
HAL Id: hal-00604479
https://hal.science/hal-00604479

Submitted on 3 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High level assisted control mode based on SLAM for a
remotely controlled robot

Jean Clement Devaux, Paul Nadrag, Etienne Colle, Philippe Hoppenot

To cite this version:
Jean Clement Devaux, Paul Nadrag, Etienne Colle, Philippe Hoppenot. High level assisted control
mode based on SLAM for a remotely controlled robot. 15th International Conference on Advanced
Robotics (ICAR 2011), Jun 2011, Tallinn, Estonia. pp.186–191, �10.1109/ICAR.2011.6088615�. �hal-
00604479�

https://hal.science/hal-00604479
https://hal.archives-ouvertes.fr


 

Abstract—  Our aim in ambient assistive technologies is to 

reduce long term hospitalization for elderly people, especially 

with pathologies such as Mild Cognitive Impairment (MCI). 

The smart environment assists these people and their families 

for  safety  and cognitive  stimulation so  they  stay  as  long as 

possible at home. The originality comes from using the robot in 

the elderly person's home. This robot is remote controlled by a 

distant  user,  a  therapist  or  a  relation,  for  determining 

alarming  situations  or  for  participating  in  stimulation 

exercises. Several modes are possible for controlling the robot. 

This paper deals with an assisted control mode in which the 

remote user gives to the robot one goal then the robot reaches 

the goal by itself.  During the robot movement,  the user can 

dynamically change the current goal. An important hypothesis 

is that the robot has no a priori knowledge on its environment 

at the beginning. The knowledge will  increase with time and 

the planned trajectory will be refreshed at two levels: a local 

one -faster but not always sufficient- and a global one -slower 

but which always finds a path if  one exists-.  The idea is to 

work only with local information, using the robot sensors, the 

operator keeping the high level control. To assure that control, 

the  remote operator  uses  a video  feedback and information 

from a laser range.

I. INTRODUCTION

HE increasing number of elderly people, especially 

with  pathologies  such  as  Alzheimer  disease,  is 

becoming an important issue in Europe. It is more and more 

difficult and expensive to assure long term hospitalization 

for these people, so they stay at home as long as possible. 

There are two main advances to make this possible: safety 

of  the  person  and  cognitive  stimulation.  The  aim of  the 

European  CompanionAble  project  is  to  assist  the  people 

with Mild Cognitive Impairment (MCI) and their families in 

those situations,  in the context of ambient assisted living. 

The  purpose  of  the  robot  isn’t  to  remove  the  human 

presence  around  the  person,  but  to  ease  his  caring. 

Decreasing this presence is a clearly expressed wish, in a 

quite comprehensible will of intimacy for the person and in 

a will of assistance for the family. Concerning safety,  the 

idea  is  to  detect  alarming  situations  by  monitoring  the 

person.  The principle is  to  measure certain physiological 

data and the activity of the person. Other sensors are placed 

in the environment which can also give information on the 

person  activity.  With  regard  to  cognitive  stimulation, 
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different  kinds  of  exercises  can  be  proposed,  to  limit  as 

much as possible the progression of the person’s disease.

The  originality  comes  from  using  the  robot  in  the 

person's  home.  This  robot  can  be  used  either  on  safety 

aspects or on cognitive stimulation aspects. Several control 

modes are  possible for  the robot.  According to  Sheridan 

[1,2], there is a continuum from the robot being completely 

controlled  by  a  human  to  the  robot  being  completely 

autonomous.  Between  these  two  control  modes,  a  large 

panel of assisted modes can be developed.

This paper deals with an assisted control mode in which 

the remote operator gives to the robot a goal and the robot 

reaches  the  goal  by  itself.  During  the  movement  of  the 

robot, the operator can dynamically change the current goal. 

In  fact,  the idea is to give to the remote operator  a high 

interaction level with the robot. An important hypothesis in 

this work is that the robot has no a priori knowledge on its 

environment.  The  idea  is  to  work  only  with  local 

information,  using  only the  robot’s  sensors,  the  operator 

keeping the high level control. To assure this control, the 

remote operator has video feedback and information from a 

laser range scanner.

For the robot,  reaching the goal  given by the operator 

requires three capabilities: obstacle avoidance, planning and 

localization. The idea is to use a SLAM technique in our 

specific  situation  of  medium  term  navigation  without  a 

priori knowledge on the environment for planning and with 

an odometer not sufficiently precise. We are not proposing 

a new SLAM algorithm but using one of them.

