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Abstract

In this work, we study a model of the chemostat where the species are

present in two forms, isolated bacteria, and flocks of bacteria. We show

that our model contains a lot of models which was considered in the lit-

terature. We assume that the dynamics of flocculation and deflocculation

are fast with respect to the growth of the species and we consctruct a

reduced model for which the growth functions depend on the density of

the species.

Keywords. Chemostat, density dependent growth functions, floccula-

tion.

1 Introduction

In culture of micro-organisms, the attachement of microbial individuals occurs
frequently. The attachement can be either a “wall attachement” such as in the
growth of biofilms [5, 7], or simply an agregation such as in the formation of
flocks [44]. Flock formation is often observed in microbial engineering systems
such as biological wastewater processing [29, 25, 6] and yeast fermentation [12].
It has a direct impact on growth dynamics, as access to the substrate is lim-
ited for micro-organisms inside the flocks. The mechanisms of attachement and
detachment result from the coupling of hydrodynamics conditions and biolog-
ical properties, but are not yet completly understood at the level of microbial
individuals. Several attempts of computer models, using individual based rep-
resentations, have been proposed and are under investigation for the simulation
of these phenomenons [21, 4, 37, 35, 16, 33, 32, 22, 36, 17, 34, 38]. At a macro-
scopic level, substrate limitation can be measured experimentally in biofilms
or flocks [45, 25, 6]. A rough representation, suited to the macroscopic level,
consists in spliting the overall biomass into two parts: a” planctonic biomass”,
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composed of free individuals and a “attached biomass” composed of indivuals
that are stick together [23]. This consideration leads to a significant change on
the performances of bioprocesses, compared to purely planctonic cultures. In a
chemostat-like device, planctonic cells are expected to consume easily the sub-
strates necessary for their growth, but are more keen to be carried off by the flow.
On the contrary, cells among agregates or biofilms have a more diffiucult access
to the ressources of the bulk fluid, but are more resistant to detachement in-
duced by flow. Therefore, mathematical models are expected to understand and
predict the issues of these trade-off. Several extensions of the well-known chemo-
stat model [41], considering two compartments of free and attached biomass for
each species have been proposed and studied in the literature. In models with
wall attachement [3, 30, 2, 43, 42, 1, 19], attached biomass is assumed to be
fixed, and detached individuals return directly to the planctonic compartment.
In models with agregation, agregates are carried away by the flow but bacte-
ria inside flocks are assumed to have no or reduced access to bulk ressources
[13, 14]. Considering that attachment and detachment processes are usually fast
compared to biological time, it is shown in [14] that the reduced dynamics of
such systems amounts to have a single biomass compartment for each strain but
with a density dependant growth rate. This justifies the consideration of den-
sity dependant growth functions of the chemostat model, as already introduced
in the literature. In [27, 28, 26, 24], it has been shown that this could lead to
the coexistence of several species in competition on a same limiring resource,
invalidating the Competitive Exclusion Principle [15].

In [14], the agregates are assumed to have no biological growth (i.e. the
attchement process is the only source of increase of the attached biomass).
Agregates are also assumed to be washed-out with the same dilution rate than
planctonic cells. On the opposite, in wall attachment models, the attached
biomass is not washed out at all. We beleive that these two opposite cases (same
dilution rate than planctonic biomass or no dilution rate) are too extreme to
be fully realistic. We propose in this paper to revist the chemostat model with
two compartments, planctonic and aggregated biomass, but assuming that each
biomass has its own growth rate and apparent dilution rate. This generalizes
the two kind of models that we mention previously.

2 Flocks of bacteria

Consider the following model of the chemostat in which a population of mi-
croorganisms compete for a single growth-limiting substrate [31, 41]:

{

S′ = D[Sin − S]− kµ(S)X
X ′ = [µ(S)−D1]X

In these equations, S(t) denotes the concentration of the substrate at time t;
X(t) denotes the concentration of the population of microorganisms at time t;
µ(S) represents the per-capita growth rate of the population and so Y = 1/k is
the growth yield; Sin0 andD denote, respectively, the concentration of substrate
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in the feed bottle and the flow rate of the chemostat; each D1 represents the
removal rate of the population.

