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Phase-field crystal modelling of crystal nucleation,  

heteroepitaxy and patterning 
 

LÁSZLÓ GRÁNÁSY†‡*, GYÖRGY TEGZE†, GYULA I. TÓTH† and TAMÁS PUSZTAI†  
†Research Institute for Solid State Physics and Optics, H-1525 Budapest,  

POB 49, Hungary 
‡Brunel Centre for Advanced Solidification Technology, Brunel University,  

Uxbridge, Middlesex, UB8 3PH, UK 
 
 

We apply a simple dynamical density functional theory, the phase-field-crystal (PFC) model, to de-
scribe homogeneous and heterogeneous crystal nucleation in 2d monodisperse colloidal systems 
and crystal nucleation in highly compressed Fe liquid. External periodic potentials are used to ap-
proximate inert crystalline substrates in addressing heterogeneous nucleation. In agreement with 
experiments in 2d colloids, the PFC model predicts that in 2d supersaturated liquids, crystalline 
freezing starts with homogeneous crystal nucleation without the occurrence of the hexatic phase. 
At extreme supersaturations crystal nucleation happens after the appearance of an amorphous pre-
cursor both in 2d and 3d. We demonstrate that contrary to expectations based on the classical nu-
cleation theory, corners are not necessarily favourable places for crystal nucleation. Finally, we 
show that adding external potential terms to the free energy, the PFC theory can be used to model 
colloid patterning experiments.   

 
 

Keywords: density functional theory, nucleation, heteroepitaxy, patterning, colloids, freezing in 2d 
 

 
1. Introduction  

 
The order of the liquid-solid transition depends on dimensionality. According to the theoretical expec-
tations of Kosterlitz, Thouless, Halperin, Nelson, and Young (KTHNY) [1−3], in two dimensions 
(2d), melting takes place in two second-order transitions at two distinct temperatures (Tm and Ti) [4]. 
First the dissociation of thermally activated dislocation pairs transforms the crystal into an orienta-
tionally ordered (hexatic) phase at the melting temperature Tm and then the dissociation of free dislo-
cations drives the system to form an isotropic fluid at Ti > Tm. This view is supported by computer 
simulations [5−8] and by experiments on colloidal systems [9−13], however, the order of the two 
transitions seems to depend on details of the inter-particle interaction and finite-size effects [14]. 
Some computer simulations indicate that the hexatic phase is metastable [15, 16]. Remarkably, ex-
periments in 2d colloidal systems suggest that crystallization after deep quenching happens by direct 
nucleation of the crystalline phase from the liquid [17] implying a first-order transition. Interestingly, 
in some 2d colloidal systems a two-step crystallization process is observed, however, the precursor is 
rather an amorphous state, not the hexatic phase [18−20].   

In three dimensional non-equilibrium liquids, crystallization is a first-order phase transition, and 
the crystalline phase appears via nucleation, a process in which hetero-phase fluctuations form, whose 
atomic structure resembles that of the crystalline phase at their central part [21, 22], while a continu-
ous transition to the liquid phase is seen in the interfacial layer surrounding this central part [23]. 
While the intrinsic thickness of the interfacial layer might be fairly small [24], due to capillary waves 
the shape of these particles fluctuates, so that its time average may lead to a broader, diffuse interface 
as in the case of planar interfaces [24]. In qualitative agreement with the classical nucleation theory, 
the free energy of formation of these heterophase fluctuations shows a maximum as a function of size 
[21]. The maximum is the critical fluctuation (or nucleus), and represents a thermodynamic barrier: 
fluctuations that are larger grow with a high probability, while the smaller ones decay. It appears that 
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in agreement with Ostwald’s step rule, the first appearing solid is not necessarily the stable crystalline 
phase; it might be a metastable phase, whose atomic structure is closer to the structure of the liquid 
than the stable crystalline phase [25]. For example, there are theoretical expectations that in simple 
liquids the first nucleating phase has the bcc structure [26−28]. Indeed this expectation is supported 
by atomistic simulations for the Lennard-Jones system [23, 29] and by experiments showing metasta-
ble bcc nucleation in supersaturated superfluid 4He, in preference to the stable hcp phase [30]. Atom-
istic models based on the density functional technique (DFT) suggest that crystallization might hap-
pen via a dense liquid/amorphous precursor [31, 32] reminiscent to the two-step transition seen in 2d 
colloidal systems [18−20]. Other theoretical work implies that the presence of a metastable fluid 
critical point might assist crystal nucleation via a dense liquid precursor [33−37]. These findings raise 
the possibility that the two-step crystal nucleation via a precursor state might be a fairly general 
phenomenon both in 2d and 3d. As for the structure of the (probably metastable) precursor, it may be 
amorphous or crystalline, depending on the system.  

The formation of the hetero-phase fluctuations can be assisted by the presence of heterogeneities in 
the liquid, such as solid walls, floating solid particles, free surfaces, etc. Their main effect is that their 
atomic arrangement may induce ordering in the liquid adjacent to the wall [38−41]. This ordering of 
the liquid either helps or prevents the formation of heterophase fluctuations [42]. When the structure 
of the ordered liquid layer is compatible with the crystal structure to which the liquid freezes, the 
formation of heterophase fluctuations is enhanced at the wall, a phenomenon termed heterogeneous 

nucleation [43, 44], as opposed to homogeneous nucleation, where the only heterogeneities are the 
internal fluctuations of the liquid phase. Heterogeneous nucleation is probably the most ubiquitous 
mechanism to start crystallization of undercooled liquids. It plays an essential role in determining the 
microstructure of crystalline materials, and has a continuously growing importance in manipulating 
crystallization morphology on the nanoscale [45−50]. Unfortunately, in practical cases little is known 
of liquid ordering and/or the molecular interaction between the wall and the solid and liquid phases. 
The heterogeneous nucleation process depends on atomistic details, such as the structure of the wall, 
its chemical properties, surface roughness, and ordering of the liquid at the wall, etc. The classical 
approach to heterogeneous nucleation relates the nucleation barrier to the equilibrium contact angle ϑ, 
which in turn reflects the relative magnitudes of the wall-solid (γWS), wall-liquid (γWL), and solid-
liquid (γSL) interfacial free energies [51]: cosϑ = (γWS − γWL)/γSL. It relies on the droplet or capillarity 
approximation that neglects the anisotropy of the interfacial free energies, and regards the interfaces 
as mathematically sharp. Then the critical fluctuation for homogeneous nucleation is spherical, has the 
radius R* = 2γSL/∆g, while the nucleation barrier is Whom = (16π/3)(γSL