The next section (II) deals with related works on SLAM 

and planning in unknown environments. Section III presents 

our algorithm and section IV gives experimental results. A 

video is also given.

II.RELATED WORKS

For  our  needs,  the  robot  must  create  a  plan  of  the 

environment while keeping track of its coordinates in it. It 

must  also  reach  the  point  specified  by  the  user,  in  the 

minimum amount of time possible. Because the target point 

can be  outside  the acquired  plan (initially,  a  single laser 

scan),  the  robot  must  be  able  to  plan  in  an  unknown 

environment. When a dead end is detected, it must re-plan a 

new trajectory to the target point, if such a trajectory exists, 

or  inform  the  user  that  the  target  point  is  outside  the 

reachable space.

A. SLAM

In  order  to  complete  the  navigation  task,  or,  on  the 
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contrary, to detect that it is impossible to, the robot needs to 

have a plan of the environment and to be able to pinpoint its 

location in it.  As our starting hypothesis is that we don’t 

have a plan of the environment, the robot  must construct 

one. Together with the localization part, this is the SLAM 

problem. In the literature, there are many practical solutions 

to solve this problem, coming under various domains. They 

can be  outdoors  or  indoors,  on the ground,  in the air  or 

underwater. In [3] Durrant-Whyte and Bailey present a brief 

history of the SLAM problem and the ways tried for solving 

it. They also present the established solutions: one based on 

the extended Kalman filter (EKF-SLAM), the other on the 

Rao-Blackwellised  particle  filter  (FastSLAM).  A  list  of 

SLAM  algorithms  with  open  source  implementations  in 

various programming languages is given. Datasets available 

online,  on which one can test  its  own implementation or 

algorithms,  are  also  mentioned.  A  practical  solution  is 

proposed  by  Thrun  in  [4].  The  robots  used  are  mobile 

platforms, dedicated to navigation tasks indoors. Distance 

sensors (ultrasonic or laser) are used to detect walls, used in 

the localization of the robot. A reasonable hypothesis used 

by the author is that the walls have a global orientation that 

is a multiple of 90°, or their orientation is different with at 

least 15° from the global wall orientation. A wall is labeled 

as such is five or more adjacent sonar measurements form a 

straight line. The same idea is also applied for a laser range 

finder, with more accurate result, thanks to the sensor used. 

A museum guide robot is presented in [5] by Thrun et al. It 

uses a laser range finder to create an occupancy map of the 

museum and a vertical black and white camera to create a 

texture map of the museum’s ceiling. The robot performs 

Markov localization and occupancy grid mapping, as in [4]. 

This takes the form of an expectancy maximization cycle. 

In [6] the SLAM algorithm fuses the laser with the sonar 

sensors, in order to provide more reliable results (such as 

corner  detection).  The  SLAM  is  based  on  an  EKF  and 

implemented  in  Matlab,  with  all  the  calculations  done 

offline.  For  validation  purposes,  the  robot  was manually 

driven. In  [7] quadtrees are used for storing the acquired 

map. By using a weighted scan matcher, the latest scan is 

compared against all the past scans stored as a quadtree. A 

comparison with SLAM approaches (Carmen) is also given, 

and  the  results  for  three  datasets  show  that  the  scan 

matching  with  quadtrees  gives  promising  results  (small 

offset). The SLAM algorithm presented in [8] retained our 

attention because it was designed to be run in real time and 

the source code is publicly available. It is designed to use 

the measurements from a laser range scanner. It resides on 

the use of a particle filter. Because of its assets, we decide 

to use it as a starting base for our assisted control mode.

B. Planning in unknown environments

Our proposed assisted control  mode can be invoked at 

any moment by the remote operator and the robot doesn’t 

have a plan of the environment recorded Thus, it must start 

by planning a trajectory to its destination in an unknown 

environment. An earlier work on this subject is by Elfes [9]. 