Assume that the species is present in two forms: isolated bacteria, of density
XL, and flocks of bacteria, of density XA. Isolated bacteria and flocks can stick
together to form new flocks, with rate α(·)XL, and flocks can split and liberate
isolated bacteria, with rate β(·)XA:

XL
α(·)XL

−−−−→ XA, XL
β(·)XA

←−−−− XA.

One obtains the following equations [39]:







Ṡ = D(Sin − S)− µL(S)XL − µA(S)XA

ẊL = (µL(S)−DL)XL − α(·)XL + β(·)XA

ẊA = (µA(S)−DA)XA + α(·)XL − β(·)XA

(1)

3 Examples

Some of the models considered in the existing litterature are examples of (1)

3.1 Adaptative nutrient uptake

Here XL denots the low growing cells and XA denotes the fast growing cells.
Let α(·) = α(S), and β(·) = β(S) then (1) becomes the model considered in
[40]:







Ṡ = D(Sin − S)− µL(S)XL − µA(S)XA

ẊL = (µL(S)−DL)XL − α(S)XL + β(S)XA

ẊA = (µA(S)−DA)XA + α(S)XL − β(S)XA

3.2 Wall growth

Here XL denotes the density of isolated bacteria, and XA denotes the density
of attached bacteria. Let α(·) = a, and β(·) = b, then (1) becomes the model
considered By Pilyugin and Waltman [30]:







Ṡ = D(Sin − S)− µL(S)XL − µA(S)XA

ẊL = (µL(S)−DL)XL − aXL + bXA

ẊA = (µA(S)−DA)XA + aXL − bXA

3.3 Freter model

The previous model is a particular case of the model of Freter [10, 11, 19] for
which

α(·) = a[1−W ], β(·) = b+ µA(S)[1−G(W )]
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where W = XA/XAmax eand G(W ) is decreasing














Ṡ = D(Sin − S)− µL(S)XL − µA(S)XA

ẊL = (µL(S)−DL)XL − a(1−W )XL

+bXA + µA(S)[1 −G(W )]XA

ẊA = (µA(S)G(W )−DA − b)XA + a[1−W ]XL

In the case where XAmax =∞ one obtains W = 0 and if G(0) = 1 then α(·) = a
and β(·) = b.

3.4 Flocs of two bacteria

If one takes α(·) = aXL and β(·) = b, then (1) becomes






Ṡ = D(Sin − S)− µL(S)XL − µA(S)XA

ẊL = (µL(S)−DL)XL − aX2
L + bXA

ẊA = (µA(S)−DA)XA + aX2
L − bXA

(2)

This model considered by Hagueman and Rapaport [14, 9] in the case µA(S) = 0
where the bacteria in flocks does not consume the substrate and by Fekih-Salem
and ali [9] in the more general case 0 ≤ µA(S) ≤ µL(S) where the bacteria in
flocs consume less of the substrate than the isolated bacteria. This model was
extended also to case of flocs with an arbitrary numbers of bacterias [13]

3.5 Biomass in flocs

If one takes α(·) = a(XL +XA) and β(·) = b one obtains the following model






Ṡ = D(Sin − S)− µL(S)XL − µA(S)XA

ẊL = (µL(S)−DL)XL − a(XL +XA)XL + bXA

ẊA = (µA(S)−DA)XA + a(XL +XA)XL − bXA

(3)

In this model [39] we do not take in consideration the sizes of the flocks. The
biomass of isolated bacteria is denoted by XL and the biomass in flocks is
denoted by XA. Hence isolated bacteria and isolated bacteria or flocks can stick
together to form new flocks, with rate a(XL +XA)XL proportional to both the
density of isolated bacteria, that is XL, and the total biomass density, that is
XL + XA, and flocks can split and liberate isolated bacteria, with rate bXA

proportional the their density XA.