3/∆g
2), where ∆g is the driving 

force for solidification (the grand potential difference between the bulk solid and liquid phases). In 
this approximation, in the presence of a flat wall, only that fraction of the homogeneous nucleus (a 
spherical cap) needs to be created by thermal fluctuations, which realizes the contact angle at the 
triple junction line. Accordingly, in the heterogeneous case, the nucleation barrier is reduced by the 
catalytic potency factor f(ϑ) = (2+cosϑ)(1−cosϑ)2/4 ≤ 1, so that Whet = Whom f(ϑ) [52, 53].  Accord-
ingly, 2d and 3d corners and conical cavities are preferred nucleation sites [53, 54]. While the classi-
cal model of heterogeneous nucleation captures some trends qualitatively [43, 44, 54], it can be ex-
pected to be accurate only for large sizes. For example, in most cases, the nuclei are comparable in 
size to the interface thickness (as in [21, 23]), raising doubts concerning the applicability of the classi-
cal (sharp interface) droplet model. Indeed in the case of homogeneous nucleation in the hard-sphere 
system, the droplet model fails spectacularly [21]. An interesting and practically important limit, in 
which quantitative predictions are possible for foreign-particle-induced crystallization is, when these 
particles are ideally wet by the crystalline phase, i.e., the nucleation process is avoided and the condi-
tions of free growth limit the ability of a particle to start crystallization. This case has been investi-
gated extensively by Greer and co-workers [55−57]. 

Some of the difficulties associated with the classical model of heterogeneous crystal nucleation can 
be removed using advanced continuum models such as the phase-field theory [58−64]; non-classical 
effects including liquid ordering at the walls [62, 63], the presence of surface spinodals [62, 63] or 
nucleation of an intermediate phase on the substrate [64] can also be addressed. Unfortunately, usu-
ally it is difficult to relate the parameters of these coarse-grained models to microscopic features.    
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In order to handle the interaction between the substrate and the solidifying liquid one needs an at-
omistic approach. Atomistic simulations, such as molecular dynamics and Monte Carlo simulations 
have provided important information on the microscopic aspects of the wetting of foreign walls by 
liquid and crystal [38−41, 65]. Recent Monte Carlo studies revealed the importance of the line tension 
[38, 65] in the case of unstructured walls. It has been also shown that for large clusters the classical 
description of heterogeneous nucleation works well, while deviations are observed at large undercool-
ings / supersaturations [65]. Furthermore, the interfacial free energies for flat and curved interfaces 
have also been evaluated [65]. Other atomistic techniques such as the dynamical density functional 
(DDFT) theory have been used to address the effect of crystalline seeds of tuneable structure on the 
process of crystallization [66]. A recently developed simple DDFT-type approach, termed the phase-
field crystal (PFC) model [67], has been used to investigate heterogeneous nucleation on unstructured 
walls [68]. 2d PFC simulations have also been used to explore pattern formation on periodic sub-
strates represented by periodic potentials [69]. Despite these advances, further atomistic studies of the 
effect of patterned/crystalline substrates on crystal nucleation and pattern formation are warranted. 

In the present work, we use the PFC theory to model homogeneous and heterogeneous crystal nu-
cleation in 2d and 3d and to describe colloidal pattern formation in 2d. We concentrate here on the 
following issues: (i) Appearance of a precursor state in homogeneous nucleation; (ii) heterogeneous 
nucleation on crystalline substrates; and (iii) modelling of 2d colloidal patterning experiments. In the 
case of heterogeneous nucleation and pattern formation, the PFC model is supplemented with an 
appropriate potential energy term. To study homogeneous crystal nucleation in 3d metallic materials 
and possible appearance of precursors, we adopt a phenomenological extension of the PFC model, 
which is able to reproduce the interfacial properties of bcc Fe fairly well [70].  

    
 

2. The phase-field crystal (PFC) model   
 

The PFC model is a simple DDFT type approach introduced by Elder and co-workers [67, 71]. Its free 
energy functional can be deduced [71] from the Ramakrishnan-Yussouff type perturbative DFT [72] 
after some simplifications that lead to a Brazowskii/Swift-Hohenberg form [73, 74], while the time 
evolution is governed by an overdamped conservative equation of motion [67, 71]. The relationship 
between the DDFT and PFC model has been further clarified in [75]. The PFC model has been used 
successfully to address elasticity and grain boundaries [71], the anisotropies of the interfacial free 
energy [76, 77] and growth rate [78], dendritic and eutectic growth [79−82], glass formation [32], 
melting at dislocations and grain boundaries [83, 84], and polymorphism [78]. While it is a micro-
scopic approach, it has the advantage over other classical microscopic techniques, such as molecular 
dynamics simulations that the time evolution of the system can be studied on the many orders of 
magnitude longer diffusive time scale, so that the long-time behaviour and the large-scale structures 
become accessible. We note that the diffusion-controlled relaxation dynamics the PFC model assumes 
is especially relevant for colloidal systems [66, 75], where the self-diffusion of the particles is ex-
pected to be the dominant way of density relaxation. For normal liquids at small undercoolings, the 
hydrodynamic mode of density relaxation dominates, which might be approximately incorporated by 
adding a term proportional to ∂2

n/∂t
2 [85, 86]. 

 
2.1. Free energy functional 

 
Following Elder and Grant [71], in deriving the free energy functional of the PFC model, we start 
from the perturbative density functional theory by Ramakrishnan and Yussouff [72], in which the free 
energy difference ∆F = F − FL

ref between the crystal and a reference liquid of particle density ρL
ref can 

be written in the following form, after truncating the Taylor expansion beyond the two-particle term:    
         

[ ] ...)(),()(
2

1
ln 221121 +∆∆−








∆−








=

∆
∫∫∫ rrrrrrr ρρρ

ρ
ρ

ρ Cddd
kT

F
ref

L

                     (1) 

 

where ∆ρ = ρ − ρL
ref, while C(r1,r2) is the two-particle direct correlation function of the reference 

liquid. The density of the solid can be Fourier expanded as ρS = ρL
ref {1 + ηS + ∑K AK⋅exp(iKr)}, 
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where ηS is the fractional density change between the solid and the reference liquid, while K are 
reciprocal lattice vectors, and AK are the respective Fourier amplitudes. Introducing the reduced 
number density relative to the reference liquid, n = (ρ − ρL

ref)/ρL
ref, one finds that ρ = (1 + n) ρL

ref, 
while n = ηS + ∑KA K⋅exp(iKr); thus 

 

( )[ ] [ ] ...)(),()(
2

1
1ln)1( 221121 +−−++=

∆
∫∫∫ rrrrrrr nCnddnnnd

kT

F refrefrefref

LLLL
ρρρρ             (2) 

 

To arrive to the free energy functional used in the PFC model, we expand C(r1,r2) in Fourier space, 

...ˆˆˆ)(ˆ 4
4

2
20 +++≈ kCkCCkC , where )(ˆ kC has its 1st peak at k = 2π/σ, while the sign of the coefficients is 

expected to alternate and σ is the inter-particle distance. We introduce the dimensionless form of 

