
HAL Id: hal-00604479
https://hal.science/hal-00604479

Submitted on 3 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High level assisted control mode based on SLAM for a
remotely controlled robot

Jean Clement Devaux, Paul Nadrag, Etienne Colle, Philippe Hoppenot

To cite this version:
Jean Clement Devaux, Paul Nadrag, Etienne Colle, Philippe Hoppenot. High level assisted control
mode based on SLAM for a remotely controlled robot. 15th International Conference on Advanced
Robotics (ICAR 2011), Jun 2011, Tallinn, Estonia. pp.186–191, �10.1109/ICAR.2011.6088615�. �hal-
00604479�

https://hal.science/hal-00604479
https://hal.archives-ouvertes.fr

Abstract— Our aim in ambient assistive technologies is to

reduce long term hospitalization for elderly people, especially

with pathologies such as Mild Cognitive Impairment (MCI).

The smart environment assists these people and their families

for safety and cognitive stimulation so they stay as long as

possible at home. The originality comes from using the robot in

the elderly person's home. This robot is remote controlled by a

distant user, a therapist or a relation, for determining

alarming situations or for participating in stimulation

exercises. Several modes are possible for controlling the robot.

This paper deals with an assisted control mode in which the

remote user gives to the robot one goal then the robot reaches

the goal by itself. During the robot movement, the user can

dynamically change the current goal. An important hypothesis

is that the robot has no a priori knowledge on its environment

at the beginning. The knowledge will increase with time and

the planned trajectory will be refreshed at two levels: a local

one -faster but not always sufficient- and a global one -slower

but which always finds a path if one exists-. The idea is to

work only with local information, using the robot sensors, the

operator keeping the high level control. To assure that control,

the remote operator uses a video feedback and information

from a laser range.

I. INTRODUCTION

HE increasing number of elderly people, especially

with pathologies such as Alzheimer disease, is

becoming an important issue in Europe. It is more and more

difficult and expensive to assure long term hospitalization

for these people, so they stay at home as long as possible.

There are two main advances to make this possible: safety

of the person and cognitive stimulation. The aim of the

European CompanionAble project is to assist the people

with Mild Cognitive Impairment (MCI) and their families in

those situations, in the context of ambient assisted living.

The purpose of the robot isn’t to remove the human

presence around the person, but to ease his caring.

Decreasing this presence is a clearly expressed wish, in a

quite comprehensible will of intimacy for the person and in

a will of assistance for the family. Concerning safety, the

idea is to detect alarming situations by monitoring the

person. The principle is to measure certain physiological

data and the activity of the person. Other sensors are placed

in the environment which can also give information on the

person activity. With regard to cognitive stimulation,

T

Manuscript received September 15, 2010. The research leading to

these results has received funding from the European Community's

Seventh Framework Program ([FP7/2007-2013]) under grant agreement

n° 216487 (CompanionAble: http://www.companionable.net/).

¹J.-C. Devaux, P. Nadrag, E. Colle and P. Hoppenot are with IBISC,

University of Evry, France (e-mail: name.surname@ibisc.univ-evry.fr)

different kinds of exercises can be proposed, to limit as

much as possible the progression of the person’s disease.

The originality comes from using the robot in the

person's home. This robot can be used either on safety

aspects or on cognitive stimulation aspects. Several control

modes are possible for the robot. According to Sheridan

[1,2], there is a continuum from the robot being completely

controlled by a human to the robot being completely

autonomous. Between these two control modes, a large

panel of assisted modes can be developed.

This paper deals with an assisted control mode in which

the remote operator gives to the robot a goal and the robot

reaches the goal by itself. During the movement of the

robot, the operator can dynamically change the current goal.

In fact, the idea is to give to the remote operator a high

interaction level with the robot. An important hypothesis in

this work is that the robot has no a priori knowledge on its

environment. The idea is to work only with local

information, using only the robot’s sensors, the operator

keeping the high level control. To assure this control, the

remote operator has video feedback and information from a

laser range scanner.

For the robot, reaching the goal given by the operator

requires three capabilities: obstacle avoidance, planning and

localization. The idea is to use a SLAM technique in our

specific situation of medium term navigation without a

priori knowledge on the environment for planning and with

an odometer not sufficiently precise. We are not proposing

a new SLAM algorithm but using one of them.

The next section (II) deals with related works on SLAM

and planning in unknown environments. Section III presents

our algorithm and section IV gives experimental results. A

video is also given.