4 Two time scales

The general model for the flocculation is






















Ṡ = D(Sin − S)− µL(S)XL − µA(S)XA

ẊL = (µL(S)−DL)XL

−α(S,XA, XL)XL + β(S,XA, XL)XA

ẊA = (µA(S)−DA)XA

+α(S,XA, XL)XL − β(S,XA, XL)XA
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We assume that the dynamics of flocculation and deflocculation is faster than
the growth of the species.











Ṡ = D(Sin − S)− µL(S)XL − µA(S)XA

ẊL = (µL(S)−DL)XL −
α(·)
ε
XL + β(·)

ε
XA

ẊA = (µA(S)−DA)XA + α(·)
ε
XL −

β(·)
ε
XA

(4)

Notice that
Ẋ = (µL(S)−DL)XL + (µA(S)−DA)XA

where X = XL +XA is the total biomass. Thus

• XL and XA : are fast variables,

• S and X = XL +XA : are slow variables.

0n the slow manifold ẊL = 0 (or ẊA = 0) one has α(·)XL = β(·)XA. Thus,
the slow manifold is obtained by solving the system

α(S,XL, XA)XL = β(S,XL, XA)XA,

XL +XA = X

Hence one has

XL = p(S,X)X, XA = (1 − p(S,X))X.

The reduced model is obtained by replacing the fast variables XL and XA in
the equation of S and X :

{

Ṡ = D(Sin − S)− µ(S,X)X

Ẋ = [µ(S,X)−D(S,X)]X
(5)

where
µ(S,X) = p(S,X)µL(S) + (1 − p(S,X))µA(S),

D(S,X) = p(S,X)DL + (1− p(S,X))DA.

Notice that p(S,X) depends on functions α(.) and β(.). This is a density de-
pendent growth function model [27, 28, 26].

Examples For system (2) one has

α(·)

ε
=

a

ε
XL,

β(·)

ε
=

b

ε
, p(X) =

2

1 +
√

1 + 4a/bX
.

For system (3) one has

α(·)

ε
=

a

ε
X,

β(·)

ε
=

b

ε
, p(X) =

b

b+ aX
.
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Theorem 4.1 Let (S(t), XL(t), XA(t)) be the solution of (4) with initial con-
dition

S(0) ≥ 0, XL(0) > 0, XA(0) ≥ 0

Let (S(t), X(t)) be the solution of the reduced problem (5) with initial conditions

S(0) = S(0), X(t) = XL(0) +XA(0)

Then we have
S(t) ≈ S(t), X(t) ≈ X(t)

uniformly for t ∈ [0,+∞[, and

XL(t) ≈ p(S(t), x(t))X(t), XA(t) ≈
(

1− p(S(t), x(t))
)

x(t)

uniformly for t ∈ [t0,+∞[, where t0 > 0 is arbitrarily small,

5 Density dependent growth function

These examples have motivated the study of the reduced model

{

Ṡ = D(Sin − S)− µ(S,X)X

Ẋ = [µ(S,X)−D(X)]X

where

µ(S,X) = p(X)µL(S) + (1− p(X))µA(S), D(X) = p(X)DL + (1− p(X))DA.

We assume that µL(S) and µA(S) are incresaing and µL(S) ≥ µA(S), DL ≥ DA.
and 0 ≤ p(X) ≤ 1, p(0) = 1, p(∞) = 0, p′(X) < 0. The equilibria of the system
are given by

{

D(Sin − S)− µ(S,X)X = 0
[µ(S,X)−D(X)]X = 0

If X = 0 then S = Sin so that one has the washout equilibrium: E0 = (Sin, 0).
If µ(S,X) = D(X), then D(Sin − S) = XD(X). Hence

S = G(X) := Sin −
XD(X)

D
.

The mapping S 7→ G(X) is decreasing. Notice

λL = µ−1
L (DL), λA = µ−1

A (DA).