)(ˆ kC  as ∑∑
==

=≈=
m

0j

j2
j2

m

0j

j2
j2 )()(ˆ)( σρ kbkckCkc ref

L
, which is related to the structure factor as S(k) = 

1/[1 − c(k)]. Returning to real space, the free energy difference reads as 
 

( )[ ] .)()()1()(
2

1
1ln)1( 221

m

0j

j2
j2

j
121∫∫ ∑∫












−









∇−−−++≈
∆

=

rrrrrrr ncnddnnnd
kT

F
ref

L

δ
ρ

           (3) 

 

After integrating the second term on RHS with respect to r2 and replacing r1 by r, we find  
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Note that the reference liquid (of particle densityρL
ref ) is not necessarily the initial liquid. The particle 

density of the latter we denote as ρL
0. For this initial liquid, the reduced density, nL

0 = (ρL
0
 − 

ρL
ref)/ρL

ref, may differ from 0. Accordingly, this initial liquid state might be considered as a liquid 
either compressed or stretched relative to the reference liquid. As a result, we may have now two 
parameters to control the driving force for solidification: the initial liquid number density nL

0 (not far 
from the reference), and the temperature, if the direct correlation function depends on temperature. 
Taylor-expanding ln(1 + n) for small n: 

 

ln(1 + n) ≈  n – n2/2 + n3/3 – n4/4 + …         for |n| < 1 
 

thus 
 

(1 + n) ln(1 + n) ≈  n + n2/2 – n3/6 + n4/12 – … 
 

and finally one obtains 
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21262
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∆
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For the m = 2 used in the simplest version of the PFC model [67, 71] and considering the alternating 

sign of the expansion coefficients of )(ˆ kC , equation (5) boils down to the following form: 
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Introducing the new variables  
 

 BL = 1 + |b0| = 1 − c0 [= (1/κ )/(ρL
re f

kT), where κ is the compressibility], 
 BS = |b2|

2/(4|b4|)        [= K/(ρL
re f

kT), where K is the bulk modulus of the crystal], 
 R =σ (2|b4|/|b2|)

1/2  [= the new length scale  ( xRx ~⋅= ), which is now related to  

the position of the maximum of the Taylor expanded )(ˆ kC ], 
 

and a multiplier v for the n
3 term (v accounts here for the 3-particle correlation to 0th order), one 

obtains an equation analogous to the one used by Berry at al. [32] in their paper on glass transition: 
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where I is the total (dimensional) free energy density.   
Conversion to the Swift-Hohenberg formalism: Introducing the new variables xRx ~⋅= , n = 

(3BS)
1/2ψ , FBkTRF S

dref

L

~
)3( 2 ∆⋅=∆ ρ , the free energy functional transforms into a modified Swift-

Hohenberg-type dimensionless free energy: 
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ψ
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where, t* = − (v/2)⋅(3/BS)
1/2 = − v⋅(3|b4|/ |b2|

2)1/2 and r* = ∆B/BS = (1 + |b0|)/[|b2|
2/(4|b4|)] − 1, while ψ = 

n/(3BS)
1/2. Note that all quantities involved in equation (8) including those with tilde are dimen-

sionless. The form of equation (8) suggests that the free energy functional of the m = 2 PFC model 
contains only two dimensionless similarity parameters r* and t* that can be obtained as combinations 
of the original (physical) model parameters. We note, finally, that even the third-order term can be 
eliminated. In the respective t*’ = 0 Swift-Hohenberg model, the state [r*’ = r* − (t*)2/3, ψ ’ = ψ  −  
t*/3] corresponds to the state (r*,  ψ) of the original t* ≠ 0 model. This latter transformation leaves the 
grand canonical potential difference, the Euler-Lagrange equation and the equation of motion invari-
ant. Therefore, it is sufficient to address the t* = 0 case, as we do in the rest of this work. 

Eight-order fitting of C(k) (PFC EOF model):In a recent paper, Jaatinen et al. [70] have proposed 
an eight-order expansion of the two-particle direct correlation function in the Fourier space, however, 
now around its maximum (k = km):  
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where the expansion parameters were fixed so that the quantities C(k = 0), km, S(km) and C”(km), i.e., 
the liquid compressibility and the position, height, and the second derivative of C(k) are accurately 
recovered. This is ensured by  
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This choice of parameters with input data for Fe from [76] has led to a fair agreement with molecular 
dynamics results for the volume change upon melting, the bulk modulus of the liquid and solid 
phases, and the magnitude and anisotropy of the solid-liquid interfacial free energy [70]. 
 

2.2. The equation of motion 
 

In analogy to the DDFT [63, 72], we assume overdamped conserved dynamics for the time evolution 
of ρ (enforcing thus mass conservation), however, with a constant mobility coefficient Mρ = ρ0Dρ/kT, 
which differs from the mobility coefficient used in the DDFT in that the local density ρ(r) is replaced 
by the average particle density ρ0. Consequences of this difference are discussed in [72]. Omission of 
the second-order time derivative in the equation of motion (overdamped case) leads to a diffusive 
dynamics for ρ(r). This is especially relevant to colloidal systems composed of micron size particles 
floating in a carrier fluid, for which differences in the particle density relax via Brownian motion of 
the particles. The respective (dimensional) equation of motion reads as 
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Here the second term in the central expression represents the discretized form of a conserved fluctua-
tion-dissipation noise [83], while N    is a Gaussian white noise of standard deviation 1. We add this 
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term to enable crystal nucleation in the system (without the noise term the equation of motion pre-
serves the spatially homogeneous non-equilibrium fluid state).   

To obtain a dimensionless form, first we change from variable ρ to n, yielding 
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where we have introduced Mn = [(1+n0) Dρ /(kTρL
ref)]. Scaling the time and distance as tt

~⋅=τ  and 
xx ~⋅=σ , where τ = σ2/[Dρ (1+ n0)], we find 
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where I is the total free energy density defined above. Inserting I from equation (6), we obtain 
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leading to the following dimensionless equation of motion: 
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Analogously, if we start from equation (7), the equation of motion can be obtained as follows: 
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where Mn = [(1+n0)Dρ/(kTρL
ref)].  

Equation of motion in the Swift-Hohenberg type dimensionless formalism: Introducing the new 
variables tt

~⋅= τ , xRx ~⋅= , and n = (3BS)
1/2ψ = (3BS)

1/2[ψ ′ + t*/3] into equation (13), where τ = 
R

2/(BSMnρL
ref

kT), one arrives to the equation of motion of the earliest PFC model [67] 
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where r*′= r* − (t*)2/3 = [∆B − (v/2)2]/BS = (1 + |b0|)/[|b2|
2/(4|b4|)] − [1 + v2⋅(|b4|/ |b2|

2)] and the dimen-
sionless noise strength is α* = 2/(3BS

2ρL
ref

R
d) = 25−d/2|b4|

2−d/2/[3σdρL
ref|b2|

4−d/2], while the correlator for 
the dimensionless noise reads as )'~~()'~~(

~
*)'~,'~(),~,~( 2 tttt −⋅−∇⋅= δδαζζ rrrr . Summarizing, the dy-

namical m = 2 PFC model has two dimensionless similarity parameters r*′ and α* composed of the 
original (physical) model parameters. 