II.RELATED WORKS

For our needs, the robot must create a plan of the

environment while keeping track of its coordinates in it. It

must also reach the point specified by the user, in the

minimum amount of time possible. Because the target point

can be outside the acquired plan (initially, a single laser

scan), the robot must be able to plan in an unknown

environment. When a dead end is detected, it must re-plan a

new trajectory to the target point, if such a trajectory exists,

or inform the user that the target point is outside the

reachable space.

A. SLAM

In order to complete the navigation task, or, on the

High level assisted control mode based on SLAM

for a remote controlled robot

Jean-Clément Devaux, Paul Nadrag, Etienne Colle and Philippe Hoppenot¹

http://www.companionable.net/

contrary, to detect that it is impossible to, the robot needs to

have a plan of the environment and to be able to pinpoint its

location in it. As our starting hypothesis is that we don’t

have a plan of the environment, the robot must construct

one. Together with the localization part, this is the SLAM

problem. In the literature, there are many practical solutions

to solve this problem, coming under various domains. They

can be outdoors or indoors, on the ground, in the air or

underwater. In [3] Durrant-Whyte and Bailey present a brief

history of the SLAM problem and the ways tried for solving

it. They also present the established solutions: one based on

the extended Kalman filter (EKF-SLAM), the other on the

Rao-Blackwellised particle filter (FastSLAM). A list of

SLAM algorithms with open source implementations in

various programming languages is given. Datasets available

online, on which one can test its own implementation or

algorithms, are also mentioned. A practical solution is

proposed by Thrun in [4]. The robots used are mobile

platforms, dedicated to navigation tasks indoors. Distance

sensors (ultrasonic or laser) are used to detect walls, used in

the localization of the robot. A reasonable hypothesis used

by the author is that the walls have a global orientation that

is a multiple of 90°, or their orientation is different with at

least 15° from the global wall orientation. A wall is labeled

as such is five or more adjacent sonar measurements form a

straight line. The same idea is also applied for a laser range

finder, with more accurate result, thanks to the sensor used.

A museum guide robot is presented in [5] by Thrun et al. It

uses a laser range finder to create an occupancy map of the

museum and a vertical black and white camera to create a

texture map of the museum’s ceiling. The robot performs

Markov localization and occupancy grid mapping, as in [4].

This takes the form of an expectancy maximization cycle.

In [6] the SLAM algorithm fuses the laser with the sonar

sensors, in order to provide more reliable results (such as

corner detection). The SLAM is based on an EKF and

implemented in Matlab, with all the calculations done

offline. For validation purposes, the robot was manually

driven. In [7] quadtrees are used for storing the acquired

map. By using a weighted scan matcher, the latest scan is

compared against all the past scans stored as a quadtree. A

comparison with SLAM approaches (Carmen) is also given,

and the results for three datasets show that the scan

matching with quadtrees gives promising results (small

offset). The SLAM algorithm presented in [8] retained our

attention because it was designed to be run in real time and

the source code is publicly available. It is designed to use

the measurements from a laser range scanner. It resides on

the use of a particle filter. Because of its assets, we decide

to use it as a starting base for our assisted control mode.

B. Planning in unknown environments

Our proposed assisted control mode can be invoked at

any moment by the remote operator and the robot doesn’t

have a plan of the environment recorded Thus, it must start

by planning a trajectory to its destination in an unknown

environment. An earlier work on this subject is by Elfes [9].

