing and

φ(0) = λ0, Sin = γ(0).

Thus, if λ0 < Sin the graphs intersect at at least one non-negative point (see Figure 3). If λ0 > Sin, the
graphs of functions S = φ(x) and S = γ(x) can interest or not (see Figures 3 and 4).

Sin

S = φ(x)

S = γ(x)

λ0λ∞

S = φ(x)

S = γ(x)

Sin λ0λ∞

Figure 3: Null-clines S = φ(x) and S = γ(x) in the case λ0 > λ∞. On the left, the case λ0 < Sin with at
least one intersection point. On the right, the case λ0 > Sin with no intersection point. In the second case
it is possible to have two intersection points, see Figure 4.

Proposition 4.3 If λ∞ < λ0 < Sin, then there exists at least one positive equilibrium. Generically one has
an odd number of positive equilibria. If λ∞ < Sin < λ0, then the system has generically no positive equilibria
or an even number of positive equilibria.
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S
0 0,5 1,0 1,5 2,0

0

0,2

0,4

0,6

0,8

1,0

1,2

S
0 0,2 0,4 0,6 0,8 1,0

0

0,5

1,0

1,5

2,0

Figure 4: On the right the growth functions µ0(·) and µ∞(·) given by (11). On the right, the corresponding
null-clines S = φ(x) and S = γ(x) for the parameter values(12), showing the existence of two positive
equilibria in the case when λ0 > Sin.

4.2 Stability of equilibria

The Jacobian matrix of (7) is given by

J =







−D − x
∂µ

∂S
(S, x) −x

∂µ

∂x
(S, x)− µ(S, x)

x
∂µ

∂S
(S, x) µ(S, x) − d(x) + x

∂µ

∂x
(S, x)− xd′(x)







At washout E0 = (Sin, 0) this matrix is

J0 =

[

−D −µ0(Sin)

0 µ0(Sin)−D0

]

The eigenvalues are −D and µ0(Sin)−D0. Hence one has the following result

Proposition 4.4 If λ0 < Sin, then E0 is unstable (saddle point). If λ0 > Sin, then E0 is locally exponen-
tially stable (stable node).

At a positive equilibrium E1 = (S, x), one has necessarily µ(S, x) = d(x), and the Jacobian matrix is

J1 =







−D − x
∂µ

∂S
(S, x) −x

∂µ

∂x
(S, x)− µ(S, x)

x
∂µ

∂S
(S, x) x

∂µ

∂x
(S, x) − xd′(x)







The trace of J1 is

tr(J1) = −D − x
∂µ

∂S
(S, x) + x

∂µ

∂x
(S, x) − xd′(x)

Since [xd(x)]′ = d(x) + xd′(x), one has

tr(J1) = −D + d(x) − x
∂µ

∂S
(S, x) + x

∂µ

∂x
(S, x) − [xd(x)]′ < 0

since d(x) ≤ D, ∂µ
∂S

> 0, ∂µ
∂x

< 0 and [xd(x)]′ > 0. The determinant of J1 is

det(J1) = Dx

(

d′(x)−
∂µ

∂x

)

+ x
∂µ

∂S
[xd(x)]′
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One can write this determinant as

det(J1) = Dx
∂µ

∂S







d′(x) −
∂µ

∂x
∂µ

∂S

+
[xd(x)]′

D






= Dx

∂µ

∂S
(φ′(x)− γ′(x))

Thus, If φ′(x) > γ′(x), then the determinant is positive and hence the eigenvalues are of negative real parts:
the equilibrium E1 is locally asymptotically stable. On the other hand, if φ′(x) < γ′(x), then the determinant
is negative, and the eigenvalues are of opposite sign: the positive equilibrium is a saddle point. Thus we
have shown the following result

Proposition 4.5 The following cases occur.

1. If λ0 < min(λ∞, Sin), the unique positive equilibrium is locally asymptotically stable (and fulfills φ′(x) >
0 > γ′(x)).

2. If λ∞ < λ0 there are possibilities of multiple positive equilibria, that are saddle points when φ′(x) <
γ′(x) or stable nodes when φ′(x) > γ′(x):

- when λ0 < Sin, there exists at least one positive equilibrium and one has an odd number of
equilibria which are alternatively stable and unstable,

- when λ0 > Sin, there is no or an even number of equilibria which are alternatively stable and
unstable.

