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Abstract

We study the asymptotics of the spectral distribution for large empiri-

cal covariance matrices composed of independent Multifractal Random Walk

processes. The asymptotic is taken as the observation lag shrinks to 0. In

this setting, we show that there exists a limiting spectral distribution whose

Stieltjes transform is uniquely characterized by equations which we specify.
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1. Introduction

Since the seminal work of Marc̃enko and Pastur [8] in 1967, there has been growing
interest in studying the asymptotics of large empirical covariance matrices. These
studies have found applications in many fields of science: physics, telecommunica-
tions, information theory and finance, etc... The main motivation of this work stems
from finance: we refer to [9], [4] for a discussion on the applications of large empirical
covariance matrices in finance and in particular in portfolio theory. In the context of
finance, the study of the limiting spectral distribution of large empirical covariance
matrices is of particular interest as it is a crucial statistical tool in identifying the
different market modes (see again [9], [4] for a nice introduction to this topic). It is
indeed very natural to try to identify common causes (or factors) that explain the
dynamics of N quantities, which will be stock’s prices in finance. We will denote by
N the number of stocks and by T the number of time intervals where we observed
prices of the N stocks. In this setting, the Marc̃enko Pastur paper enables to deal
with the case where stock prices follow independent Brownian motions. More pre-
cisely, let us define a N × T matrix XN such that XN(ij) is the realization of the
return on the j-th time interval (of shrinking size 1/T ) of stock number i by:

XN(ij) = Bi

(
j

T

)
− Bi

(
j − 1

T

)
(1.1)

where the Bi are i.i.d. standard Brownian motions. The empirical covariance matrix
is now defined as RN = XNX

t
N . If λ1, . . . , λN are the eigenvalues of RN , the empirical

spectral distribution of the matrix RN is the probability measure defined by:

µRN
=

1

N

N∑

i=1

δλi . (1.2)
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The Marc̃enko and Pastur result states that, in the limit of large matrices N, T → ∞
with N/T → q ∈ (0, 1], the empirical spectral distribution µRN

weakly converges
(almost surely) to a probability measure whose density ρ(x) is defined by:

ρ(x) =
1

2πq

√
(γ+ − x)(x− γ−)

x
1[γ−,γ+]dx (1.3)

where γ± = 1 + q ± 2
√
q.

Independently of the aforementionned work on random matrix theory, much work
has been devoted to studying the statistics of financial stocks. It turns out that most
financial assets (stocks, indices, etc...) possess universal features, called stylized facts.
We refer to the review [5] for a discussion on this topic. On the other hand, many
models have been proposed in the litterature that take into account these stylized
facts. Among them, there has been growing interest in the Multifractal Random
Walk (MRW) model introduced in [1]. The MRW is simply defined as:

Xt = B (M [0, t]) (1.4)

where B is a standard Brownian motion and M is an independent multifractal
random measure (MRM for short), see section 2.1 for a reminder of the construc-
tion/definition as well as (standard) notations used throughout the paper.

We thus aim at studying the large sample covariance matrices where the un-
derlyings evolve independenly as Brownian motions with a time change, which can
be thought of as a volatility process with memory (i.e. the volatility process is cor-
related in time). The main example of such processes we are interested in is the
multifractal random walk but we will also consider other examples. More precisely,
the matrix XN can be defined, for 1 6 i 6 N, 1 6 j 6 T , by:

XN(ij) = Bi
M i(0, j

T
)
−Bi

M i(0, j−1
T

)
= ri(j) (1.5)

where the Bi are i.i.d. Brownian motions and the Mi are i.i.d. multifractal random
measures independent of the Bi.

The purpose of this work is to characterize, in the limit of large matrices (N, T →
∞ with N/T → q ∈ (0, 1]), the limit of the empirical spectral measure µRN

=
1/N

∑N
i=1 δλi where (λ1, . . . , λN) are the eigenvalues of the empirical covariance ma-

trix RN := XNX
t
N .

The next sections are organized as follows. In section 2, we remind the definition
of MRW and introduce the main notations of the paper. In section 3, we state our
main theorems which are characterizations of the limiting spectral measure of RN

through its Stieltjes transform for different type of underlying process X . Since these
equations are tedious to invert, we leave the analysis of the underlying probability
measure to a forthcoming study (we are working on this subject). The proofs appear
in section 4 with some auxiliary lemmas proved in the appendix. The strategy of
our proofs is classical among the random matrix litterature (the so-called resolvent
method) as it relies on the Schur recursion formula for the Stieltjes tranform; in
particular, we follow the approach of [3]. The main difficulty lies in handling the
Stieltjes transforms in a multifractal setting.
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2. Background, notations and main results

2.1 Reminder of the construction of MRM

To fix precisely the notations that we will use throughout the paper, we quickly
remind the main steps of the construction of Multifractal RandomMeasures (MRM).
The description is necessarily concise and the reader is referred to [1] for further
details. In particular, we use the same notations as in [1] to facilitate the reading.
We consider the characteristic function of an infinitely divisible random variable Z,
which can be written as E[eipZ ] = eϕ(p) where (Lévy-Khintchine’s formula):

ϕ(p) = imp− 1

2
γ2p2 +

∫

R∗

(eipx − 1) ν(dx) (2.1)

and ν(dx) is a so-called Lévy measure (ie satisfying
∫
R∗ min(1, x2) ν(dx) < +∞)

together with the following additional assumption:
∫

[−1,1]

|x| ν(dx) < +∞, (2.2)

so that its characteristic function perfectly makes sense as written in (2.1). We also
introduce the Laplace exponent ψ of Z by ψ(p) = ϕ(−ip) for each p such that both
terms of the equality make sense, and we assume that the following renormalization
condition holds: ψ(1) = 0.

We further consider the half-space S = {(t, y); t ∈ R, y ∈ R∗
+}, with which we

associate the measure (on the Borel σ-algebra B(S)):

θ(dt, dy) = y−2dt dy. (2.3)

Then we consider an independently scattered infinitely divisible random measure µ
associated to (ϕ, θ) and distributed on S.