In it, an integrated approach to map construction

(represented as an occupancy grid) and navigation is

presented. The path planning is thought of as a dual

objective function that needs to be minimized. The

objectives are the path length and the occupancy

probabilities of the cells that are to be traversed. In [10], the

authors’ robot is an unmanned surface vessel (a boat),

which has a general knowledge of its environment. For

safely guiding the robot to its destination two obstacle

avoidance components are used: a deliberative component

(far field) and a reactive component. The deliberative

component is responsible for planning a path using an

occupancy grid that follows the original planned path as

close as possible. The reactive component projects a

number of arcs in front of the robot and chooses the one

that best combines the following criteria: follow the path

given by the deliberative component, avoid the obstacle that

are nearby and go towards a free space. The same layered

approach (plan globally and react locally) to navigation in

unknown environments is found in [11], used with a rover-

type robot. The global planner uses A* to compute a new

path, when needed. The local planner uses potential fields

to act on the steering of the robot (move away from the

obstacles and closer to the goal). Instead of the distance

between the robot and the obstacles, the time to collision is

used by the local planner. In the event that the local planner

can’t give a result, a local A* planning is employed to guide

the robot out of that hazardous area. In [12] test results with

a real robot are presented. The robot is able to navigate in

its environment even in the absence of an initial plan. Two

planners are present, a global and a local one. D* is

employed for rapid planning. The possible future position

of the robot (as arcs) is evaluated by the local planner and a

choice is expressed. A trial run of 1.4 km is presented, with

satisfactory results. [13] is a development of [12]. The

improvement is that the map is no longer stored as a regular

grid, but as a framed quadtree, which results in memory

gains. Test results with a real robot are also presented.

III. PROPOSED SOLUTION

The aim of this paper is to propose an algorithm capable

of planning and navigation in an initially unknown

environment. After the goal is selected by the remote

operator, the algorithm computes an initial global path. The

main idea is that the knowledge of the environment will

increase over time up to the completion of the mission and

the planned trajectory will be refreshed at two levels: a

local one (faster but not always sufficient) and a global one

(slower but always finds a path if one exists). The

smoothing of the trajectories is also included. This section

describes this algorithm. Obstacle avoidance is supposed to

be active at navigation time.

Our navigation strategy involves two levels of action.

First, we try to reduce the complexity of the map to reduce

computational time and then we supervise planning from

the start position to the goal at a high level.

A. Preliminary work - path planning

As described before, we use SLAM technique both to

improve the knowledge of robot’s position and to get a

relatively clean map to be able to find a path to goal. We’ve

chosen a very simple and specific algorithm called

CoreSLAM because of its simplicity and efficiency,

especially in terms of CPU cost. Initially, the map is empty

(or more exactly filled with non-visited space). To define a

goal, the operator has just to set a target to reach and the

robot plans its path and executes it. In the first step, the map

is very poor, only built with the first laser scan. Meanwhile,

the SLAM program is running in parallel, updating the

robot’s position and producing new maps. These maps are

certainly partially different than the one at planning time,

while moving the robot is discovering areas which could

either be free or occupied. It is possible that the initial

trajectory becomes invalid and the point is to know how to

re-compute a new path saving as much computational time

as possible.

First we had to prepare the map to be compatible with the

graph algorithm of path planning. As maps can be

considered as pictures, we chose to reduce the number of

areas of interest regrouping pixels according to their state

(free, occupied or unidentified). A well-known algorithm

for that type of compression is QuadTrees. Rather than a

simple occupancy grid, we chose to reduce the number of

nodes and edges of our 8-neighborhood graph computing

the QuadTree algorithm on our map. Sure, quality of

simplified map with occupancy grid or QuadTrees depends

a lot on the minimal size of the nodes. But after a spatial

median filter and a dilatation morphology transform, the

resulting map is really clean and simple and we can obtain

an 8-neighborhood graph, concentrated around important

areas like obstacles, reducing again the number of nodes.

That decrease of the number of nodes using QuadTree

allows us to raise the resolution if needed. Framed

QuadTrees are widely used in path planning to improve

quality of found path, preventing the problem of a non-

shortest and very schematic trajectory (path has to go from

a center of a cell to a center of another one). Because

framed Quadtrees increase the number of nodes in the

neighborhood graph, we’ve decided to only consider the

main and simple Quadtree algorithm and to solve that

problem on-line in our higher level algorithm.

The initially chosen path planning algorithm was D* but

as we developed our navigation supervisor we progressively

neutralized the dynamic part, replacing the updates of edge

costs by the action of our high level algorithm without any

disadvantage. Thus, we preferred to keep control of the re-

planning functionality by considering map updates at a

higher level than the dynamic path planner.

B. Planning and navigation supervision

Our algorithm depends on a 2-level planning: global and

local. This permits to dramatically reduce the computational

time because of the size of the needed map to compute local

paths and offers some interesting results according to the

resulting trajectory. After all the above preliminary steps,

the first thing is to get an initial path to goal, executing the

global path planner (path planning algorithm on full map).

Thus, the nodes we have at our disposal are equivalent to

points on the map, which we have to reach successively to

achieve the goal. In fact, we consider these points as areas

and because we don’t force angles to be exact, the

trajectory will be really smoothed (simple and cost-less).