In  it,  an  integrated  approach  to  map  construction 

(represented  as  an  occupancy  grid)  and  navigation  is 

presented.  The  path  planning  is  thought  of  as  a  dual 

objective  function  that  needs  to  be  minimized.  The 

objectives  are  the  path  length  and  the  occupancy 

probabilities of the cells that are to be traversed. In [10], the 

authors’  robot  is  an  unmanned  surface  vessel  (a  boat), 

which  has  a  general  knowledge  of  its  environment.  For 

safely  guiding  the  robot  to  its  destination  two  obstacle 

avoidance components are used: a deliberative component 

(far  field)  and  a  reactive  component.  The  deliberative 

component  is  responsible  for  planning  a  path  using  an 

occupancy grid  that  follows the original  planned path  as 

close  as  possible.  The  reactive  component  projects  a 

number of arcs in front of the robot and chooses the one 

that  best  combines the following criteria:  follow the path 

given by the deliberative component, avoid the obstacle that 

are nearby and go towards a free space. The same layered 

approach (plan globally and react locally) to navigation in 

unknown environments is found in [11], used with a rover-

type robot. The global planner uses A* to compute a new 

path, when needed. The local planner uses potential fields 

to act  on the steering of  the robot  (move away from the 

obstacles  and closer  to  the goal).  Instead  of  the distance 

between the robot and the obstacles, the time to collision is 

used by the local planner. In the event that the local planner 

can’t give a result, a local A* planning is employed to guide 

the robot out of that hazardous area. In [12] test results with 

a real robot are presented. The robot is able to navigate in 

its environment even in the absence of an initial plan. Two 

planners  are  present,  a  global  and  a  local  one.  D*  is 

employed for rapid planning. The possible future position 

of the robot (as arcs) is evaluated by the local planner and a 

choice is expressed. A trial run of 1.4 km is presented, with 

satisfactory  results.  [13]  is  a  development  of  [12].  The 

improvement is that the map is no longer stored as a regular 

grid,  but  as  a  framed quadtree,  which results  in memory 

gains. Test results with a real robot are also presented.

III. PROPOSED SOLUTION

The aim of this paper is to propose an algorithm capable 

of  planning  and  navigation  in  an  initially  unknown 

environment.  After  the  goal  is  selected  by  the  remote 

operator, the algorithm computes an initial global path. The 

main idea  is  that  the knowledge of  the environment will 

increase over time up to the completion of the mission and 

the  planned  trajectory  will  be  refreshed  at  two levels:  a 

local one (faster but not always sufficient) and a global one 

(slower  but  always  finds  a  path  if  one  exists).  The 

smoothing of the trajectories is also included. This section 



describes this algorithm. Obstacle avoidance is supposed to 

be active at navigation time.

Our  navigation  strategy  involves  two levels  of  action. 

First, we try to reduce the complexity of the map to reduce 

computational  time and then we supervise  planning from 

the start position to the goal at a high level.

A. Preliminary work - path planning

As described  before,  we use SLAM technique both to 

improve the  knowledge  of  robot’s  position  and  to  get  a 

relatively clean map to be able to find a path to goal. We’ve 

chosen  a  very  simple  and  specific  algorithm  called 

CoreSLAM  because  of  its  simplicity  and  efficiency, 

especially in terms of CPU cost. Initially, the map is empty 

(or more exactly filled with non-visited space). To define a 

goal, the operator has just to set a target to reach and the 

robot plans its path and executes it. In the first step, the map 

is very poor, only built with the first laser scan. Meanwhile, 

the  SLAM  program  is  running  in  parallel,  updating  the 

robot’s position and producing new maps. These maps are 

certainly partially different than the one at planning time, 

while moving the robot  is  discovering areas  which could 

either  be  free  or  occupied.  It  is  possible  that  the  initial 

trajectory becomes invalid and the point is to know how to 

re-compute a new path saving as much computational time 

as possible.

First we had to prepare the map to be compatible with the 

graph  algorithm  of  path  planning.  As  maps  can  be 

considered as pictures, we chose to reduce the number of 

areas of interest regrouping pixels according to their state 

(free,  occupied  or  unidentified).  A well-known algorithm 

for that type of compression is QuadTrees.  Rather than a 

simple occupancy grid, we chose to reduce the number of 

nodes and edges of our 8-neighborhood graph computing 

the  QuadTree  algorithm  on  our  map.  Sure,  quality  of 

simplified map with occupancy grid or QuadTrees depends 

a lot on the minimal size of the nodes. But after a spatial 

median  filter  and  a  dilatation  morphology transform,  the 

resulting map is really clean and simple and we can obtain 

an  8-neighborhood  graph,  concentrated  around  important 

areas like obstacles, reducing again the number of nodes. 

That  decrease  of  the  number  of  nodes  using  QuadTree 

allows  us  to  raise  the  resolution  if  needed.  Framed 

QuadTrees  are  widely used  in  path  planning to  improve 

quality of  found path,  preventing the  problem of  a  non-

shortest and very schematic trajectory (path has to go from 

a  center  of  a  cell  to  a  center  of  another  one).  Because 

framed  Quadtrees  increase  the  number  of  nodes  in  the 

neighborhood  graph,  we’ve  decided  to  only consider  the 

main  and  simple  Quadtree  algorithm  and  to  solve  that 

problem on-line in our higher level algorithm.

