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Vesicles under flow constitute a model system for studying red blood cells (RBCs) dynamics and blood
rheology. In the blood circulatory system the Reynolds number (at the scale of the RBC) may attain few
unities. We develop a numerical method based on the the level set approach and solve the fluid/membrane
coupling by using an adaptative finite element technique. We find that inertia can destroy completely the
vesicle tumbling motion obtained in the Stokes regime. We analyze in details this phenomenon and discuss
some of the far reaching consequences.

PACS numbers: 87.16.D- 83.50.Ha 87.17.Jj 83.80.Lz 87.19.rh

I. INTRODUCTION

The study of models of red blood cells (RBCs), such
as capsules and vesicles, has known recently a consid-
erable amount of interest in various communities, such
as physics, applied mathematics, mechanical engineer-
ing, and so on. A systematic experimental analysis1

of RBCs under shear flow has revealed that RBCs can
either undergo a tank-treading (TT) or tumbling (TB)
motion. In the TT regime the main axis makes a given
angle (less than π/4) with respect to the flow direction
whereas the RBCs membrane undergoes a tank-treading
motion. Upon increasing the viscosity contrast λ (ra-
tio of the internal over the external fluid viscosities) the
RBC exhibits TB (or flipping) motion. There are two
classes of model systems that are used to mimic RBCs
: (i) capsules and (ii) vesicles. Capsules are made of an
extensible polymer membrane which is endowed with an
in-plane shear elasticity (mimicking the elasticity of the
cytoskeletton of the RBCs)2. Vesicles are, like RBCs,
made of an inextensible phospholipid bilayer membrane
which is purely fluid (thus devoid of shear elasticity).
The inextensible character has proven to confer to vesi-
cles rich dynamics3,4, since inextensibility, triggers, even
to leading order, high order nonlinearities.

An early model to understand the TT-TB transition of
RBCs has been studied by Keller and Skalak (KS)5. They
adopted a vesicle-like model (fluid inextensible mem-
brane), and imposed a fixed shape (only orientation in
the flow is permitted). The shape of the vesicle is as-
sumed to be ellipsoidal for which a solution for the Stokes
flow was available. KS reported that the transition de-
pends both on the viscosity contrast λ and on the re-
duced volume v (the actual volume over the volume of
a sphere having the same area). Numerical simulations
in two dimensions6,7 allowing for the shape to freely de-
form deformable shapes have revealed that the KS model
constitute a very good approximation.

The analytical as well as numerical calculations6,7 for
the TT-TB transition5,8 have been restricted to the

Stokes limit (inertia was neglected). Most of experi-
mental data on vesicles9,10 were available in the limit of
small Reynolds numbers. In the blood circulatory sys-
tem, except in capillaries, the Reynolds number eval-
uated at the scale of the RBC can reach few unities.
For example, in the arterioles11 the mean velocities is
of about U ∼ 20cm/s. Defining the Reynolds number as
Re = ρoDU/ηo where D is the RBC diameter (is is the
diameter of a sphere having the same area as the RBC;
it equal to about 6 µm for human RBCs), ηo the plasma
viscosity and ρo its density. This leads to Re ∼ 1 in ar-
terioles. This means that the inertial effect are, at least,
of the same order as the viscous effects.
Our main objective in this study is to analyze the

dynamics of vesicles under a shear flow by taking into
account the inertial effects. Our study reveals that a
Reynolds number of order unity is capable of inhibiting
TB in favor of TT motion. We analyze the phase di-
agram in the relevant parameter space, and point out
several implications and discuss more accurately the in-
ertial effects and the experimental feasibility to test this
prediction.

II. MODEL AND TECHNIQUES

We consider a 2D vesicle under a linear shear flow. The
legitimacy of a 2D geometry is supported by the fact that
the 2D dynamics obtained in numerical simulations6,7 re-
produced the main results obtained in 3D by Keller and
Skalak. Hereafter r will denote a two dimensional posi-
tion vector having the Cartesian components x (along the
imposed flow) and y (the coordinate in the perpendicular
direction). The vesicle is immersed in a fluid occupying a
square domain of lateral length 2L. Let R be the radius
of a circle having the same perimeter as the vesicle. The
aspect ratio is given by R/L. The scheme useful nota-
tions are presented in Fig. 1. The shear flow ux = ±V
is prescribed at the top and bottom plates y = ±L (see
Fig. 1).
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Figure 1. (color on-line) The set-up and notations. Actually
the vesicle shapes shown here are obtained by numerical sim-
ulations. Left: a vesicle with a weak inertia (Re = 0.01) in
the TT regime. Right: a vesicle with inertia Re = 10 show-
ing ample vesicle deformation as compared to Stokes limit.
Shown also the finite element network and the flow lines.