Then equation µ(S,X) = D(X) defines a function S = F (X) such that F (0) =
λL and F (∞) = λA. The positive equilibria of the system are given by the
intersections of the graphs of S = F (X) and S = G(X), see Figure 1. If
λL < λA the function S 7→ F (S) is increasing and we have the following result

Proposition 5.1 If λL < Sin, there is a unique positive equilibrium. It is
stable. If λL > Sin, there is no positive equilibrium.
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Figure 1: On the right the growth functions µL and µA. On the right, the
mappings S 7→ F (S) and S 7→ G(S) showing the existence of two positive
equilibria in the case when λL > Sin.

If λL > λA the function S 7→ F (S) is decreasing, see Figure 1, and we have
the following result

Proposition 5.2 If λL < Sin, then there exists at least onr positive equilibrium.
One can have an odd number of equilibria which are alternatively stable and
unstable. If λL > Sin, then one can have 0 of and even number of equilibria
which are alternatively stable and unstable.

Hence in the case when λL > λA, the system can exhibits bistability, see
Figure 2: The whashout equilibrium is stable together with the positive equi-
librium corresponding the the lowest value of S. The domains of attraction of
the stable equilibria are separated by the stable sepratrix of the positive sad-
dle node. The simulations shown in Figures 1 and 2 where obtained for the
following Monod functions

µL(S) =
2S

1 + S
, µL(S) =

1.5S

0.8 + S

and the following values of the parameters

DL = D = 1, DA = 0.5, a = 4, b = 1, Sin = 0.9.

6 N-species

We consider here the case of N -species competing for a substrate. We asume
that each species is present in two forms: isolated bacteria of density ui, and
bacteria in flocks, of density vi, 1 ≤ i ≤ n. We assume that isolated bacteria can
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Figure 2: The system exhibits bistability.

stick with isolated bacteria or floks to form new flocks with rate αi(·)ui and we
assume that flocks can liberate isolated bacteria with rate βi(·)vi. The model
equation are:



















Ṡ = D(Sin − S)−

n
∑

i=1

[µi1(S)ui + µi2(S)vi]

u̇i = (µi1(S)−D)ui − αi(·)ui + βi(·)vi, for 1 ≤ i ≤ n
v̇i = (µi2(S)−Di)vi + αi(·)ui − βi(·)vi, for 1 ≤ i ≤ n

(6)

We consider here the case [39] where

αi(·) =

n
∑

j=1

Aijxj , βi(·) = Bi

where Aij and Bi are nonnegative constants. Moreover, we assume that the
dynamics of flocculation and deflocculation are fast compared with the dynamics
of the growth of bacteria, that is que l’on a

Aij =
aij
ε
, Bi =

bi
ε
,

The quasi steady state reduction of this model is the following reduced model











Ṡ = D(Sin − S)−

n
∑

i=1

µi(S, x1, · · · , xn)xi

ẋi = [νi(S, x1, · · · , xn)−Di(x1, · · · , xn)]xi, où 1 ≤ i ≤ n

(7)

where

µi(S, x1, · · · , xn) =
biµi1(S) +

∑n

j=1 aijxjµi2(S)

bi +
∑n

j=1 aijxj

,
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Di(x1, · · · , xn) =
Dbi +Di

∑n

j=1 aijxj

bi +
∑n

j=1 aijxj

.

This approach give a motivation to density dependent growth function models
[27, 28, 26].

7 Conclusion

In this work, we have analysed a general model of the chemostat with planctonic
and attached biomass, under the assumption that attachment and detachment
processes are fast compared to the biological scale. Each compartment of the
biomass is characterized by its specific growth rate and apparent dilution rate,
generalizing previous models of biofilms (with no dilution rate for the attached
bacteria) or models of perfect flocks (with no growth rate for inside individuals).
Our study reveals that the reduced dynamics may exhibit a bi-stable behavior
even though each growth function is monotonic. This phenomenon is new and
is usually met in chemostat but when the growth function is non-monotonic
(such as the Haldane law). Here, it can be explained by the conjunction of
different growth rate and dilution rate that leads to a density dependency of
both apparent growth rate and dilution rate in the reduced dynamics.
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