The initially chosen path planning algorithm was D* but 

as we developed our navigation supervisor we progressively 

neutralized the dynamic part, replacing the updates of edge 

costs by the action of our high level algorithm without any 

disadvantage. Thus, we preferred to keep control of the re-

planning  functionality  by  considering  map  updates  at  a 

higher level than the dynamic path planner.

B. Planning and navigation supervision

Our algorithm depends on a 2-level planning: global and 

local. This permits to dramatically reduce the computational 

time because of the size of the needed map to compute local 

paths and offers some interesting results according to the 

resulting trajectory.  After all the above preliminary steps, 

the first thing is to get an initial path to goal, executing the 

global path planner (path planning algorithm on full map). 

Thus, the nodes we have at our disposal are equivalent to 

points on the map, which we have to reach successively to 

achieve the goal. In fact, we consider these points as areas 

and  because  we  don’t  force  angles  to  be  exact,  the 

trajectory will be really smoothed (simple and cost-less).

We  assume  that  the  operator  gives  to  the  robot  a 

reachable  goal.  If  not,  the algorithm just  has  to  stop the 

robot  and  wait  for  another  order.  When a global  path is 

found, because the environment is constantly changing and 

computing a full path takes several  seconds, we chose to 

compute a local path to try to reach the checkpoint which is 

the closest to the goal but below the range of detection of 

our robot. To compute this local path, we first try to reach it 

by  drawing  a  line  between  the  start  point  and  the 

checkpoint. If it’s not possible (because of the presence of 

obstacles), we use the same algorithm as for global path but 

computing  only  on  a  sub-map  of  which  the  size  is 

equivalent to the range of view. This sub-map is a kind of 

trusted-area where the trajectories found are pretty certain 

because directly viewed by the rangefinder and obtained in 

real time (without stopping the robot). Cutting the map to 

extract a smaller window and then executing all the process 

to get a path hardly reduces the time needed to get the graph 

and to find the path. In that condition this can be realized in 

real time.

If there is no way to reach any global checkpoint in local 

window then  there  are  two possibilities.  First,  the  initial 

trajectory crosses a wall or any obstacle. In this case, the 

only thing to  do  is  to  re-compute  a  global  path  using a 

better-known  map.  This  is  detected  when  the  trajectory 

can’t  be  executed.  Second,  the  next  checkpoint  is  far 

enough to exceed local window size and then, we just have 

to  follow  carefully  the  global  trajectory  until  we  get  a 

checkpoint  in  the  range  of  view or  an  obstacle  over  the 

predicted  trajectory.  This  occurs  only if  areas  are  larger 

than the local window and then, the areas are free at least 

for the length of the sub-map so we assume that the robot 

can move without coming across  any obstacle,  following 

the initial trajectory. If an obstacle is finally detected, local 

resolution all around will be higher and then there will be 

areas  of smaller  size,  making possible to compute a new 



path  (locally  or  globally  depending  on  the  situations 

described above).

Keeping full control on trajectory allows us to add any 

constraint we decide on the way (how the trajectory has to 

look like), on the part of the map involved in research, on 

sequences of sub-goals or  user-defined checkpoints...  and 

above all, it gives us the possibility to recover easily and 

cleverly  from  all  kinds  of  planning  problems.  Thus,  it 

would be possible to  add  as many levels  of maps as we 

want,  considering other  ranges  of  sources  of  information 

like ultrasound rangefinder or camera for example.

IV. EXPERIMENTAL RESULTS

To  improve  our  algorithm,  we  first  used  a  simulated 

robot in several situations to illustrate all the capabilities of 

the algorithm. Three parts of the algorithm are presented in 

detail (paragraphs A, B and C), and its behavior in the case 

of  an  unreachable  goal  is  shown  in  paragraph  D. 

Experiments using a real robot are also presented at the end 

of this section (E).