One concludes that in the case λ∞ < λ0, the system can exhibits bi-stability of the washout equilibrium
and a positive equilibrium. If the initial density of flocks is small enough, the solutions will converge to the
washout equilibrium, otherwise it will converge to the positive equilibrium, see Figure 5. In this figure we
notice that the washout equilibrium is stable together with the positive equilibrium corresponding the lowest
value of S. The domains of attraction of the stable equilibria are separated by the stable separatrix of the
positive saddle node. The simulations shown in Figures 4 and 5 where obtained for the following Monod
functions

µ0(S) =
2S

1 + S
, µ∞(S) =

1.5S

0.8 + S
(11)

and the following values of the parameters

D0 = D = 1, D∞ = 0.5, a = 4, b = 1, Sin = 0.9. (12)

0 0,5 1,0 1,5
0

0,5

1,0

1,5

Figure 5: For the Monod functions (11) and the parameters values (12), the system exhibits bi-stability.
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5 Flocculation with several species

We assume that n species are competing on a same limiting resource, and that each species is present in
two forms: isolated bacteria, of density ui, and bacteria in flocks, of density vi, for i = 1 · · ·n. We assume
that isolated bacteria can stick with isolated bacteria with flocks to form new flocks, with rate αi(·)ui. We
assume also that flocks can split and liberate isolated bacteria with rate βi(·)vi.

ui
αi(·)ui
−−−−→ vi, ui

βi(·)vi
←−−−− vi .

Then the equations are


















Ṡ = D(Sin − S)−
n
∑

i=1

fi(S)ui + gi(S)vi

u̇i = (fi(S)−Dui
)ui − αi(·)ui + βi(·)vi, 1 ≤ i ≤ n

v̇i = (gi(S)−Dvi)vi + αi(·)ui − βi(·)vi

(13)

The dynamics of the total biomass densities xi = ui + vi of the species i is

ẋi = fi(S)ui + gi(S)vi −Dui
ui −Dvivi .

We consider here the case introduced in [43] where

αi(·) =
n
∑

j=1

Aijxj , βi(·) = Bi

where Aij and Bi are non-negative constants.

Remark 5.1 By letting the functions αi(·) depending on xj with j 6= i, we implicitly consider that flocks or
aggregates can incorporate individuals of different species.
The removal rate Dvi has to be interpreted as the sum of the removal rate of the aggregates and the mortality
rate of each species i in its attached form.

Moreover, we assume that the dynamics of flocculation and deflocculation are fast compared with the
dynamics of the growth of bacteria, that is

Aij =
aij
ε
, Bi =

bi
ε

.

In the variables S, xi, ui, the system is written






























Ṡ = D(Sin − S)−
n
∑

i=1

fi(S)ui − gi(S)(xi − ui)

ẋi = fi(S)ui + gi(S)(xi − ui)−Dui
ui −Dvi(xi − ui), i = 1 · · ·n

u̇i = (fi(S)−Dui
)ui −

1

ε

n
∑

j=1

aijxjui +
bi
ε
(xi − ui)

(14)

This is a slow/fast system with the variables S, xi are slow and the variables ui fast. The fast equations are

u′

i = −

n
∑

j=1

aijxjui + bi(xi − ui), i = 1 · · ·n (15)

where xi are considered as parameters. The slow manifold (or quasi steady-state) is given by

ui =
bixi

bi +

n
∑

j=1

aijxj

, i = 1 · · ·n . (16)
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Since one has
∑n

j=1 aijxj > 0, for i = 1 · · ·n, this slow manifold is globally asymptotically stable for (15).
Thus, the Theorem of Tikhonov [32, 49, 51] applies and asserts that, after a fast transition toward the
slow manifold, the solutions are approximated by a solution of the reduced equation, which is obtained by
replacing the fast variables ui in (14) by the quasi steady states (16). One obtains the following reduced
model











Ṡ = D(Sin − S)−

n
∑

i=1

µi(S, x1, · · · , xn)xi

ẋi = (µ1(S, x1, · · · , xn)− di(x1, · · · , xn))xi, i = 1 · · ·n

(17)

where
µi(S, x1, · · · , xn) = fi(S)pi(x1, · · · , xn) + gi(S)(1− pi(x1, · · · , xn)), i = 1 · · ·n

di(x1, · · · , xn) = Dui
pi(x1, · · · , xn) +Dvi(1 − pi(x1, · · · , xn)), i = 1, · · · , n

with

pi(x1, · · · , xn) =
bi

bi +

n
∑

j=1

aijxj

Hence, we have shown the following result

Theorem 5.2 Let (S(t), u1(t), v1(t) · · · , un(t), vn(t)) be the solution of (13) with initial condition