Then we define a process ωǫ for ǫ > 0 by the following. Given a positive parameter
τ , let us define the function f : R+ → R by:

f(r) =

{
r, if r 6 τ
τ if r > τ

The cone-like subset Aǫ(t) of S is defined by:

Aǫ(t) = {(s, y) ∈ S; y > ǫ,−f(y)/2 6 s− t 6 f(y)/2}. (2.4)

We then define the stationary process (ωǫ(t))t∈R by:

ωǫ(t) = µ (Aǫ(t)) . (2.5)

The Radon measure M is then defined as the almost sure limit (in the sense of
weak convergence of Radon measures) by:

M(A) = lim
ǫ→0+

Mǫ(A) = lim
ǫ→0+

∫

A

eωǫ(r) dr
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for any Lebesgue measurable subset A ⊂ R. The convergence is ensured by the fact
that the family (Mǫ(A))ǫ>0 is a right-continuous positive martingale. The structure
exponent of M is defined by:

∀p > 0, ζ(p) = p− ψ(p)

for all p such that the right-hand side makes sense. The measure M is different from
0 if and only if there exists ǫ > 0 such that ζ(1+ ǫ) > 1, (or equivalently ψ′(1) < 1).
In that case, we have:

Theorem 2.1. The measure M is stationary and satisfies the exact stochastic

scale invariance property: for any λ ∈]0, 1],

(M(λA))A⊂B(0,τ)
law
= (λeΩλM(A))A⊂B(0,τ),

where Ωλ is an infinitely divisible random variable, independent of (M(A))A⊂B(0,T ),
the law of which is characterized by:

E[eipΩλ ] = λ−ϕ(p).

2.2 Notations

Let N and T := T (N) be two integers, the aim of this paper is to compute the
empirical spectral measure of the matrix RN := XN

tXN as N → ∞, where XN is a
N ×T real matrix the entries of which are given by (1.5). Recall that the number N
of sampled processes is supposed to be comparable with the sample size T := T (N),
and more precisely, we will suppose in the following that there exists a parameter
q ∈]0, 1] such that:

lim
N→∞

N

T
= q. (2.6)

We further set R̃N := tXNXN , and if M is a symmetric real matrix, we will denote
by µM the empirical spectral measure of M .

Define the (T +N)× (T +N) matrix BN by:

BN =

(
0 tXN

XN 0

)
.

We also define for z ∈ C \R,

AN (z) = (zIT+N − BN) =

(
zIT −tXN

−XN zIN

)
.

Notice that

B2
N =

(
R̃N 0
0 RN

)
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and that the eigenvalues of R̃N are those of RN augmented with T −N zero eigen-
values. We thus have:

µB2
N
= 2

N

N + T
µRN

+
T −N

N + T
δ0, (2.7)

where δx stands for the Dirac mass at x. Combining this equality with the relation

∫
f(x)µB2

N
(dx) =

∫
f(x2)µBN

(dx) (2.8)

true for all bounded continuous functions f on R, we see that it is sufficient to study
the weak convergence of the spectral measure of BN for the study of the convergence
of the spectral measure µRN

.
We will thus work on the (weak) convergence of the spectral measures µBN

and
E [µBN

] in the following. To that purpose, it is sufficient to prove the convergence of
the Stieltjes transform of these two measures. Recall that, for a probability measure
µ on R, the Stieltjes transform Gµ of µ is defined, for all z ∈ C \ R, as:

Gµ(z) =

∫

R

1

z − x
µ(dx). (2.9)

and one can note that:

GµBN
(z) =

1

N + T
Trace(GN(z)), (2.10)

where we have set:
GN(z) = (AN (z))

−1 . (2.11)

Hence, we have to investigate the convergence of the right-hand side of (2.10). Let
us introduce the two following complex measures L1,z

N and L2,z
N such that, for all

bounded and measurable function f : [0, 1] → R:

L1,z
N (f) =

1

T

T∑

k=1

f

(
k

T

)
GN(z)kk

L2,z
N (f) =

1

N

N∑

k=1

f

(
k

N

)
GN (z)k+T,k+T

Clearly, we have the relation

1

N + T
Trace(GN (z)) =

T

N + T
L1,z
N ([0, 1]) +

N

N + T
L2,z
N ([0, 1]) (2.12)

so that it suffices to establish the convergence of the two complex measures L1,z
N and

L2,z
N .
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3. Main results

3.1 Lognormal multifractal random walk

We first present our results when the processX(t) is a lognormal multifractal random
walk, i.e.X(t) = B(M [0; t]) whereM is the MRM whose characteristic and structure
exponent (see section 2.1) are respectively given by:

ϕ(q) = −iγ
2

2
q − γ2

2
q2,

ζ(q) = (1 +
γ2

2
)q − γ2

2
q2.

We will make the assumption that the intermitency parameter γ2 is small enough
so as to overcome in our proofs the strong correlations of the model.

Assumption 3.1. More precisely, let us suppose that:

γ2 <
1

3
. (3.1)

Though we conjecture that our results hold as soon as the measure M is non
degenerated, i.e. γ2 < 2 (see [1]), Assumption 3.1 is largely sufficient to cover most
practical applications. For instance, in financial applications or in the field of tur-
bulence, γ2 is found empirically around 2.10−2.

We can now state our main result about the convergence of the empirical spectral
measures and mean empirical spectral measures of the matrices BN and RN :

Theorem 3.2. i) There exists a probability measure υ on R such that the two mean
spectral measures E[µBN

] and E[µRN
] converge weakly respectively towards the two

probability measures 2q
1+q

υ + 1−q
1+q

δ0 and υ ◦ (x2)−1 as N goes to ∞, where υ ◦ (x2)−1

is the pushforward of the measure υ by the mapping x 7→ x2.
ii) The two spectral measures µBN

and µRN
converge weakly in probability re-

spectively to the two probability measures 2q
1+q

υ + 1−q
1+q

δ0 and υ ◦ (x2)−1 as N goes

to ∞. More precisely, for any bounded and continuous function f ,
∫
f(x)µRN

(dx)
converges in probability to

∫
f(x)υ ◦ (x2)−1(dx).

iii) Let Nk be an increasing sequence of integers such that
∑∞

k=1N
−1
k < +∞,

then the two sequences µBNk
and µRNk

converge weakly almost surely to the two

probability measures 2q
1+q

υ + 1−q
1+q

δ0 and υ ◦ (x2)−1 as k goes to ∞.