A. Global planning and re-planning

When a goal is set by the operator, the first thing to do is 

to look for a global path. In most cases if there are some 

obstacles to avoid, the algorithm is going to find a solution 

crossing unknown areas of the map because we begin the 

search  in  a  clear  map  with  just  a  scan  at  the  starting 

position.  In  all  cases,  the  global  planner  always  finds  a 

trajectory, if one exists. In  Fig. 1, the robot starts without 

any previous knowledge of its environment. The first laser 

scan offers only a small part of map (we only consider as 

free space the areas between robot and a wall: if no obstacle 

has been detected, range value would be at maximum value 

which is also the error constant) like in Fig. 1, left, and then 

the  operator  sets  a  goal  behind  the  wall.  The  computed 

trajectory  crosses  unknown parts  of  the  map just  on  the 

right of the obstacle. While robot is following the computed 

trajectory,  it  is  progressively discovering that  the wall  is 

expanding on the right to finally encounter another obstacle 

which  forms  an  impassable  corner.  At  this  stage,  it  is 

decided to re-compute the whole trajectory from the current 

position.  As  we can  see  on  Fig.  1,  right,  the  computed 

trajectory is now going on the left of the wall because of the 

shortest path finder.

Fig. 1 : Global re-planning situation

B. Local re-planning

As we’ve said before,  our  algorithm has the ability to 

modify a  local  part  of  the  path  to  correct  an  erroneous 

global  trajectory  which  could  cross  a  wall  because  of 

having been computed  before  knowing there  was a  wall. 

This is very useful because global path finder is very costly 

in terms of CPU time due to the size of the considered map.

Let’s  turn  our  attention  on  Fig.  2.  The  global  path  is 

represented by the zigzagging line while the trajectory of 

the  robot  is  represented  by  dots.  The  robot  has  already 

moved in the environment before planning (upper right of 

the figure), but the map was not totally known. Free areas 

are in white, occupied ones are in black and not visited ones 

are in grey.

Fig. 2 : Local re-planning situation

In this paragraph, we only focus on the second part of the 

trajectory,  starting  on  the  upper-right  corner  of  map. 

Considering the real  trajectory before the operator  targets 

the goal, we easily can assume that two-thirds (upper right) 

of the map are visited and the rest is unknown when global 

trajectory is computed. As we can see, the real path follows 

quite precisely the computed one during the first part of the 

trajectory because it  corresponds  to  the well  known area 

where the operator indicated the goal. But while the robot 

reaches the going up part of the trajectory (after the corner 

of the gray and black mass in the center of  Fig. 2.a),  the 

laser rangefinder discovers a wall just under the global path, 

involving  the  search  of  a  local  solution  to  by-pass  the 

problem (Fig. 2.b). We can see the real trajectory strating 

from the  computed  path  to  cross  a  free  space  (a  door) 

before going back to the global path. Thus, the robot was 

able to find a local solution because there was an alternate 

path near the original one. The robot can avoid every kinds 

of obstacles as long as another way is in sight (sufficiently 

near  to  enter  the  robot’s  range  of  view),  without  re-

computing  the  whole  trajectory.  This  local  search  often 

offers good results when the operator sets the goal behind a 

wall (if a door exists) or an obstacle of moderate size (most 

of  obstacles  in  a  person’s  home:  chair,  table,  person…). 

The  main  effect  is  a  simple  and  automatic  avoidance 

keeping in mind the initial goal.

In Fig. 1, there was no way to compute a local solution to 

avoid the wall and get back to the initial trajectory because 

the range of view of the robot wasn’t containing any free 



space  to  get  over  the  wall.  Re-planning is  then  taking a 

significant time, forcing the robot to stop, waiting the end of 

computing. The algorithm needs to re-compute the global 

path as soon as there is no path to goal in the local window. 

This often occurs when the robot reaches crowded or highly 

dynamical areas where it has never been before.

C. On-line research of a better path

Fig. 3 is the same configuration than Fig. 2 but we focus 

on other parts of the path to reveal trajectory improvements 

(encircled  ones).  As  we’ve  explained  in  section  III,  our 

supervisor  has  the  ability to  improve  the  computed  path 

before executing it. This is very useful in several cases.

Fig. 3 : Smoother, shorter, better

Firstly,  because  we  choose  to  use  simple  quadtrees 

algorithm  instead  of  framed  quadtrees  to  limit  the 

computational  time,  the  global  trajectory  looks  pretty 

strange in large areas.  The computed trajectory is always 

between centers of cells but there is no need for the real 

trajectory to be so restricted. Our algorithm allows us to get 

a better real path like in the last part of trajectory in Fig. 3. 