S(0) ≥ 0, ui(0) > 0, ui(0) ≥ 0, 1 ≤ i ≤ n

Let
(

S(t), x1(t), · · · , xn(t)
)

be the solution of the reduced problem (17) with initial conditions

S(0) = S(0), xi(t) = ui(0) + vi(0), 1 ≤ i ≤ n

Then we have
S(t) ≈ S(t), xi(t) ≈ xi(t), 1 ≤ i ≤ n

uniformly for t ∈ [0,+∞), and for all 1 ≤ i ≤ n one has

ui(t) ≈
bixi(t)

bi +
∑n

j=1 aijxj(t)
, vi(t) ≈

(

∑n
j=1 aijxj(t)

)

xi(t)

bi +
∑n

j=1 aijxj(t)

uniformly for t ∈ [t0,+∞), where t0 > 0 is arbitrarily small,

Since the planktonic bacteria have a better access to the substrate than the bacteria in flocks one assumes
fi(S) > gi(S). Notice that one has ∂pi

∂xj
< 0 for any i, j. Hence

∂µi

∂xj

= (fi(S)− gi(S))
∂pi
∂xj

< 0

with
∂µi

∂S
= f ′

i(S)pi(x1, · · · , xn) + g′i(S)(1 − pi(x1, · · · , xn)) > 0 .

As for the one species case this approach give a motivation to density dependent growth function models,
that may lead to species coexistence [29, 30, 31].
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6 Study of the reduced model for several species

In this section, we study the reduced model (17) in the particular case where the rate of attachment and
detachment of species xi with species xj are negligible for i 6= j, that is to say aij = 0 for i 6= j. In that case
the function pi depends only on xi

pi(x1, · · · , xn) =
bi

bi + aiixi

so that the growth function µi and removal rates di in (17) depend only on xi. We consider the model










Ṡ = D(Sin − S)−

n
∑

i=1

µi(S, xi)xi

ẋi = [µi(S, xi)− di(xi)]xi i = 1, · · · , n

(18)

This model was studied in [29], in the case when di(xi) = D. We assume that

H5: µi(0, xi) = 0 and µi(S, xi) > 0 for all S > 0 and all xi > 0.

H6:
∂µi

∂S
> 0 and

∂µi

∂xi

< 0 for all S > 0 and all xi > 0.

H7: di(0) = Di0, di(+∞) = Di∞ < Di0 6 D, di(xi) > 0, d′i(xi) < 0 and [xidi(xi)]
′ > 0 for all xi > 0.

Let us denote by
µi0(S) = µi(S, 0) and µi∞(S) = µi(S,+∞).

The functions µi0(.) and µi∞(.) are increasing and positive for all S > 0. If equations µik(S) = Dik, k = 0,∞,
have solutions, one let

λi0 = µ−1
i0 (Di0) and λi∞ = µ−1

i∞(Di∞)

otherwise one let λik = +∞. As for the case of one species (see Assumption H3), we add the following
assumption

H8: λi0 < λi∞ for i = 1 · · ·n and for all S ∈]λi0, λi∞[ and xi > 0, one has d′i(xi) >
∂µi

∂xi
(S, xi).

If the inequality λi0 < λi∞ is reversed for some i = 1 · · ·n, then the situation is much more difficult and is
the subject of future investigation (see [8]). Denote

λ̃0 = max{λi0; i = 1, · · · , n} and λ̃∞ = min{λi∞; i = 1, · · · , n}.

We assume that

H9: λ̃0 < min(λ̃∞, Sin).

We consider here the existence of a positive equilibrium. The equilibria of (18) are solutions of the set of
equations











D(Sin − S) =

n
∑

i=1

µi(S, xi)xi

µi(S, xi) = di(xi) or xi = 0 i = 1, · · · , n

(19)

Thus we have to solve the equations
µi(S, xi) = di(xi).

Since H6, by the implicit function theorem, this equation gives a function S = φi(xi) defined for all xi ≥ 0,
such that φi(0) = λi0, φi(+∞) = λi∞ and

φ′

i(xi) =
d′i(xi)−

∂µi

∂xi

(S, xi)

∂µi

∂S
(S, xi)

> 0.
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The sign of φ′(·) is given by assumptions H8. We define the function Xi : S 7→ Xi(S) on [0, λi∞[ by

Xi : [0, λi∞[ −→ R+

S −→ Xi(S) =

{

0 if 0 6 S 6 λi0

xi = φ−1
i (S) if λi0 6 S < λi∞.