Theorem 3.2 is implied by (2.10), (2.12) and by Theorem 3.3:

Theorem 3.3. i) The measures E[L1,z
N ] and E[L2,z

N ] converge weakly towards two
complex measures. More precisely, there exist a unique µ2

z ∈ C and a unique bounded
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measurable function Kz(x) over [0, 1] such that, for all bounded and continuous func-
tion f on [0, 1], we have respectively:

E
[
L1,z
N (f)

]
→N→∞

∫ 1

0

Kz(x)f(x) dx,

E
[
L2,z
N (f)

]
→N→∞ µ2

z

∫ 1

0

f(x) dx.

ii) In addition, we have the following relation between µ2
z ∈ C and Kz(x):

∫ 1

0

Kz(x) dx = qµ2
z +

1− q

z
(3.2)

iii) Furthermore, there exists a unique probability measure υ on R whose Stieltjes
transform is µ2

z, meaning that for all z ∈ C \ R,

µ2
z =

∫

R

υ(dx)

z − x
. (3.3)

It is important to state a characterization of the probability measure υ: it is done
by means of its Stieltjes transform µ2

z:

Theorem 3.4. The constant µ2
z and the bounded function Kz(x) are uniquely de-

termined for all z ∈ C \ R, by the following system of equations:

µ2
z = E

[(
z −

∫ 1

0

Kz(t)M(dt)

)−1
]
, (3.4)

Kz(x) =

(
z − qE

[(
z −

∫ 1

0

( τ

|t− x|
)γ2
+
Kz(t)M(dt)

)−1
])−1

(3.5)

where M is the MRM with structure exponent ζ(q) = (1 + γ2/2)q − q2γ2/2.

Let us notice that one can give a precise meaning to (3.5) for all γ2 ∈ [0, 2[.
Indeed, we can define for all x ∈ [0, 1] and all continuous function f , the following
almost sure limit as a definition:

∫ 1

0

( τ

|t− x|
)γ2
+
f(t)M(dt) = lim

η→0

∫

t∈[0,1];|t−x|>η

( τ

|t− x|
)γ2
+
f(t)M(dt) (3.6)

One can also check with this definition that we have:
∫ 1

0

( τ

|t− x|
)γ2
+
f(t)M(dt) = lim

ǫ→0

∫ 1

0

ecov(ωǫ(t),ωǫ(x))f(t)eωǫ(t)dt

Conjecture 3.5. With this extended definition, we conjecture that theorem 3.4 holds
in the lognormal multifractal case for all γ2 ∈ [0, 2[ and thus that the limiting equa-
tions can be obtained by the ones of theorem 3.9 (see below) with 2W = ωǫ as ǫ→ 0.
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3.2 General multifractal random walk

We now look at the more general case when the change of time is a measure M
for which the function ϕ(q) is given by (2.1) and the structure exponent by ζ(q) =
q − ψ(q) with ψ(q) = ϕ(−iq).

We still have to make an assumption to avoid the issue of strong correlations. In
this more general setting, Assumption (3.1) becomes:

Assumption 3.6. Assume that the structure exponent of the MRM satisfies the
condition:

ζ(2) > 5− 4ζ ′(1). (3.7)

and that there exists δ > 0 such that:

ζ(2 + δ) > 1. (3.8)

As in the previous section, we conjecture that our results hold as soon as the
measure M is non degenerated, i.e. (see [1]) ζ(1 + ǫ) > 1 for some ǫ > 0.

Theorems 3.2 and 3.3 remain unchanged for this more general context. Theorem
3.4 becomes:

Theorem 3.7. The constant µ2
z and the bounded function Kz(x) are uniquely de-

termined for all z ∈ C \ R, by the following system of equations:

µ2
z = E

[(
z −

∫ 1

0

Kz(t)M(dt)

)−1
]
, (3.9)

Kz(x) =

(
z − qE

[(
z −

∫ 1

0

( τ

|t− x|
)κ
+
Kz(t)Q(dt)

)−1
])−1

(3.10)

with κ = ψ(2) and where M is the MRM whose characteristic and structure expo-
nent are respectively ϕ(q), ζ(q) and where the random Radon measure Q is defined,
conditionally on M , as the almost sure weak limit as ǫ goes to 0 of the family of
random measures Qǫ(dt) := eωǫ(t)M(dt) where, for each ǫ > 0, the random process
ωǫ is independent of M and defined as ωǫ(t) = µ(Aǫ(t)) where µ is the independently
scattered log infinitely divisible random measure associated to (ϕ̄, θ(· ∩A0(x))) with:

ϕ̄(p) = ip(γ2 − κ) +

∫

R

(eipx − 1)(ex − 1)ν(dx). (3.11)

3.3 Lognormal random walk

Let us mention that one can easily adapt the methods used to prove the above
theorems in the simpler case (lognormal case) where X(t) is defined, for all t ∈ [0; 1],
by:

X(t) = B

(∫ t

0

e2W (s)ds

)
, (3.12)
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where (W (s))s∈[0;1] is a stationary gaussian process with expectation m and station-
ary covariance kernel k. The normalisation will be chosen such that: m = −k(0).