We assume that the operator gives to the robot a

reachable goal. If not, the algorithm just has to stop the

robot and wait for another order. When a global path is

found, because the environment is constantly changing and

computing a full path takes several seconds, we chose to

compute a local path to try to reach the checkpoint which is

the closest to the goal but below the range of detection of

our robot. To compute this local path, we first try to reach it

by drawing a line between the start point and the

checkpoint. If it’s not possible (because of the presence of

obstacles), we use the same algorithm as for global path but

computing only on a sub-map of which the size is

equivalent to the range of view. This sub-map is a kind of

trusted-area where the trajectories found are pretty certain

because directly viewed by the rangefinder and obtained in

real time (without stopping the robot). Cutting the map to

extract a smaller window and then executing all the process

to get a path hardly reduces the time needed to get the graph

and to find the path. In that condition this can be realized in

real time.

If there is no way to reach any global checkpoint in local

window then there are two possibilities. First, the initial

trajectory crosses a wall or any obstacle. In this case, the

only thing to do is to re-compute a global path using a

better-known map. This is detected when the trajectory

can’t be executed. Second, the next checkpoint is far

enough to exceed local window size and then, we just have

to follow carefully the global trajectory until we get a

checkpoint in the range of view or an obstacle over the

predicted trajectory. This occurs only if areas are larger

than the local window and then, the areas are free at least

for the length of the sub-map so we assume that the robot

can move without coming across any obstacle, following

the initial trajectory. If an obstacle is finally detected, local

resolution all around will be higher and then there will be

areas of smaller size, making possible to compute a new

path (locally or globally depending on the situations

described above).

Keeping full control on trajectory allows us to add any

constraint we decide on the way (how the trajectory has to

look like), on the part of the map involved in research, on

sequences of sub-goals or user-defined checkpoints... and

above all, it gives us the possibility to recover easily and

cleverly from all kinds of planning problems. Thus, it

would be possible to add as many levels of maps as we

want, considering other ranges of sources of information

like ultrasound rangefinder or camera for example.

IV. EXPERIMENTAL RESULTS

To improve our algorithm, we first used a simulated

robot in several situations to illustrate all the capabilities of

the algorithm. Three parts of the algorithm are presented in

detail (paragraphs A, B and C), and its behavior in the case

of an unreachable goal is shown in paragraph D.

Experiments using a real robot are also presented at the end

of this section (E).

A. Global planning and re-planning

When a goal is set by the operator, the first thing to do is

to look for a global path. In most cases if there are some

obstacles to avoid, the algorithm is going to find a solution

crossing unknown areas of the map because we begin the

search in a clear map with just a scan at the starting

position. In all cases, the global planner always finds a

trajectory, if one exists. In Fig. 1, the robot starts without

any previous knowledge of its environment. The first laser

scan offers only a small part of map (we only consider as

free space the areas between robot and a wall: if no obstacle

has been detected, range value would be at maximum value

which is also the error constant) like in Fig. 1, left, and then

the operator sets a goal behind the wall. The computed

trajectory crosses unknown parts of the map just on the

right of the obstacle. While robot is following the computed

trajectory, it is progressively discovering that the wall is

expanding on the right to finally encounter another obstacle

which forms an impassable corner. At this stage, it is

decided to re-compute the whole trajectory from the current

position. As we can see on Fig. 1, right, the computed

trajectory is now going on the left of the wall because of the

shortest path finder.

Fig. 1 : Global re-planning situation

B. Local re-planning

As we’ve said before, our algorithm has the ability to

modify a local part of the path to correct an erroneous

global trajectory which could cross a wall because of

having been computed before knowing there was a wall.

This is very useful because global path finder is very costly

in terms of CPU time due to the size of the considered map.

Let’s turn our attention on Fig. 2. The global path is

represented by the zigzagging line while the trajectory of

the robot is represented by dots. The robot has already

moved in the environment before planning (upper right of

the figure), but the map was not totally known. Free areas

are in white, occupied ones are in black and not visited ones

are in grey.

Fig. 2 : Local re-planning situation

In this paragraph, we only focus on the second part of the

trajectory, starting on the upper-right corner of map.