Let hi(S) = µi(S,Xi(S))Xi(S). Since Xi(·) is increasing over [λi0, λi∞[, so is hi(·) over this interval. Indeed,
one has

h′

i(S) =

(

∂µi

∂S
+

∂µi

∂xi

X ′

i(S)

)

Xi(S) + µi (S,Xi(S))X
′

i(S)

Moreover, for S ∈]λi0, λi∞[, µi (S,Xi(S)) = di(Xi(S)) and

X ′

i(S) =

∂µi

∂S
(S,Xi(S))

d′i(Xi(S))−
∂µi

∂xi

(S,Xi(S))

> 0.

then
h′

i(S) = [d′i (Xi(S))Xi(S) + di (Xi(S))]X
′

i(S), for S ∈]λi0, λi∞[.

Using H7,
[di(xi)xi]

′ = d′i(xi)xi + di(xi) > 0, for xi > 0

Hence the sign of h′

i(S) is the same as the sign of X ′

i(S), that is, hi(·) is increasing over [λi0, λi∞[ (see Fig.
6).

DSin

D(Sin − λ30)

h1(λ30) + h2(λ30)

D(Sin − S)

∑
3

i=1
hi(S)

h1(S)

h3(S) h2(S)

λ10 λ20 λ30S
∗ λ1∞Sinλ3∞ λ2∞

S

•

•

•

•

Figure 6: Condition of existence of the positive equilibrium of (18) for n = 3.

Consider now the function

H(S) =

n
∑

i=1

hi(S)−D(Sin − S).

Lemma 6.1 Equation H(S) = 0 admits a unique solution S∗ ∈]0, λ̃∞[.

Proof. Since hi(S) = 0 for S ∈ [0, λi0] and hi(S) is increasing over [λi0, λi∞[ (see Fig. 6), the function H(·)
is increasing over (0, λ̃∞), and

H(0) = −DSin < 0 and lim
S→λ̃∞

H(S) = +∞.

Hence, there exists a unique S∗ ∈]0, λ̃∞[ such that H(S∗) = 0. We have the following result.
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Proposition 6.2 Assume that H5-H9 hold. System (18) has a unique positive equilibrium if and only if

n
∑

i=1

µi

(

λ̃0, Xi(λ̃0)
)

Xi(λ̃0) < D(Sin − λ̃0). (20)

Proof. A positive equilibrium E∗ = (S∗, x∗

1, · · · , x
∗

n), must satisfy

D(Sin − S∗) =

n
∑

i=1

µi(S
∗, x∗

i )x
∗

i (21)

and

µi(S
∗, x∗

i ) = di(x
∗

i ). (22)

Equation (22) is equivalent to x∗

i = Xi(S
∗). Thus, (21) can be written

D(Sin − S∗) =

n
∑

i=1

µi(S
∗, Xi(S

∗))Xi(S
∗) =

n
∑

i=1

hi(S
∗),

that is H(S∗) = 0. Since
∑n

i=1 hi(S
∗) > 0, then one must have

S∗ < Sin and S∗ > λ̃0.

Notice that λ̃0 < S∗ < λ̃∞ and S∗ < Sin are satisfied if H9 holds. Then, since H(S) est increasing over
[0, λ̃∞[,

λ̃0 < S∗ ⇐⇒ H(λ̃0) < H(S∗) = 0.

Therefore there exists a unique positive equilibrium S∗ exactly when H(λ̃0) < 0, which is equivalent to (20).

7 Conclusion

In this work, we have analyzed a general model of the chemostat with planktonic and structured biomass,
under the assumption that attachment and detachment processes are fast compared to the biological scale.
Each compartment of the biomass is characterized by its specific growth rate and an apparent dilution rate,
generalizing previous models of biofilms (with no dilution rate for the attached bacteria) or models of perfect
flocks (with no growth rate for aggregated individuals).
Our study reveals two main characteristics of this model:

1. the reduced dynamics may exhibit a bi-stable behavior even though each growth function is monotonic.
This phenomenon is new and is usually met in the chemostat but when the growth function is non-
monotonic (such as the Haldane law);

2. for bioprocesses in which part of the biomass is under a structured form (in flocks or biofilm), the
macroscopic models (with reduced dynamics involving only the aggregated biomass and the substrate)
should include a growth rate and an apparent dilution rate that are both density dependent. This
result contributes to the actual debate in biotechnological engineering involving bioprocesses with
structured biomass, where it was not clear whether it is better to modify the growth rate functions or
the hydrodynamical terms in the macroscopic equations of the system, to cope with the specificity due
to the attachment process.

Acknowledgments. This work has been supported by the DISCO project, granted by ANR (AAP215-
SYSCOMM-2009).
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