In this context, the entries of XN are given, for 1 6 i 6 N, 1 6 j 6 T by:

XN (ij) =
1√
T
eWi(

j
T
)Bi

j := ri(j) (3.13)

where the (Bi
j)ij are i.i.d standard centered Gaussian random variables and the Wi

are i.i.d stationary Gaussian processes with expectation m and stationary covariance
kernel k. Indeed, if one makes the following extra assumption:

Assumption 3.8. Assume that for some constants C > 0 and β > 0, the covariance
kernel k satisfies:

∀x ∈ R, |k(x)− k(0)| 6 C|x|β.
With the same notations as in the previous section, we can now state the following

theorem under assumption 3.8:

Theorem 3.9. The system of equations for µ2
z and Kz(x) becomes:

µ2
z = E

[(
z −

∫ 1

0

Kz(t)e
2W (t) dt

)−1
]

(3.14)

Kz(x) =

(
z − qE

[(
z −

∫ 1

0

Kz(t)e
4k(t−x)e2W (t) dt

)−1
])−1

. (3.15)

where (W (t))t∈[0;1] is a stationary gaussian process with expectation m and stationary
covariance kernel k.

4. Proofs of the main results

In this section, we give the proofs of theorems 3.2, 3.3 and 3.4. The proof of Theorem
3.7 is very similar and we will not explain it in every detail, except for the final part
where we establish the second equation of the system in Theorem 3.7 verified by
Kz. We will give the details for this part of the proof in the appendix. The proof
of theorem 3.9 is an easy adaptation of our proofs for theorems 3.2, 3.3 and 3.4; it
is left to the reader. Furthermore, the proofs are very similar when q = 1 or when
q < 1. For the sake of clarity, we assume T = N and hence q = 1 in the proofs that
follow.

Hence, in the following, we will suppose (unless otherwise stated) that:

ϕ(q) = −iq γ
2

2
+ q2

γ2

2
,

ψ(q) = ϕ(−iq),

ζ(q) = (1 +
γ2

2
)q + q2

γ2

2
,

γ2 <
1

3
,

10



and M will be the MRM whose structure exponent is ζ (see section 2.1 for a re-
minder).

Our approach to show the convergence of E[L1,z
N ] and E[L2,z

N ] consists in proving
tightness and characterizing uniquely the possible limit points. The classical Schur
complement formula is our basic linear algebraic tool to study E[L1,z

N ] and E[L2,z
N ]

recursively on the dimension N , as is usual when the resolvent method is used. The
original part of our proof is that we apply the Schur complement formula two times
in a row to find the second equation of the system in theorem 3.4 involving the limit
point Kz(x) of the measure E[L1,z

N ]. We will also show that the limit points of the
two complex measures E[L1,z

N ] and E[L2,z
N ] satisfy a fixed point system (written in

theorem 3.4).
We begin by showing tightness.

4.1 Tightness of the complex measures E[L1,z
N ],E[L2,z

N ] and

limit points

Lemma 4.1. The two families of complex measures (E[Li,zN ])N∈N, i = 1, 2 are tight
and bounded in total variation.

Proof. Let us present the proof for (E[L1,z
N ])N∈N; the other proof is similar.

One has, for each N ∈ N:

| E[L1,z
N ] | [0, 1] = 1

N

N∑

k=1

| E[GN(z)kk] | 6
1

| ℑ(z) | , (4.1)

and so the family of complex measures (E[L1,z
N ])N∈N is bounded in total variation.

It is obviously tight since the support of all the complex measures in the family is
included in [0, 1], which is a compact set. �

Using Prokhorov’s theorem, we know that those two families of complex measures
are sequentially compact in the space of complex Borel measure on [0, 1] equipped
with the topology of weak convergence. In particular, there exists a subsequence
such that, for all bounded continuous function f , one has, when N goes to +∞
along this subsequence:

E
[
L1,z
N (f)

]
→
∫ 1

0

f(x)µ1
z(dx). (4.2)

Lemma 4.2. The complex measure µ1
z(dx) has Lebesgue density; more precisely,

there exists a bounded measurable function Kz(x) such that:

µ1
z(dx) = Kz(x)dx. (4.3)

11



Proof. One has:

∣∣E
[
L1,z
N (f)

]∣∣ 6 1

N

N∑

k=1

|f(k/N)|E [GN(z)kk] (4.4)

6
1

|ℑ(z)|
1

N

N∑

k=1

|f(k/N)| (4.5)

Letting N → +∞ along a subsequence, one obtains:

∣∣∣∣
∫ 1

0

f(x)µ1
z(dx)

∣∣∣∣ 6
1

|ℑ(z)|

∫ 1

0

|f(x)|dx. (4.6)

This proves the lemma.
Thus, there exists a subsequence such that, as N tends to +∞ along this subse-

quence:

E
[
L1,z
N (f)

]
→
∫ 1

0

f(x)Kz(x)dx. (4.7)

Lemma 4.3. There exists a subsequence and a constant µ2
z ∈ C such that, as N

goes to +∞ along this subsequence:

E
[
L2,z
N (f)

]
→ µ2

z

∫ 1

0

f(x)dx. (4.8)

Proof. It is easy to see that theGN(z)kk, k = N+1, . . . , N are identically distributed.
In particular, these variables have the same mean µ2

z(N). One has, for all N :

|µ2
z(N)| 6 1

|ℑ(z)| . (4.9)

So there exists a subsequence and a complex number µ2
z such that, as N goes to +∞

along this subsequence, µ2
z(N) → µ2

z. One thus obtains, as N goes to +∞ along this
subsequence:

E
[
L2,z
N (f)

]
→ µ2

z

∫ 1

0

f(x)dx. (4.10)

�

Following the classical method as in [3], [2], [7], we will show in the following
that the limit point µ2

z and Kz(x) are defined uniquely and do not depend on the
subsequence. We will first recall some preliminary results on resolvents.