Considering the real trajectory before the operator targets

the goal, we easily can assume that two-thirds (upper right)

of the map are visited and the rest is unknown when global

trajectory is computed. As we can see, the real path follows

quite precisely the computed one during the first part of the

trajectory because it corresponds to the well known area

where the operator indicated the goal. But while the robot

reaches the going up part of the trajectory (after the corner

of the gray and black mass in the center of Fig. 2.a), the

laser rangefinder discovers a wall just under the global path,

involving the search of a local solution to by-pass the

problem (Fig. 2.b). We can see the real trajectory strating

from the computed path to cross a free space (a door)

before going back to the global path. Thus, the robot was

able to find a local solution because there was an alternate

path near the original one. The robot can avoid every kinds

of obstacles as long as another way is in sight (sufficiently

near to enter the robot’s range of view), without re-

computing the whole trajectory. This local search often

offers good results when the operator sets the goal behind a

wall (if a door exists) or an obstacle of moderate size (most

of obstacles in a person’s home: chair, table, person…).

The main effect is a simple and automatic avoidance

keeping in mind the initial goal.

In Fig. 1, there was no way to compute a local solution to

avoid the wall and get back to the initial trajectory because

the range of view of the robot wasn’t containing any free

space to get over the wall. Re-planning is then taking a

significant time, forcing the robot to stop, waiting the end of

computing. The algorithm needs to re-compute the global

path as soon as there is no path to goal in the local window.

This often occurs when the robot reaches crowded or highly

dynamical areas where it has never been before.

C. On-line research of a better path

Fig. 3 is the same configuration than Fig. 2 but we focus

on other parts of the path to reveal trajectory improvements

(encircled ones). As we’ve explained in section III, our

supervisor has the ability to improve the computed path

before executing it. This is very useful in several cases.

Fig. 3 : Smoother, shorter, better

Firstly, because we choose to use simple quadtrees

algorithm instead of framed quadtrees to limit the

computational time, the global trajectory looks pretty

strange in large areas. The computed trajectory is always

between centers of cells but there is no need for the real

trajectory to be so restricted. Our algorithm allows us to get

a better real path like in the last part of trajectory in Fig. 3.

The robot’s path is directly avoiding some of the

checkpoints to short its path to the goal. The point is to

follow a line from robot’s position to the farthest

checkpoint in range of view. Finally, one can observe

another improvement just before the corner where the real

path is avoiding a useless bend. Because the rangefinder

and our SLAM are not perfect, the computed trajectory was

probably trying to avoid an obstacle there but while the

robot was approaching, the map was corrected and it wasn’t

any longer useful to follow that path in that part of the map:

the robot could simply move straight forward.

This functionality and our tolerance about positions

around a checkpoint to clear it and the angle of robot to

start its trajectory allow the robot to move in a smoother

way. A complicated path is equivalent to close checkpoints

and many little angle corrections. Linear and angular speeds

are linked to distance and angle to checkpoint. So not only

the path is globally shorter but also the robot is quicker

because of its less complicated trajectory.

D. Closed environment

Now, let’s examine the case of an unreachable goal. The

operator could indicate an erroneous target (when a door is

closed for example). So our algorithm has to deal with some

unattainable areas. In case of a goal situated out of the

bounds drawn by walls all around robot, there are two

possibilities, depending on whether or not the robot knows

the map sufficiently to determine there is no way to go.

Fig. 4 : Successive trajectories in closed environment

In the first case, the robot is just going to stop, waiting

for a new order. In the second case, robot is going to look

for a global path which has to cross some unidentified areas

as explained in section A and shown in Fig. 4 a, b and c,

which represent several of the global computations needed

to finish on the situation shown in Fig. 4.d. Those global

path searches have to be done again and again until the

robot has discovered enough parts of the map to determine

that they draw an impassable boundary (because the goal

was set outside the closed environment) like in Fig. 4.d (the

isolated dot is the unreachable objective) where the walls

are closed. It works perfectly to detect a closed environment

but if a person opens a door after the robot has visited that

area there is a risk of not finding an existing solution until

the open door enters in its field of view, which could never

happen. In that case, the presence of the human operator

can palliate the problem by proposing a new goal near the

open door to give the robot the possibility to update the

map.

E. Real robot execution

Even if map quality has dropped a little between

simulation and reality, these situations can still be observed

on a real robot (with odometry drift, rangefinder noise and

more constraints on CPU work). Fig. 5 presents two of the

four situations described in section IV: shorter and

smoother path on the first part of the trajectory and local re-

planning on the last part. The quality of the map is

obviously a bit reduced in comparison with simulated maps

as demonstrated by the few artifacts behind walls and the

thickness of the objects in the map.