The equation of motion has been solved numerically on uniform rectangular 2d grids using a fully 
spectral semi-implicit scheme described in [82] and periodic boundary condition at the perimeters. A 
parallel C code relying on the MPI protocol has been developed. To optimize the performance, we 
have developed a parallel FFT code based on the FFTW3 library [88]. The numerical simulations 
presented in this paper have been performed on two PC clusters: One at the Research Institute for 
Solid State Physics and Optics (RISSPO), Budapest, Hungary, that consists of 24 PCs, each equipped 
with two 2.33 GHz Intel processors of 4 CPU cores (192 CPU cores in all on the 24 nodes), 8 GB 
memory/node, and with 10 Gbit/s (InfiniBand) inter-node communication, and another cluster hosted 
by the Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University, West 
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London, UK, which consists of 20 similar nodes (160 CPU cores), however, with 1 Gbit/s (standard 
GigaBit Ethernet) communication in between.  

Owing to the ensemble averaging inherent in the DFT type models, one is in principle unable to 
simulate crystal nucleation. (Due to the form of the equation of motion, without perturbation the 
system stays in a homogeneous liquid state interminably, independently whether it is stable, metasta-
ble or unstable.) This difficulty can be partly removed by adding Langevin noise (of a correlator that 
satisfies the fluctuation-dissipation theorem) to the equation of motion (see equations (11)−(14)) to 
represent thermal fluctuations. Unfortunately, this is not without conceptual difficulties (see the 
discussion in [89−91]): if the number density is considered as an ensemble averaged quantity, the 
fluctuations are already incorporated into the free energy functional, and the addition of noise will 
lead to double counting part of the fluctuations [89, 90]. If, however, the number density is regarded 
as a quantity coarse-grained in time, there is phenomenological motivation to add the noise [91]. The 
qualitative picture with noise is appealing: we see how nucleation and growth happen on the atomistic 
level therefore in this work we incorporate Langevin noise into the equation of motion. To avoid part 
of the associated difficulties, we have applied a coloured noise obtained by filtering out the unphysi-
cal short wavelengths that are smaller than the inter-particle distance (this also removes the ultraviolet 
catastrophe, expected in 3d [92], and the associated dependence of the results on spatial resolution). 
Some related issues and their solution via parameter renormalization [93] are addressed in another 
paper of this volume [94].  
 

2.3. Modelling of an inert substrate 

 

Preliminary simulations have shown that in the case of potentials that do not cover the whole simula-
tion area (i.e., substrate and liquid appears together at the beginning), filling/depletion of the area 
covered by the potential leads to a transient, which establishes depletion/excess zones at the perimeter 
of the substrate that relax extremely slowly due to the diffusional relaxation dynamics present in the 
PFC model, a relaxation that might interfere with crystallization. To reduce this effect, it makes sense 
to assign such a (periodic) density distribution to the substrate initially that establishes equilibrium 
with the initial liquid (i.e., the final state towards which ψ(x, y) evolves during the transient). To 
approximate this situation we use the single-mode approximation to find the equilibrium. In the case 
of an external potential of form V(x, y) = V0 + V1 [cos(qx) + cos(qy)], where q = 2π/a and a is the 
lattice constant of the external potential, we have used the ansatz ψ(x, y) = ψS + A [cos(qx) + cos(qy)] 
to find that density distribution, which is in equilibrium with the liquid phase of reduced particle 
density ψ0. This ansatz is a reasonable approximation if the potential is strong enough to dominate 
over the natural 2d hexagonal structure the PFC model realizes in 2d. In practice, for a set of fixed ψ0, 
a, V1, and r*, we have adjusted V0 until the respective substrate solution characterized by ψS and A 
(found analytically) had a common tangent with the initial liquid phase. Starting the simulations with 
this initial density distribution in the substrate area has reduced significantly the initial transient. This 
technique has been applied in some of our simulations for heterogeneous nucleation in 2d.  
 

2.4. Parameters used in modelling 

 
Unless stated otherwise, in the 2d colloidal simulations, we have used the following parameters: r* = 
−0.75, α* = 0.1, ψ0 = −0.5, ∆τ = 0.025 and ∆x = π/8. In the 3d PFC EOF simulations for Fe, we have 
used the same physical properties as in [70], however, we have increased the pressure (density) to 
drive the system out of equilibrium enough to initiate homogeneous nucleation.  
 
3. Results and discussion 

 
In this section, first we review a few relevant properties of the 2d PFC model, including its phase 
diagram and the anisotropy of the interfacial free energy as reflected by the equilibrium crystal shape. 
The subsequent sub-sections address first the homogeneous nucleation, followed by heteroepitaxy and 
heterogeneous nucleation. Finally, we present a few representative simulations for colloidal controlled 
colloidal self-assembly in 2d.  
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3.1. Phase diagram and properties for 2d 
 

In 2D, the PFC model predicts the following stable phases [67, 71]: a homogenous disordered (fluid) 
phase, an ordered hexagonal (crystalline) phase, and a striped phase (see figure 1). An analogous 
model, based on the Brazowskii/Swift-Hohenberg type free energy, has been used widely to under-
stand morphological transitions in block-copolymers, where these ordered and disordered phases have 
familiar realizations [95, 96]. In the strong coupling regime of the PFC model, where the magnitude 
of r* is large, a section of the fluid-crystal coexistence can be rescaled to real crystal-liquid systems as 
pointed out in [71]. Such rescaling can be utilized to define the reference liquid (whose particle den-
sity is ρL

ref) and the relationship between r* and the physical temperature. We note here that there is 
no convincing theoretical or experimental evidence for the existence of a critical/spinodal point be-
tween the crystalline and liquid phases in simple single component system [97−99]. Remarkably, 
however, a recent molecular dynamics study with a pair potential resembling to a Derjaguin-Landau-
Verwey-Overbeek potential with a secondary minimum (often used for colloids) indicates the pres-
ence of a critical point between the solid and liquid phases [100].  

The state points at which our simulations have been performed and the relevant phase boundaries 
are indicated in figure 1. 