4.2 Preliminary results on resolvents

We first recall the following standard and general result; the next lemmas of this
section are also standard but are applied to our particular case.
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Lemma 4.4. Let A be a symmetric real valued matrix of size N . For z ∈ C \R, let
us denote by G(z) the matrix

G(z) = (z −A)−1. (4.11)

For z ∈ C \ R and k ∈ {1, . . . , N}, we have

ℑ(z)ℑ(G(z)kk) < 0 and |G(z)kk| 6
1

|ℑ(z)| . (4.12)

In particular, if F ⊂ {1, . . . , N} is a finite set and (ai)i∈F a finite sequence of positive
number, then:

ℑ
(
z −

∑
i∈F aiG(z)ii

)

ℑ(z) > 1. (4.13)

and we also have:
1∣∣z −

∑
i∈F aiG(z)ii

∣∣ 6
1

|ℑ(z)| . (4.14)

Proof. Write A = Ū tDU where D is a diagonal matrix with diagonal real entries
(λi)1 6 i 6 N . Then

G(z)kk =
N∑

i=1

|Uki|2
1

z − λi
.

Since ℜ
(

1
z−λi

)
= ℜ(z)−λi

(ℜ(z)−λi)2+ℑ(z)2
and ℑ

(
1

z−λi

)
= −ℑ(z)

(ℜ(z)−λi)2+ℑ(z)2
the relation (4.12)

follows. It is then straightforward to derive (4.13) from (4.12).

For i = 1, . . . , N , let X
(i)
N = (XN (kl))k,l 6=i be the matrix obtained from XN by

taking off the i-th column and row. Define, also for i = 1, . . . , 2N the (2N − 1) ×
(2N−1) matrix A

(i)
N (z) obtained from AN(z) by taking off the i-th column and row.

In particular, for i = 1, . . . , N ,

A
(N+i)
N (z) =

(
zIN −tX(i)

N

−X(i)
N zIN−1

)
,

For i = 1, . . . , 2N , set:
G

(i)
N (z) = (A

(i)
N (z))−1. (4.15)

Let now X̂
(i)
N denote the matrix XN with the i-th column and row set to 0 and

Â
(i)
N (z) denote the matrix AN(z) with the i-th column and row set to 0 excepted the

diagonal term. Again we have, for i = 1, . . . , N :

Â
(N+i)
N (z) =

(
zIN −tX̂

(i)
N

−X̂(i)
N zIN

)
,

For i = 1, . . . , 2N , set:
Ĝ

(i)
N (z) = (Â

(i)
N (z))−1. (4.16)
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In the paper, we will also use the terms A
(k,i)
N (z), G

(k,i)
N (z), Â

(k,i)
N (z), Â

(k,i)
N (z). The

double superscript just means that you make the operations described above to the
rows and columns i and k.

Lemma 4.5. For all k ∈ {1, . . . , N} and all t 6= N + k, one has:

E

[∣∣∣GN(z)tt − Ĝ
(N+k)
N (z)tt

∣∣∣
]
6

1√
N |ℑ(z)|2

. (4.17)

Proof. Multiply the identity:

Â
(N+k)
N (z)−AN (z) = Â

(N+k)
N (0)−AN (0) (4.18)

to the left by GN(z) and to the right by Ĝ
(N+k)
N (z) to obtain

GN(z)− Ĝ
(N+k)
N (z) = GN(z)(Â

(N+k)
N (0)− AN(0))Ĝ

(N+k)
N (z). (4.19)

Then one has:

GN(z)tt − Ĝ
(N+k)
N (z)tt =

(
GN(z)(Â

(N+k)
N (0)− AN(0))Ĝ

(N+k)
N (z)

)
tt

(4.20)

= Ĝ
(N+k)
N (z)N+k,t

N∑

i=1

GN(z)tirk(i) (4.21)

+GN(z)t,N+k

N∑

j=1

rk(j)Ĝ
(N+k)
N (z)jt (4.22)

= GN(z)t,N+k

N∑

j=1

rk(j)Ĝ
(N+k)
N (z)jt (4.23)

where we have noticed that, for all t 6= N + k, Ĝ
(N+k)
N (z)N+k,t = 0.

Therefore, we find that:

E

[∣∣∣GN(z)tt − Ĝ
(N+k)
N (z)tt

∣∣∣
]
6 E

[
|GN(z)t,N+k|2

]1/2
E



∣∣∣∣∣

N∑

j=1

rk(j)Ĝ
(N+k)
N (z)jt

∣∣∣∣∣

2


1/2

(4.24)

by Cauchy-Schwartz’s inequality. Using then the independence of rk(j) and Ĝ
(N+k)
N (z),

we get:

E

[∣∣∣GN (z)tt − Ĝ
(N+k)
N (z)tt

∣∣∣
]
6 E

[
|GN(z)t,N+k|2

]1/2
E
[
rk(1)

2
]1/2

E

[
N∑

j=1

∣∣∣Ĝ(N+k)
N (z)jt

∣∣∣
2
]1/2

6
1√

N |ℑ(z)|2
.

The proof is complete.
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Lemma 4.6. There exists a constant C > 0 such that, for all k ∈ {1, . . . , N} and
all t 6= k:

E

[∣∣∣GN(z)tt − Ĝ
(k)
N (z)tt

∣∣∣
]
6

C

|ℑ(z)|2
1

N
1−γ2

4

. (4.25)

Proof. Again, we start from the relation:

GN(z)− Ĝ
(k)
N (z) = GN(z)(Â

(k)
N (0)− AN(0))Ĝ

(k)
N (z).

Thus we have

GN(z)tt − Ĝ
(k)
N (z)tt =

(
GN(z)(Â

(k)
N (0)− AN(0))Ĝ

(k)
N (z)

)
tt

(4.26)

= Ĝ
(k)
N (z)k,t

N∑

i=N+1

GN(z)tiri(k) (4.27)

+GN(z)t,k

N+1∑

j=1

rj(k)Ĝ
(k)
N (z)jt (4.28)

= GN (z)t,k

N+1∑

j=1

rj(k)Ĝ
(k)
N (z)jt (4.29)

where we have noticed that, for all t 6= k, Ĝ
(k)
N (z)k,t = 0.