The velocity and pressure fields obey in the two fluid
domains (inside and outside the vesicle)

ρ

(

∂u

∂t
+ u.∇u

)

− div (2η D(u)) +∇p = 0

divu = 0

where D(u) = (∇u + ∇u
T)/2 is the deformation rate

tensor. At the vesicle membrane the hydrodynamic stress
is balanced by the the membrane force

− κ
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∂s2
+

H3
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}

n

+H ζ n−
∂ζ

∂s
t+ [2ηD(u) − pI] .n = 0

where κ is the membrane bending rigidity,H is the curva-
ture, n and t are the normal and tangential unit vectors,
and ζ is a Lagrange multiplier enforcing locally constant
arclength. It is fixed by requiring the surface divergence
of the velocity field to vanish

divs u = 0

In the upper and lower bounding boundaries we impose
no-slip condition, while on the lateral size (y = ±L; see
Fig. 1) we impose free surface where the total normal
hyrodynamical force vanishes.
The above bulk equations (the Navier-Stokes equa-

tions) are nonlinear and the quite precise method based
on boundary integral formulation7,12 can not be used.
The method we use here to solve the model equation is
based on the level set approach. Very briefly, in this
method the membrane location is defined by a level set
function φ(r, t) depending on the 2D vector r = (x, y)
and time. The membrane position is taken to be (this
is an implicit representation of the membrane) φ = 0,
which obeys a transport equation

∂φ

∂t
+ u.∇φ = 0

φ is defined everywhere in the entire domain, allowing
to solve the fluid/structure problem in a fully Eulerian
scheme. Indeed, the normal and the tangent vectors,
as well as the curvature are defined in terms of φ: n =
∇φ/|∇φ|, H = divn, so that the full membrane force can
be defined in the entire domain. The Lagrange multiplier
multiplier is also defined in the entire domain. The full
membrane force at the membrane is therefore defined in
the entire domain, albeit its action is localized to the
membrane region.
The above set of equations has been reformulated in

terms of a variational representation (the so-called weak
formulation) and has been implemented in a finite ele-
ment scheme. Several numerical technical problems arise,
such as vesicle bulk loss, membrane extension (or com-
pression). In addition the level set function, which is
initially a distance function, looses this property in the
course of time, and has thus to be re-initialized to a dis-
tance function. Details of the numerical study and bench-
mark tests are published elsewhere13, and we focus here
on the main physical results.
We have dimensionalized the equations by choosing R

as a length scale, U = V R/L as a velocity scale, T = R/U
as a unit of time and ηoU/R as a unit of pressure. This
leads us to three dimensionless physical parameters

Re =
ρoV R2

ηo
, Ca =

ηoR
3γ̇

κ
, λ =

ηi
ηo

where ηi and ηo designate the internal and external vis-
cosities. This set has to be supplemented with two ge-
ometrical parameters, namely the vesicle confinement
Cn = R/L and the reduced area v = A/(π(P/2π)2,
where A is the area occupied by the internal liquid and
P is the vesicle perimeter.
Here we shall take the same densities, and we shall keep

the confinement to a given value (typically 0.4). More-
over, in 2D, the TT-TB transition is quasi-insensitive to
Ca7,14, so that we fix Ca = 100 (and have checked that
higher values do not affect the results). We are thus left
with 3 free parameters v, λ and Re (but we have also ex-
plored other values of Cn for comparison with previous
results in the absence of inertia; see below).

III. RESULTS AND DISCUSSION

We have first examined the low Reynolds number limit
in order to test and validate our analysis by comparison
to available numerical data in the Stokes regime. In that
regime we are left with the parameters Ca, v and λ. We
have set Re = 10−2 which constitutes a good approxi-
mation to the Stokes regime. We have varied the two
parameters λ, v and have determined the transition line
separating the regime of tank-treading (TT) from that of
tumbling (TB). The results are shown in Fig. 2. The two
results obtained are in a good agreement with the phase
field methods7 and also the 2D Keller and Skalak theory5.
In our computations, a weak confinement Cn = 0.25 has
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Figure 2. Phase diagram and comparison with other compu-
tations.
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Figure 3. The behavior of the terminal angle θ∞ in the TT
regime vs Re for various viscosity ratio λ.

been chosen, so that the influence of boundaries be weak
enough (see also13).

Next we examine the role of the Reynolds number on
the the two dynamical regime TT and TB. A first notice-
able effect, is that upon increasing Re in the TB regime
the period of oscillation increases significantly (Fig. 5)
until it diverges (Fig. 4) for a critical value of Re. The
interesting fact is that this behavior occurs for quite mod-
erate values of Re. The divergence of the period means
that the TB is suppressed in favor of a tank-treading
regime. Another impact of the inertial effect is that the
vesicle adopts in the TT regime a terminal angle that
significantly depends on Re; the terminal angle can have
values which may be twice as large as compared to the
corresponding values Stokes regime (see Fig. 3). Further-
more, the effect of inertia causes a stronger deformation
of the vesicle, as shown on Fig. 1.