The equilibrium (Wulff) shapes have been determined in the reduced temperature range of −0.75 
≤ r* ≤ −0.05 in the absence of noise (α* = 0). It has been obtained by placing a seven-particle cluster 
into the simulation box and letting it grow until establishing equilibrium. (For r* < −0.75 convergence 
to equilibrium becomes computationally prohibitive as with increasing distance from the critical point 
relaxation to the equilibrium state slows down due to the increasing difference between the densities 
of the equilibrium solid and liquid states.) The initial liquid density has been chosen so that the ex-
pected crystalline fraction obtained from the lever rule is X = 0.3. Representative results are shown in 
figure 2. We observe a circular shape above r* ≤ −0.25, faceting for r* ≤ −0.25, and a hexagonal 
shape with sharp corners below r* ≤ −0.325. As expected from atomistic simulations and various 
theoretical treatments [101], the interface thickness diverges at the critical point in figure 1, while the 
anisotropy increases with increasing distance from the critical point. It has also been observed that the 
amplitude of the density peaks representing the atoms increases with decreasing r*. The present 
results are in general agreement with those of a recent work [102] however our investigations have 
been performed in a somewhat broader range of the reduced temperature. In 2d, it is expected that the 
solid-liquid interface roughens for any non-zero temperature [101, 103, 104]. For example, in the case 
of the 2d Ising model on a triangular lattice, a hexagonal Wulff shape is obtained at T = 0, whose 
corners become increasingly rounded with increasing temperature until the equilibrium shape be-
comes a circle at the critical point T = Tc [103]. One may wish to scale the PFC results for the equilib-
rium shape onto exact results for the 2d Ising model, to obtain an approximate temperature scale for 
the PFC model. However, this should be done for PFC equilibrium shapes obtained in the presence of 
noise (α* > 0) to ensure that the two models belong to the same universality class.  

To model the strongly faceted nature of the 2d colloidal crystal aggregates (evident in many of the 
experimental images [105, 106]), which implies that the anisotropy is beyond the limit that leads to 
excluded orientations, we have chosen here r* = −0.75 for our simulations for colloids (the corre-
sponding reduced equilibrium densities for the liquid and solid phases are ψL

e = −0.6514 and ψHex
e = 

−0.4228, respectively). In a few cases, we wished to investigate systems that are closer to metals, 
therefore, we have chosen r* = −0.25 that corresponds to a system lying on the border of faceting (in 
this case ψL

e = −0.3388 and ψHex
e = −0.2907). 

 
3.2. Modelling of homogeneous nucleation and growth in 2d 

 
First, we investigate the nucleation pathways as a function of supersaturation with a choice of the PFC 
model parameters (r* = −0.75 and varied α*) that reproduce fairly the faceting seen in 2d colloidal 
systems. Our main interest here is whether the formation of a precursor state might indeed be ob-
served. Candidates that might appear are the amorphous [18−20] and hexatic [1−3] phases. In order to 
characterize the structural features of the solid matter, we have determined the pair-correlation func-
tion and the bond-order correlation function. The latter is defined as  
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while the summation is performed for the nl nearest neighbours of particle l positioned at rl, θlj  is the 
angle between a fixed reference orientation and the bond between particle l and its neighbour j, while 
the averaging is performed for all the N(N − 1)/2 particle-pair distances [1−3, 7, 13]. According to the 
KTHNY theory  
 

0)(lim 6 ≠∞→ rgr
 crystal: long-range order; 

6)(6
η−∝ rrg   hexatic: quasi-long-range order; 

6/
6 )( ξr

erg
−∝   isotropic: short-range order. 

 

The exponent η6, that describes the spatial decay of the bond-order correlation function, is smaller 
than ¼ in the hexatic phase, and is ¼ at T = Ti, while ξ6 is the bond-order correlation length. Thus, 
investigation of the bond-order correlation function can help to identify the phases one observes 
during freezing [1−3, 7, 13, 17].  

We have performed a set of simulations on a 2048 × 2048 grid with noise strength of α* = 0.1, 
while varying the initial particle density as ψ0 = −0.55, −0.50, −0.45, −0.40 and −0.35. The early stage 
and late stage morphologies are shown in figure 3. While at low initial particle densities individual 
crystallites nucleate directly from the liquid, with increasing initial density solidification happens 
fairly simultaneously everywhere and results in an increasingly disordered structure with increasing 
ψ0. Whether the latter should be viewed as highly polycrystalline matter of extremely small grain size 
or an amorphous phase is not immediately clear.  

The respective pair correlation functions g(r) and bond-order correlation functions g6(r) are 
shown in figures 4−5. The pair correlation functions corresponding to the structures shown in figures 
3c−e appear to be similar to those expected for liquid/amorphous phases [107−109]. For comparison, 
we have also evaluated g(r) for the clearly microcrystalline structure shown in figure 3b (ψ0 = −0.50). 
As expected, here the peaks are sharper, the second peak is split, and for r/σ > 3 the peaks are in anti-
phase relative to those for figures 3c−e. Indeed, even to the naked eye, the structures shown in figures 
3c−e are considerably more disordered than the microcrystalline structure displayed in figure 3b. We 
also note that their degree of disorder appears to be comparable to that of the experimental liquids 
shown in figures 4b and 4c of [17]. We conclude thus that at sufficiently large particle densities first a 
disordered solid phase forms that consists of particles localized on the time scale of the simulation. As 
a result of its structural properties, this highly disordered solid phase is termed here as amorphous. We 
cannot, however, fully rule out that it has been formed via copious nucleation. With increasing time, 
in all these simulations a polycrystalline late stage has been achieved (see figure 3f−j).  

The time evolution of the bond-order correlation function, we obtained for ψ0 = −0.40, closely 
follows the behaviour seen in experiments [17], and clearly rules out the presence of a hexatic phase 
(figure 5): At no stage of freezing can one observe that the upper envelope of g6(r) is linear with a 
slope of −1/4 or less, as expected for the hexatic phase on log-log scale. Similar results have been 
obtained for the other two reduced particle densities (ψ0 = −0.45 and −0.35).  

Summarizing, at low thermodynamic driving forces the crystalline phase nucleates directly from 
the non-equilibrium liquid (as observed in some of the colloid experiments [17]), while at large driv-
ing forces an amorphous precursor appears (as has been seen in other colloidal systems [18−20]). 
Further work is needed, however, to clarify whether the present model is able to reproduce crystal 
nucleation inside amorphous particle rafts floating in the liquid phase, as observed in [18].         
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3.3. Modelling of homogeneous nucleation in 3d 
 

To drive the system towards solidification at the melting point, we have increased the density of the 
Fe liquid until we have observed nucleation of a solid phase. In order to achieve this on the short time 
scale accessible for our 3d simulations, we had to use enormous densities: n0 ≥ 0.5125, which are 
evidently out of the density range accessible experimentally and of the validity range of our approxi-
mations. Accordingly, the present results need to be taken with reservations. Our findings are summa-
rized in figures 6 and 7. For n0 ≥ 0.5125, we have seen first the nucleation of an amorphous solid 
phase (see figures 6a−d), which then soon transformed first into a bcc polycrystal, and later into a bcc 
single crystal (see figures 6e−h). The time of appearance for amorphous and crystalline phases is 
shown as a function of initial liquid density in figure 7. Remarkably, we have been unable to detect 
any phase transition for more than 106 time steps for n0 = 0.51, while slightly further, at n0 = 0.5125, 
the amorphous phase have appeared in ~ 2500 time steps. These results suggest that crystal nucleation 
is clearly enhanced by the presence of the amorphous precursor, and direct bcc nucleation from the 
liquid phase requires several orders of magnitude longer time than via the precursor. Although the 
presence of an amorphous precursor has been reported in 2d colloidal crystallization experiments 
[18−20], and it has been predicted theoretically for simple liquids [31, 32], and amorphous precursors 
seem to be quite general in biological crystallization processes [110−114], we are unaware of any 
evidence supporting the presence of this behaviour in metallic systems. It is noteworthy though that 
with the Ercolessi-Adams embedded atom potential for Al, an amorphous phase has been observed to 
form in molecular dynamics simulations that coexists with the liquid state [115], which suggests that 
nucleation of the amorphous phase might be realistic for certain types of potentials used to model 
metals. The lack of supporting evidence for nucleation via an amorphous precursor in metals and the 
extreme conditions we have used warrant further investigations of freezing at ambient pressure com-
bined with large undercoolings. Work is underway in this direction.     
 