Therefore, we find that:

E

[∣∣∣GN(z)tt − Ĝ
(k)
N (z)tt

∣∣∣
]
6 E

[
|GN(z)t,k|2

]1/2
E



∣∣∣∣∣

N∑

j=1

rj(k)Ĝ
(k)
N (z)jt

∣∣∣∣∣

2


1/2

(4.30)

by Cauchy-Schwartz’s inequality. We want to expand the square in the above expres-
sion. To that purpose, we first observe that, conditionnally to the M i, the variables
(rj(k))j are independent from Ĝ

(k)
N (z) and centered. Hence we have for j 6= j′,

E

[
rj(k)rj′(k)Ĝ

(k)
N (z)jtĜ

(k)
N (z)j′t

]
= 0.

Thus we get:

E

[∣∣∣GN (z)tt − Ĝ
(k)
N (z)tt

∣∣∣
]
6 E

[
|GN(z)t,k|2

]1/2
(
N+1∑

j=1

E

[
rj(k)

2
∣∣∣Ĝ(k)

N (z)jt

∣∣∣
2
])1/2

6 E
[
|GN(z)t,k|2

]1/2
(
N+1∑

j=1

E
[
rj(k)

4
]1/2

E

[∣∣∣Ĝ(k)
N (z)jt

∣∣∣
4
]1/2)1/2

6
E[r1(k)

4]1/4

|ℑ(z)|

(
N+1∑

j=1

E

[∣∣∣Ĝ(k)
N (z)jt

∣∣∣
4
]1/2)1/2

6
E[r1(k)

4]1/4

|ℑ(z)| (N + 1)1/4

(
N+1∑

j=1

E

[∣∣∣Ĝ(k)
N (z)jt

∣∣∣
4
])1/4
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Now we use the scaling properties of the MRM to obtain, for some positive constant
C,

E[rj(k)
4] = 3E[M(0,

1

N
)2] 6 CN−ζ(2).

Furthermore, by using Lemma A.1 which assures that, almost surely:

N+1∑

j=1

∣∣∣Ĝ(k)
N (z)jt

∣∣∣
2

6
1

|ℑ(z)|2 (4.31)

and the fact that:

N+1∑

j=1

∣∣∣Ĝ(k)
N (z)jt

∣∣∣
4

6

(
N+1∑

j=1

∣∣∣Ĝ(k)
N (z)jt

∣∣∣
2
)2

, (4.32)

we finally obtain

E

[∣∣∣GN(z)tt − Ĝ
(k)
N (z)tt

∣∣∣
]
6

C

|ℑ(z)|2
( 1
N

) ζ(2)−1
4 .

It just remains to check that ζ(2) = 2− γ2.

Lemma 4.7. For each k ∈ {1, . . . , 2N}, if t 6= k, then

G
(k)
N (z)tt = Ĝ

(k)
N (z)tt, (4.33)

and if t = k, then Ĝ
(k)
N (z)k,k = z−1.

Proof. It is straigthforward to see that the two matrices G
(k)
N (z) and Ĝ

(k)
N (z) have the

same eigenvalues except that Ĝ
(k)
N (z) has one more zero eigenvalue. In addition, the

eigenvectors look also very similar since you can obtain 2N eigenvectors of Ĝ
(k)
N (z)

by adding a zero entry to the eigenvectors of G
(k)
N (z) (between the entries k− 1 and

k). The last eigenvector of Ĝ
(k)
N (z) is the vector of RN for which all entries are zero

except the entry number k.
Now observe that with G

(k)
N (z) = Udiag(z−λ)U∗ and Ĝ

(k)
N (z) = V diag(z− λ̃)V ∗,

G
(k)
N (z)tt =

2N∑

i=1

|uti|2
1

z − λi
(4.34)

Ĝ
(k)
N (z)tt =

N∑

i=1

|vti|2
1

z − λ̃i
. (4.35)

The result follows since, for t 6= k,

2N−1∑

i=1

|uti|2
1

z − λi
=

2N∑

i=1

|vti|2
1

z − λ̃i
(4.36)

and, for t = k, Ĝ
(k)
N (z)k,k = z−1.
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Lemma 4.8. For all z ∈ C and Lebesgue almost every point x ∈ [0, 1], we have

ℑ(z)ℑ(Kz(x)) 6 0 (4.37)

and

|ℑ(Kz(x))| 6
1

ℑ(z) (4.38)

Proof. This is a straightforward consequence of Lemma 4.4. Indeed, we have for all
positive continuous function f on [0, 1] and N ∈ N:

ℑ(z)ℑ
( ∫ 1

0

f(x)E[L1,z
N ](dx)

)
6 0.

We pass to the limit as N goes to ∞ along some suitable subsequence and obtain:

ℑ(z)ℑ
(∫ 1

0

f(x)Kz(x) dx
)
6 0.

The result follows.

4.3 Concentration inequalities

This lemma is adpated to our case from Lemma 5.4 in [3].

Lemma 4.9. Let f : [0, 1] → R be a bounded measurable function. For each i ∈
{1, 2}, we have the following concentration results:

E
[
| Li,zN (f)− E[Li,zN (f)] |2

]
6

8

N

|| f ||2∞
| ℑz |4 . (4.39)

Proof. Define two functions F 1
N and F 2

N such that:

F 1
N

((
X

(N)
ij

)
1 6 j 6 N+1

, 1 6 i 6 N

)
=

1

N

N∑

k=1

f

(
k

N

)
GN(z)kk (4.40)

F 2
N

((
X

(N)
ij

)
1 6 j 6 N+1

, 1 6 i 6 N

)
=

1

N

N+1∑

k=1

f

(
k

N + 1

)
GN (z)k+N,k+N (4.41)

We will prove the Lemma for L1,z
N ; the proof for L2,z

N is a straightforward adap-
tation.