The  robot’s  path  is  directly  avoiding  some  of  the 

checkpoints to short  its  path to the goal.  The point is  to 

follow  a  line  from  robot’s  position  to  the  farthest 

checkpoint  in  range  of  view.  Finally,  one  can  observe 

another improvement just before the corner where the real 

path is  avoiding a useless  bend.  Because  the rangefinder 

and our SLAM are not perfect, the computed trajectory was 

probably trying to  avoid  an  obstacle  there  but  while  the 

robot was approaching, the map was corrected and it wasn’t 

any longer useful to follow that path in that part of the map: 

the robot could simply move straight forward.

This  functionality  and  our  tolerance  about  positions 

around a checkpoint to clear  it  and the angle of robot to 

start its trajectory allow the robot to move in a smoother 

way. A complicated path is equivalent to close checkpoints 

and many little angle corrections. Linear and angular speeds 

are linked to distance and angle to checkpoint. So not only 

the path is  globally shorter  but  also the robot  is  quicker 

because of its less complicated trajectory.

D. Closed environment

Now, let’s examine the case of an unreachable goal. The 

operator could indicate an erroneous target (when a door is 

closed for example). So our algorithm has to deal with some 

unattainable  areas.  In  case  of  a  goal  situated  out  of  the 

bounds  drawn  by  walls  all  around  robot,  there  are  two 

possibilities, depending on whether or not the robot knows 

the map sufficiently to determine there is no way to go.

Fig. 4 : Successive trajectories in closed environment

In the first case, the robot is just going to stop, waiting 

for a new order. In the second case, robot is going to look 

for a global path which has to cross some unidentified areas 

as explained in section  A and shown in  Fig. 4 a, b and c, 

which represent several of the global computations needed 

to finish on the situation shown in  Fig. 4.d. Those global 

path  searches  have to  be  done again and  again  until  the 

robot has discovered enough parts of the map to determine 

that they draw an impassable boundary (because the goal 

was set outside the closed environment) like in Fig. 4.d (the 

isolated dot is the unreachable objective) where the walls 

are closed. It works perfectly to detect a closed environment 

but if a person opens a door after the robot has visited that 

area there is a risk of not finding an existing solution until  

the open door enters in its field of view, which could never 

happen. In that case,  the presence of the human operator 

can palliate the problem by proposing a new goal near the 

open door  to  give the robot  the possibility to update the 

map.

E. Real robot execution

Even  if  map  quality  has  dropped  a  little  between 

simulation and reality, these situations can still be observed 

on a real robot (with odometry drift, rangefinder noise and 

more constraints on CPU work). Fig. 5 presents two of the 

four  situations  described  in  section  IV:  shorter  and 

smoother path on the first part of the trajectory and local re-

planning  on  the  last  part.  The  quality  of  the  map  is 



obviously a bit reduced in comparison with simulated maps 

as demonstrated by the few artifacts behind walls and the 

thickness of the objects in the map.

Fig. 5 : Local re-planning & smoother path on real 

robot

Nevertheless, a global path to goal is easily found from 

the start position (up and left from center of figure 5). On 

the first part of the trajectory, one can observe that the robot 

isn’t following the global trajectory because a more distant 

checkpoint  can  be  reach  moving  along  a  line  as  it  was 

described in section IV.C. The second part of the trajectory 

is showing a local re-planning to avoid a wall corner which 

was crossed  by the  initially computed  trajectory because 

that part of map wasn’t discovered at that time. After this 

little bend, the robot is returning to the global trajectory to 

reach the goal.

V. CONCLUSION

The aim of this paper was to propose an algorithm for 

planning  and  navigation  in  an  initially  unknown 

environment. A goal being given, the system has to plan the 

trajectory  and  navigate  up  to  it.  We  have  proposed  a 

multistage algorithm, taking into account local and global 

planning, on-line research of better path and detection of 

impossible planning. All the functionalities of the algorithm 

have  been  demonstrated,  illustrated  on  simulation  and 

implemented on a real robot.

Future work on this topic will be on the one hand to deal 

with  other  cost  functions  to  minimize  (for  example  the 

fastest trajectory or the easiest to perform by the robot). A 

second direction will be to delete from the model given by 

the SLAM the oldest information. Indeed, it is difficult to 

keep  the  map  coherent  in  time.  In  the  case  of  remote 

control, we want to give to the operator a control mode in 

which he just has to supervise the displacement of the robot, 

but for  one mission. A third amelioration will be to deal 

with quadtree resolution. Indeed, it could be interesting to 

reduce it for global planning to save time and to make it 

higher for local planning, which is more rapid,  to have a 

better knowledge on the obstacles around the robot.
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