3.4. Modelling of liquid ordering, heteroepitaxy and heterogeneous nucleation in 2d 
 

The introduction of a potential energy term into the free energy density representing the patterning 
forces, such as those exerted by optical tweezers, leads to specific ordering of the particles in the PFC 
model.  

A. Liquid ordering around fixed particles. First, we model liquid ordering around particles held in 
fixed positions (e.g., by optical tweezers). In the simulation three particles are fixed into positions 
forming a triangle by a suitable potential. The ordering of the liquid the PFC model predicts around 
the fixed particles, extends to several particle diameters, and resembles closely images from fluores-
cence microscopy [116] (figure 8).  

B. Heteroepitaxy. The effect of a crystalline wall on crystal growth can also be studied in the pre-
sent model. For example, using the potential V = V1 [cos(qx) +  cos(qy)] in a stripe across the centre 
of the simulation window, where q = 2π/a0, and a0 is the lattice constant of the square lattice, and 
adding an appropriate excess number density to the same region, after a short transient period parti-
cles aligned on a square lattice appear, which represent a square lattice substrate. Its influence on 
crystallization depends on the lattice constant (figure 9). If a0 matches to inter-particle distances of 
one or other faces of the crystal, barrierless or low-barrier epitaxial growth takes place, and the choice 
of a0 can be used to control the orientation of the forming crystal (cf. figures 9a and 9d). Otherwise, 
the crystalline phase may appear via nucleation at the interface (see figures 9b and 9c). Remarkably, 
the mechanism of epitaxial growth depends on the particle density in the fluid phase. Below about ψ0 
≈ −0.506, the diffusion-controlled mode is observed (x ∝ τ1/2, where x is the distance from the surface 
of the substrate) as opposed to the diffusionless mode appearing above this limit (x ∝ τ). The presence 
of these two growth modes is well known in colloidal systems [117−122]. A detailed study of the 
transition between the diffusion-controlled and diffusionless mechanisms will be presented elsewhere 
[123]. The driving force dependence of the local order at fixed lattice constant of the substrate is 
shown in figure 10. Whether the barrierless growth, seen beyond ψ0 ≈ −0.506 in these simulations, 
could be associated with the surface spinodal predicted by Models B and C specified in [62, 63] needs 
further investigations. We also find that, at large driving forces of crystalline aggregation, a layered 
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structure composed of alternating 2d hexagonal and square-structured layers forms to release the 
stress from crystallizing to a non-equilibrium density (see figures 10c and 10d). This raises the ques-
tion whether the square-lattice may exist as a metastable phase on its own in the PFC model. 

Our thermodynamic computations, based on the single-mode approximation to the particle den-
sity, indicate that indeed the square-lattice phase is metastable from the thermodynamic viewpoint. A 
metastable coexistence has been predicted between the liquid and square-lattice phases (for r* = −0.75 
the respective equilibrium liquid and solid densities are ψL

e = −0.5394 and ψSq
e = −0.2952). However, 

its free energy density for the square-lattice is significantly higher than for the 2d hexagonal phase 
(figure 11). A further metastable coexistence has been predicted between the 2d hexagonal and the 
square-lattice phases (with equilibrium particle densities of ψHex

e = −0.1103 and ψSq
e = 0.01930), 

however, in a region, where the striped phase is the stable one. Our PFC simulations are in a general 
agreement with these predictions. In the presence of noise, the square-lattice seed crystallites (even 
the large ones) either melted or transformed into a faulty 2d hexagonal structure in the particle density 
range investigated (ψ0 ∈ [−0.55, −0.35]). Remarkably, we have not seen the square-lattice to grow 
even in the absence of noise. Rather, if the square-lattice had not melted, the 2d hexagonal phase 
appeared on its surface, while the region occupied by the square-lattice has shrunk: The square-lattice 
transformed into faulty 2d hexagonal structure starting from its surface. This suggests that, in agree-
ment with theoretical expectations for simple pair potentials [124], the square-lattice is probably 
mechanically unstable here.      

C. Heterogeneous nucleation. First, we study crystal nucleation on a flat surface of a square-
lattice substrate. Here we use r* = −0.25 corresponding to the relatively small anisotropy of metallic 
systems as pointed out above, and a0/σ ≈ 1.39, which provides sufficient mismatch to prevent imme-
diate growth from the surface of the substrate. A sequence of snapshots displaying heterogeneous 
crystal nucleation and late stage growth morphology is presented in figure 12. A remarkable feature of 
the simulation is the large amplitude of the capillary fluctuations and the frequent appearance / disap-
pearance of small crystalline clusters during the initial stage of solidification. 

Next, we investigate the classical prediction that corners should be favourable places for crystal 
nucleation [53, 54]. This prediction is also shared by more advanced models, such as the coarse-
grained continuum models of heterogeneous nucleation (phase-field and Cahn-Hilliard type models) 
[58−64] that cannot consider the atomic structure of the crystal. In our study, we assume a rectangular 
inner corner, while we investigate three possible structures for the substrate: (i) square-lattice with the 
(1 0) type faces parallel with the surface of the substrate; (ii) a square lattice, however, now rotated by 
45° relative to the previous case; and (iii) a unstructured substrate represented by a repulsive (posi-
tive) value of the external potential inside the substrate. The results obtained at early and later stages 
of crystallization are shown in figure 13. Contrary to the classical expectation, these corners are not 

favourable sites for the nucleation of this crystal. The reason is fairly clear: whether the preferred 
orientation of the hexagonal crystal is that with a (1 01) type face parallel or perpendicular to the 
surface of the substrate, the crystallites forming on the two perpendicular faces of the substrate have 
different crystallographic orientations, so when impinging upon each other they need to form a grain 
boundary. The same stands for the corner: due to the incompatibility of the symmetries of the crystal 
and the corner, the nucleus that would appear in the corner shall contain energetically costly defects. 
Evidently, a 60° corner of the unstructured substrate or a 2d hexagonal crystal structure of the sub-
strate would remove this frustration and make the corner a favourable site for crystal nucleation. 
 

3.5. Modelling of colloid patterning in 2d 
 
In this section, we are going to address controlled self-assembly of colloid particles in the presence of 
modulated substrates, where the latter will be represented by appropriate potential energy terms in our 
PFC simulations.  