Let, for k ∈ {1, . . . , N + 1},

Fk = σ

((
X

(N)
ij

)
1 6 j 6 N

, 1 6 i 6 k

)
(4.42)
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If P denotes the law of the vector
(
X

(N)
1j

)
1 6 j 6 N

,

E
[
| F 1

N − E[F 1
N ] |2

]

=

N∑

i=0

E
[
| E[F 1

N | Fi+1]− E[F 1
N | Fi] |2

]

=

N∑

i=0

∫
|
∫

(FN(x1, x2, . . . , xi+1, yi+2, . . . , yN+1)− FN(x1, x2, . . . , xi, yi+1, . . . , yN+1)) dP
⊗N+1(y) |2

dP⊗i+1(x)

6

N∑

i=0

∫
|
∫

(FN(x1, x2, . . . , xi, xi+1, xi+2, . . . , xN+1)− FN(x1, x2, . . . , xi, y, xi+2, . . . , xN+1)) dP (y) |2

dP⊗N+1(x)

6

N∑

i=0

sup
R(N+1)2

|| ∇xi+1
FN ||2

∫
|| x− y ||2 dP⊗2(x, y).

The quantity ∇xi+1
F 1
N refers to the gradient of F 1

N in the direction of the vector
xi+1.

If we consider a couple of processes (B̃1, M̃1) independent from (B1,M1) with
the same law, it is easy to see that:

∫
|| x− y ||2 dP ⊗ dP (x, y) =

N∑

j=1

E

[
(B1

M1(0, j

N
)
− B1

M1(0, j−1
N

)
− B̃1

M̃1(0, j
N
)
+ B̃1

M̃1(0, j−1
N

)
)2
]
.

= 2− 2
N∑

j=1

E

[
(B1

M1(0, j

N
)
− B1

M1(0, j−1
N

)
)(B̃1

M̃1(0, j

N
)
B̃1
M̃1(0, j−1

N
)
)
]

= 2.

In our case, we have, for i ∈ {1, . . . , N + 1}, j ∈ {1, . . . , N}:

∂GN (z)kk
∂Xij

= GN(z)k,jGN(z)N+i,k +GN (z)k,N+iGN (z)j,k (4.43)

Thus,

∇xi+1
FN =

1

N

N∑

k=1

f

(
k

N

)
∇xi+1

GN(z)kk (4.44)

It is now plain to compute:

|| ∇xi+1
FN ||2 = 1

N2

N∑

j=1

|
(
GN(z)D

1(f)GN(z)
)
N+i+1,j

+
(
GN(z)D

1(f)GN(z)
)
j,N+i+1

|2

18



where D1(f) is the (2N)-dimensional diagonal matrix of entries:

D1(f)kk = f

(
k

N

)
1{1 6 k 6 N}.

One thus has:

|| ∇xi+1
F 1
N ||2 = 4

N2

N∑

j=1

|
(
GN(z)D

1(f)GN(z)
)
N+i+1,j

|2

6
4

N2

2N∑

j=1

|
(
GN(z)D

1(f)GN(z)
)
N+i+1,j

|2

6
4

N2

|| f ||2∞
| ℑz |4 .

where, in the last line, we used lemma A.1 and the fact that the matrixGN(z)D
1(f)GN(z)

has a spectral radius smaller than || f ||∞ / | ℑz |2.
Finally,

E
[
| F 1

N − E[F 1
N ] |2

]
6

8

N

|| f ||2∞
| ℑz |4 . (4.45)

�

We also prove the following lemma:

Lemma 4.10. For all α > 1 such that ζ(2α) > 1, we have

E

[∣∣∣∣∣

N∑

t=1

rk(t)
2
(
Ĝ

(N+k)
N (z)tt − E[Ĝ

(N+k)
N (z)tt]

)∣∣∣∣∣

]
6

C(lnN)2

N
ζ(2α)−1

α |ℑ(z)|4
(4.46)

for some positive constant C independent from N, z, k.

Proof. Notice that (rk(t))t and Ĝ
(N+k)
N (z) are independent. Hence, by conditioning

with respect to the process (rk(t))t, we can argue along the same lines as in the
previous lemma with rk(t) instead of 1

N
f( t

N
) and we get the formula:

E



∣∣∣∣∣

N∑

t=1

rk(t)
2
(
Ĝ

(N+k)
N (z)tt − E[Ĝ

(N+k)
N (z)tt]

)∣∣∣∣∣

2

 6

8

|ℑ(z)|4E[supt
rk(t)

4].

We conclude with Proposition B.1 in the appendix .
In the following, we fix α > 1 such that ζ(2α) > 1 (because of the expression of

ζ and the inequality γ2 < 1/3, it is clear that such a number exists).
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4.4 The system verified by the limit point µ2z and Kz(x): first

equation

From the Schur complement formula (see e.g. Lemma 4.2 in [3] for a reminder), one
has for k ∈ {1, . . . , N}:

GN (z)N+k,N+k =

[
z −

N∑

s,t=1

rk(s)rk(t)G
(N+k)
N (z)st

]−1

(4.47)

Using Lemma A.2, one can write:

GN(z)N+k,N+k =

[
z −

N∑

t=1

rk(t)
2G

(N+k)
N (z)tt + ǫ1N,k(z)

]−1

(4.48)

where ǫ1N,k(z) is a complex valued random variable for which there exists C > 0 such
that for all N ∈ N and 1 6 k 6 N ,

E[|ǫ1N,k(z)|2] <
C

N1−γ2 . (4.49)

By using Lemma 4.7, we can write:

GN(z)N+k,N+k =

[
z −

N∑

t=1

rk(t)
2Ĝ

(N+k)
N (z)tt + ǫ1N,k(z)

]−1

. (4.50)

Lemma 4.10 applied to α > 1 such that ζ(2α) > 1 yields:

E



∣∣∣∣∣

N∑

t=1

rk(t)
2
(
Ĝ

(N+k)
N (z)tt − E[Ĝ

(N+k)
N (z)tt]

)∣∣∣∣∣

2

 6

C(lnN)2

N
ζ(2α)−1

α |ℑ(z)|4
. (4.51)

Thus, one can write:

GN(z)N+k,N+k =

[
z −

N∑

t=1

rk(t)
2
E

[
Ĝ

(N+k)
N (z)tt

]
+ ǫ1N,k(z) + ǫ2N,k(z)