Our current intuitive understanding is as follows. In
the absence of inertia TB occurs8 when the viscosity con-
trast reaches a critical value such that the torque due to
the applied shear flow can not anymore be efficiently con-
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Figure 4. The behavior of the TB period T vs Re for various
viscosity ratio λ, showing divergence of the period at a critical
Reynolds number.
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Figure 5. The behavior of the angle of the main axis of the
vesicle as a function of time for different Reynolds numbers,
showing that inertia slows down the motion, until suppressing
TB .

verted into the membrane tank-treading torque because
the internal fluid is so viscous that it precludes tank-
treading. Therefore the vesicle behaves as almost quasi-
rigid, and TB takes place. In other words, in the TB
regime, the injected power due to shear is predominantly
transferred to dissipation of the surrounding fluid. TB
in the presence of inertia must, besides dissipation in the
surrounding fluid, be accompanied with kinetic energy
transfer to the surrounding fluid, a cost tha t increases
with Reynolds number so that TB becomes unfavorable.
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Figure 6. The phase diagram of the TT and TB motion as a
function of the viscosity contrast λ and the Reynolds numbers.
We have set v = 0.82, Ca = 100, Cn = 0.5 and the critical
Reynolds number is denoted by Re∗.

We have performed a systematic analysis (at fixed re-
duced area v = 0.82) on the occurrence of TT and TB
as a function of the viscosity contrast λ and Reynolds
number Re. The results are reported on Fig. 6. In the
absence of inertia (Re = 0) the TT-TB bifurcation oc-
curs at about λ = 6. As Re is increased TB is delayed.
For example, at Re ≃ 5 the critical λ has approximately
doubled (it is about 12). It is interesting to note that
the separation line in Fig. 6 attains a plateau at about
Re = 20 meaning that whatever the viscosity ratio is
TB is completely suppressed (we have explored viscosity
ratios of about 100). Actually, despite the fact that at
λ ≃ 100 the vesicle might be thought of as behaving as
rigid-like particle (in which case one would expect TB
to prevaisl) inertia is still capable of enforcing membrane
tank-treading, making therefore the vesicle still to enjoy
its fluidity.
Finally, let us make some general discussions. In the

human arterioles the wall shear rate is of about 8000

s−1, and using our definition of Re, Re =
ρoV R2

ηo
, with

R ≃ 3 µm, and ηo/ρo ≃ 10−2cm2/s (plasma kinematic
viscosity), one obtains Re ∼ 0.1. During entrance of cells
in bifurcations of the circulatory network, cells undergo
sudden changes of directions that momentarily enhance
the shear gradient, resulting in higher Re. We are not
aware of a systematic analysis of TB mimicking phys-
iological conditions (especially the internal viscosity is
temperature=dependent) in order to determine the pre-
cise value of the critical λ, λc, at which transition from
TT to TB occurs. Observation in arterioles show that
isolated enough RBCs exhibit TB. This would mean that
the actual viscosity ratio for RBCs, λRBC is larger than
λc. Theoretical calculation on model systems (like vesi-
cles and capsules) seem to support the idea that λRBC is

quite close to λc. This means that a small enough inertial
effect may suppress TB.
Why should it be beneficial for RBCs to perform TT

rather than TB a all? Cells which tend to approach a
wall due, for example, to an alteration of the flow, result-
ing from a tissue injury (or due to an abnormal widen-
ing of blood vessels; the so-called sites of aneurysms),
is expected to experience a lift force of hydrodynami-
cal (viscous) nature10,15. This force is essential to keep
cells away from potential undesirable adhesion. However,
RBCs which undergo TB experience practically no lift
force (due to the quasi-up-down symmetry over a period
of TB)16. Due to an alteration of the flow (like bifurca-
tions, aneurysm..) it is known that blood elements may
tend to scrape along the blood vessel lining. The sudden
change of the flow is expected to be accompanied with an
increase of inertial effects that may suppress TB allowing
for a lift force keeping RBCs away from the wall.
The present predictions are not devoid of experimental

testability. Vesicles have large enough vesicle sizes (with
radius in the range 20 − 40 µm). Imposing wall shear
rates of about 8000 s−1 one finds Re ≃ 1− 15. In a mi-
crofluidc channel of diameter d, with maximum velocity
Vmax of the imposed Poiseuille flow, the wall shear rate
is equal to 8Vmax/d. Imposing a maximum velocity of
order 10 cm/s (for which modern high speed camera can
capture the vesicle motion with a good precision), one
easily obtain shear rates of order 104s−1. We hope that
this work will incite new experiments in order to identify
the precise role of inertia.
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