First, we model colloid patterning under the influence of periodic substrates, which can be real-
ized via creating patches that are chemically attractive to the colloidal particles [125]. Depending on 
the size of the patches single, double, triple, etc., occupations of the patches are possible (figure 14a), 
and depending on the distance of the patches various states can be realized, as predicted by Langevin 
simulations in which the patterned substrate is represented by appropriate periodic potentials [126]. A 
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PFC model supplemented by periodic potential is suitable for such studies. Introducing circular poten-
tial wells arranged on a square lattice, and varying the diameter of the attractive wells as well as their 
distance, we have been able to reproduce the patterns seen in the experiments (see figure 14b).    

Next, we model colloidal self-assembly under the effect of capillary-immersion forces occurring  
when capillarity at the air-liquid interface and the varying immersion due to a grooved surface under-
lying the layer of colloid particles interact with each other. Experiments of this kind have been used to 
produce single and double particle chains [127] and the otherwise unfavourable square-lattice struc-
ture [128]. The resultant of the capillary immersion forces can be expressed as [127] 

 

,
)]cos()[(1

)cos()(
sin)2(

2
qxq

qxq
rF cc

η

η
ψπγ

+
=                                        (16) 

 

where γ is the surface tension of the liquid-air interface, rc is the radius of the contact line on the 
spherical colloidal particle, ψc is the is the mean slope angle of the meniscus at the contact line, η is 
the amplitude of the surface undulations, q = 2π/λ, while λ is the wavelength of the surface undula-
tions (ripples/grooves). Under the conditions of the experiments [127], such forces can be well repre-
sented by a potential of the form V = V1 cos(qx), where V1 depends on γ, ψc, and rc.  

Setting λ = σ /21/2, where σ is the inter-particle distance and varying the orientation of the grooves 
relative to the crystallization (drying) front, patterns seen in the experiments [128] are observed to 
form in the PFC simulations (figure 15): For grooves parallel to the front, a frustrated 2D hexagonal 
structure of randomly alternating double and triple layers, separated by channels appear. When the 
grooves are perpendicular to the crystallization front, the particles align themselves on a square lattice 
with the (1 1) orientation lying in the interface, while for a 45° declination of the grooves the same 2D 
square structure forms, however, now with the (1 0) face lying in the front. In these simulations, 
solidification has been started by increasing the local density of the liquid in a stripe at the centre of 
the simulation, which together with noise lead to the formation of two roughly planar crystallization 
fronts propagating into opposite directions.  

In the case of a homogeneous initial particle density, we observe the nucleation and growth of sin-
gle and double chains (figure 16), which in the case of wavy and tilted potential wells lead to mor-
phologies resembling closely to the experiments [127]. 

 
4. Conclusions 
 
We have used a simple dynamical density functional theory to address microscopic aspects of various 
solidification problems including homogeneous and heterogeneous nucleation, heteroepitaxy, and 
self-organized pattern formation in 2d colloidal systems in the presence of capillary immersion forces 
due to modulated substrate. Our PFC simulations have shown the following. 

(i) In agreement with recent experiments on 2d colloidal systems [17], at small/medium 
supersaturations crystallization takes place via direct homogeneous nucleation of the 
2d hexagonal phase and its growth, without the appearance of the hexatic phase. 

(ii) At high supersaturations, 2d crystallization happens via the appearance of an amor-
phous precursor. This finding accords with recent experiments on 2d colloidal sys-
tems [18−20]. 

(iii) Bcc crystal nucleation from extremely compressed Fe liquids happens via an amor-
phous precursor. On the time-scale of our simulations no direct bcc nucleation has 
occurred from the liquid phase.  

(iv) Contrary to expectations from the classical nucleation theory, corners are not neces-
sarily favourable places of heterogeneous crystal nucleation: The interplay of the 
structure of the forming crystal, and of the structure and geometry of the substrate de-
cides whether the corner helps or suppresses crystal nucleation.  

(v) The PFC model supplemented with appropriate potential terms represents a powerful 
tool to model the dynamics of self-organized pattern formation in the presence of 
modulated substrates.   
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Figure 1. The ψ < 0 section of the phase diagram the PFC model predicts in 2d using the single-mode approxi-
mation [67, 71]. The circles denote points in which simulations have been performed. Note the critical point at 
ψc = 0 and r*c = 0.   
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   (a)                                 (b)                                 (c)                                (d) 

    
   (e)                                 (f)                                 (g)                                (h) 

    

Figure 2. Equilibrium shape vs reduced temperature r* as predicted for a crystalline fraction of X ~ 0.3 in the 
absence of noise (α* = 0). (a) − (h):  r* = −0.05, −0.10, −0.15, −0.20, −0.25, −0.30, −0.325, and −0.35 (see the 
respective points in figure 1). Note that the interface thickness decreases while the anisotropy increases with an 
increasing distance from the critical point. The computations have been performed on a 1024 × 1024 rectangu-
lar grid (the upper right quarter of the simulations is shown). Equilibration has been performed for a period of 
106 dimensionless time steps. Reduced particle density maps are shown.  
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   (a)                         (b)                        (c)                          (d)                         (e) 

     
   (f)                         (g)                        (h)                          (i)                         (j) 

     

 

Figure 3. Snapshots of early and late stages of solidification in PFC simulations performed with initial reduced 
particle densities of ψ0 = −0.55, −0.50, −0.45, −0.40 and −0.35. (a)−(e) Early stage: The respective reduced 
times are: τ/∆τ = 10000, 3000, 1500, 1000, and 700. (f)−(j) Late stage: The same areas are shown at reduced 
time τ/∆τ = 60000. (418 × 418 fractions of 2048 × 2048 sized simulations are shown. Other simulation parame-
ters were: r* = −0.75 and α* = 0.1. Reduced particle density maps are shown.)  
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Figure 4. Pair correlation function for the early stage solidification structures shown in figures 3b−e.  
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Figure 5. Time evolution of the bond-order correlation function for ψ0 = −0.40 on log-log scale. g6(r) is shown 
at τ/∆τ = 1000, 4000, 16 000, and 64 000. For comparison, the upper envelop expected for the hexatic phase 
and the result for a single crystal are also shown. These curves describe an amorphous to polycrystalline transi-
tion (cf. figures 3d and 3i). Note that the upper envelope of the g6(r) curves decay faster than expected for the 
hexatic phase.  
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   (a)                                (b)                                 (c)                                (d)  

    
 

   (e)                                (f)                                 (g)                                (h)  

    