Fig. 5 : Local re-planning & smoother path on real

robot

Nevertheless, a global path to goal is easily found from

the start position (up and left from center of figure 5). On

the first part of the trajectory, one can observe that the robot

isn’t following the global trajectory because a more distant

checkpoint can be reach moving along a line as it was

described in section IV.C. The second part of the trajectory

is showing a local re-planning to avoid a wall corner which

was crossed by the initially computed trajectory because

that part of map wasn’t discovered at that time. After this

little bend, the robot is returning to the global trajectory to

reach the goal.

V. CONCLUSION

The aim of this paper was to propose an algorithm for

planning and navigation in an initially unknown

environment. A goal being given, the system has to plan the

trajectory and navigate up to it. We have proposed a

multistage algorithm, taking into account local and global

planning, on-line research of better path and detection of

impossible planning. All the functionalities of the algorithm

have been demonstrated, illustrated on simulation and

implemented on a real robot.

Future work on this topic will be on the one hand to deal

with other cost functions to minimize (for example the

fastest trajectory or the easiest to perform by the robot). A

second direction will be to delete from the model given by

the SLAM the oldest information. Indeed, it is difficult to

keep the map coherent in time. In the case of remote

control, we want to give to the operator a control mode in

which he just has to supervise the displacement of the robot,

but for one mission. A third amelioration will be to deal

with quadtree resolution. Indeed, it could be interesting to

reduce it for global planning to save time and to make it

higher for local planning, which is more rapid, to have a

better knowledge on the obstacles around the robot.

REFERENCES

[1] T. B. Sheridan, Telerobotics, Automation, and Human

Supervisory Control. Cambridge, MIT Press, 1992.

[2] T. B. Sheridan, Humans and Automation: System

Design and Research Issues. John Wiley & Sons, 2002.

[3] H. Durrant-Whyte, T. Bailey, Simultaneous

localisation and mapping (SLAM): Part I the essential

algorithms, Robotics and Automation Magazine, vol.

13, n°2, pp. 99-110, 2006.

[4] S. Thrun, Learning metric-topological maps for indoor

mobile robot navigation, Artificial Intelligence, vol. 99,

no. 1, pp. 21-71, 1998.

[5] S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F.

Dellaert, D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J.

Schulte, D. Schulz, MINERVA: A tour-guide robot

that learns, KI-99: Advances in Artificial Intelligence,

pp. 14-26, 1999.

[6] A. Diosi, L. Kleeman, Advanced sonar and laser range

finder fusion for simultaneous localization and

mapping, in Proc. of 2004 IEEE/RSJ Intl Conf on

Intelligent Robots and Systems, pp. 1854-1859.

[7] A. Visser, B. A. Slamet, M. Pfingsthorn, Robust

weighted scan matching with quadtrees, in Proc. of the

5th Int. Workshop on SRMED 2009.

[8] B. Steux, O. El Hamzaoui: CoreSLAM : a SLAM

Algorithm in less than 200 lines of C code, Mines

ParisTech - Center of Robotics, 2009.

[9] A. Elfes, Robot navigation: Integrating perception,

environmental constraints and task execution within a

probabilistic framework, Reasoning with Uncertainty

in Robotics, pp. 91-130, 1995.

[10] J. Larson, M. Bruch, J. Ebken, Autonomous navigation

and obstacle avoidance for unmanned surface vehicles,

in SPIE Proc. 6230: Unmanned Systems Technology

VIII, pp. 17-20, 2006.

[11] B. Hamner, S. Singh, S. Roth, T. Takahashi, An

efficient system for combined route traversal and

collision avoidance, in Autonomous Robots, vol. 24,

no. 4, pp. 365-385, 2008.

[12] A. Stentz, M. Hebert, A complete navigation system

for goal acquisition in unknown environments, in

Autonomous Robots, vol. 2, no. 2, pp. 127-145, 1995.

[13] A. Yahja, S. and Singh, S. and Stentz, An efficient on-

line path planner for outdoor mobile robots, in

Robotics and Autonomous systems, vol. 32, no. 2, pp.

129-144, 2000.

	I. INTRODUCTION
	II. Related works
	A. SLAM
	B. Planning in unknown environments

	III. Proposed solution
	A. Preliminary work - path planning
	B. Planning and navigation supervision

	IV. Experimental results
	A. Global planning and re-planning
	B. Local re-planning
	C. On-line research of a better path
	D. Closed environment
	E. Real robot execution

	V. Conclusion