Figure 6. Snapshots of two-stage crystallization of highly compressed Fe melt (n0 = 0.54) at the normal pressure 
melting temperature as predicted by the PFC EOF model: (a) − (d) transformation to amorphous solid (the 
images correspond to time steps 325, 350, 375 and 400); (d) − (h) nucleation and growth on the bcc phase (the 
images correspond to time steps 500, 1000, 2000 and 3500.) The simulation has been performed on a rectangu-
lar grid of size 300 × 300 × 300. The localized particles are represented by spheres drawn around the respective 
density peaks with a diameter proportional to the amplitude of the density peak relative to the initial liquid 
density.   
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Figure 7. The time of appearance of the amorphous phase (squares) and the bcc crystal (triangles) in highly 
compressed Fe liquids as a function of the initial liquid density (n0) as predicted by the PFC EOF model. The 
cross at n0 = 0.51 indicates the time, at which no solidification has been yet observed.  
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                                        (a)                                 (b) 

  
 

 

Figure 8. Patterning in experiment (left) vs. PFC simulation (right): (a) fluorescence microscopy image of time 
averaged ordering of particle density around particles of position fixed by optical tweezers (three green points at 
the centre) [116] © 2003 The Royal Society of Chemistry; and (b) small cluster initiated by a triplet of particles 
(yellow) held in position by a triangular triple-well potential term added to the free energy density of the PFC 
model. (V1 = 0.5, r* = −0.75, α* = 0.01, and ψ0 = −0.5; 2048 × 2048 grid. Reduced particle density map is 
shown.) Note the striking similarity of the experimental and simulation images.    
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   (a)                                 (b)                                (c)                                (d)  

    
 

 

Figure 9. Heteroepitaxy in the PFC model on structured wall represented by periodic potential: Growth on (01) 
interface of a square lattice: (a) – (d) Effect of lattice constant of substrate (a0 = 18, 20, 25 and 30 ∆x corre-
sponding to a0/σ ≈ 1.0, 1.11, 1.39 and 1.67). Barrierless or low-barrier growth is observed (panels (a) and (d)) if 
the (0 1) face of the substrate is commensurate to one of the faces of the 2d hexagonal structure. In panels (b) 
and (c) lattice mismatch prevents such immediate growth from the surface of the substrate; here crystallization 
takes place via nucleation and growth. (Fraction of the 50 a0 × 50 a0 simulation box is shown. Other simulation 
parameters were: V1 = 0.1, r* = −0.75, α* = 0.01, and ψ0 = −0.5. Reduced particle density maps are shown.) 
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   (a)                                 (b)                                (c)                                (d)                          

    
 

 

Figure 10. Snapshots of heteroepitaxial growth taken at a fixed reduced time (τ = 10 000∆τ) in simulations 
performed under different supersaturations (the initial reduced particle density increases from left to right as ψ0 
= −0.5075, −0.505, −0.47 and −0.45). The upper right quarter of the 900 × 900 sized simulation boxes are 
shown. (Other simulation parameters are: V1 = 0.1, r* = −0.75, and α* = 0. Reduced particle density maps are 
shown.) Diffusion-controlled growth has been observed for panel (a), and a diffusionless growth of a lower 
density crystal for panels (b)−(d). Note the depletion zone ahead of the growth front in panel (a), the sharp 
change in growth velocity as a function of ψ0, and that, with increasing velocity, the frequency of the square-
lattice type stacking faults increases.  
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Figure 11. Thermodynamics of polymorphism in 2d in the PFC model at r* = −0.75: Dimensionless free energy 
density vs. reduced particle density obtained using the single-mode approximation for the stable liquid, 2d 
hexagonal and striped phases and for the metastable square-lattice. (The stable coexistence regions are and the 
respective equilibrium densities are denoted by solid black lines and squares, while the dashed black lines and 
triangles stand for the metastable coexistences and the equilibrium densities of the respective phases.) 
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   (a)                                (b)                                 (c)                                (d)  

    
 

 

Figure 12. Snapshots of heterogeneous nucleation and growth on the (0 1) surface of a flat substrate of square-
lattice (a0/σ ≈ 1.39): (a) – (d) Snapshots taken at dimensionless time steps 1000, 35 000, 80 0000, and 310 000. 
The upper right quarter of the 900 × 900 sized simulation box is shown. (Other simulation parameters were: V1 
= 0.1, r* = −0.25, α* = 0. 1, and ψ0 = −0.32. Reduced particle density maps are shown.)  
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                      (a)                                (b)                                (c)  

   
 

 

Figure 13. Heterogeneous nucleation in rectangular inner corners (a0/σ ≈ 1.39): (a) On (01) surfaces of a square 
lattice; (b) on (11) surfaces of a square lattice; and (c) on an unstructured substrate. (The upper right quarter of 
the 900 × 900 sized simulation boxes is shown. Other simulation parameters were: r* = −0.25, α* = 0.1, ψ0 = 
−0.32, and V1 = 0.1 for the square-lattice substrates, while for the unstructured substrate we have prescribed V0 

= 0.5 inside the substrate. Reduced particle density maps are shown.) Note the frustration at the corner and the 
formation of a grain boundary starting from the corner at later stages.  
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     (a)                                                       (b)  

              
   
 
 

 

Figure 14. (a) Single and multiple occupation of chemically patterned periodic substrate by colloidal particles as 
a function of increasing patch size [125] © 2002 Wiley-WCH Verlag GmbH. (b) PFC simulations with increas-
ing diameter of circular attractive potential wells (right).  Fractions of 818 × 818 simulations are shown. Other 
simulation parameters were: depth of circular wells V0 = −0.5, r* = −0.75, α* = 0.1, and ψ0 = −0.75. Reduced 
particle density maps are shown. The ratio of the potential well diameters relative to the single occupation case 
has been 1, 1.25, 1.5, 2, 2.13 and 2.5. 
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                     (a)                                 (b)                                (c) 

         
 

                      (d)                                (e)                                 (f)  

       
 
 
 

 

Figure 15. Fabrication of square colloidal crystals via controlled self-assembly in experiment and PFC simula-
tions.  (a) – (c): Optical microscopy image on the ordering of particles due to grooves tilted relative to the 
growth front (tilting angles: 0°, 90°, and 45°) [128] © 2008 Wiley-WCH Verlag GmbH & Co. KGaA; PFC 
simulations of (d) – (f) particle ordering in the presence of potential approximating the effect of combined 
forces from capillarity and grooved substrate underlying the liquid surface. (Fractions of 1100 × 1100 simula-
tions are shown. Other simulation parameters were: V1 = 0.3, r* = −0.75, α* = 0, and ψ0 = −0.495. Reduced 
particle density maps are shown.) 
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                                        (a)                                 (b) 

    
   
 
 

 

Figure 16. Patterning in experiment (left) vs. PFC simulation (right): (a) single and double particle chains  
evolving due to capillary-immersion forces on the surface of a rippled substrate [127] © 2006 American Chemi-
cal Society; and (b) the particle chains forming in the PFC model using a tilted an wavy version of the potential 
described in the text.  (Fraction of a 2400 × 1200 simulation is shown. Other simulation parameters were: V1 = 
0.05, r* = −0.75, α* = 0.1, and ψ0 = −0.6. Reduced particle density map is shown.)   
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