]−1

(4.52)

where ǫ2N,k(z) is a complex valued random variable such that for all N ∈ N and
1 6 k 6 N + 1,

E[|ǫ2N,k(z)|2] <
C(lnN)2

N
ζ(2α)−1

α |ℑ(z)|4
. (4.53)
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In addition, using Lemma 4.5, we can show:

E

[∣∣∣∣∣

N∑

t=1

rk(t)
2
(
E

[
Ĝ

(N+k)
N (z)tt −GN(z)tt

])∣∣∣∣∣

]
(4.54)

6

N∑

t=1

E[rk(t)
2]E
[∣∣∣Ĝ(N+k)

N (z)tt −GN(z)tt

∣∣∣
]

(4.55)

6
1

|ℑ(z)|2
√
N
. (4.56)

It follows:

GN(z)N+k,N+k =

[
z −

N∑

t=1

rk(t)
2
E [GN(z)tt] + ǫ1N,k(z) + ǫ2N,k(z) + ǫ3N,k(z)

]−1

(4.57)
where ǫ3N,k(z) is a complex valued random variable such that for all N ∈ N and
1 6 k 6 N + 1,

E
[
|ǫ3N,k(z)|

]
<

1

|ℑ(z)|2
√
N
. (4.58)

Let us denote by I tN the interval [ t−1
N
, t
N
]. Then we have:

Lemma 4.11. The following inequality holds:

E



∣∣∣∣∣

N∑

t=1

(
rk(t)

2 −Mk(I tN )
)
E [GN(z)tt]

∣∣∣∣∣

2

 6

C

N1−γ2 |ℑ(z)|2

for some positive constant C.

Proof. We expand the square and, because rk(t) and rk(t
′) are independent for t 6= t′

conditionally to Mk, we have:

E

[∣∣∣
N∑

t=1

(
rk(t)

2 −Mk(I tN)
)
E [GN(z)tt]

∣∣∣
2]

=
N∑

t,t′=1

E

[(
rk(t)

2 −Mk(I tN)
)(
rk(t

′)2 −Mk(I t
′

N )
)
E [GN(z)tt]E [GN(z)t′t′ ]

]

=
N∑

t=1

E

[(
rk(t)

2 −Mk(I tN )
)2]

E [GN(z)tt]
2

= 2

N∑

t=1

E

[(
Mk(I tN)

)2]
E [GN(z)tt]

2

6 2C
N

N ζ(2)|ℑ(z)|2
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We can thus write

GN(z)N+k,N+k =

[
z −

N∑

t=1

Mk(I tN )E [GN(z)tt] (4.59)

+ ǫ1N,k(z) + ǫ2N,k(z) + ǫ3N,k(z) + ǫ4N,k(z)

]−1

(4.60)

where ǫ4N,k(z) is a complex valued random variable such that for all N ∈ N and
1 6 k 6 N + 1,

E
[
|ǫ4N,k(z)|2

]
6

C

N ζ(2)−1|ℑ(z)|2 . (4.61)

Set ǫN,k(z) = ǫ1N,k(z) + ǫ2N,k(z) + ǫ3N,k(z) + ǫ4N,k(z) and rewrite:

GN (z)N+k,N+k =

[
z −

N∑

t=1

Mk(I tN)E [GN(z)tt] + ǫN,k(z)

]−1

(4.62)

We now need to introduce the truncated Radon measure Mk
ǫ (dx) with Lebesgue

density eω
k
ǫ (x) which converges almost surely as ǫ goes to 0, in the sense of weak

convergence in the space of Radon measure, to the measure Mk (see section 2.1).

Lemma 4.12. For ǫ > 0, the following uniform bound holds:

sup
N

E
[
|
N∑

t=1

Mk(I tN)E [GN(z)tt]−
N∑

t=1

Mk
ǫ (I

t
N)E [GN(z)tt] |2

]
6
Cǫ1−γ

2

|ℑ(z)|2 .

Proof. We expand the square. Note that the covariance function ρǫ of the process
ωǫ increases as ǫ decreases to 0 and uniformly converges as ǫ → 0 towards ln+

τ
|x|
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over the complement of any ball centered at 0. Thus we have:

sup
N

E
[
|
N∑

t=1

Mk(I tN)E [GN (z)tt]−
N∑

t=1

Mk
ǫ (I

t
N)E [GN (z)tt] |2

]

= sup
N

N∑

t,t′=1

E
[
(Mk(I tN )−Mk

ǫ (I
t
N))(M

k(I t
′

N)−Mk
ǫ (I

t′

N))
]
E [GN(z)tt]E [GN(z)t′t′ ]

= sup
N

N∑

t,t′=1

E

[
(Mk(I tN)−Mk

ǫ (I
t
N))(M

k(I t
′

N )−Mk
ǫ (I

t′

N))
]
E [GN(z)tt]E [GN(z)t′t′ ]

= sup
N

N∑

t,t′=1

(
E

[
Mk(I tN)M

k(I t
′

N)
]
− E

[
Mk

ǫ (I
t
N)M

k
ǫ (I

t′

N)
])

E [GN(z)tt]E [GN(z)t′t′ ]

= sup
N

N∑

t,t′=1

E [GN(z)tt]E [GN(z)t′t′ ]

∫

It
N

∫

It
′

N

(
eψ(2) ln+

τ
|r−u| − eψ(2)ρǫ(r−u)

)
drdu

6
1

|ℑ(z)|2
∫ 1

0

∫ 1

0

(
eψ(2) ln+

τ
|r−u| − eψ(2)ρǫ(r−u)

)
drdu.

where, in the fourth line, we used the fact that, if Fǫis the sigma field generated by
the random variables µ(A), A ∈ B({(t, y) : y > ǫ}), then E[Mk(A)|Fǫ] =Mk

ǫ (A) for
all borelian set A. A straightforward computation leads to the relation

ρǫ(t) =





ln τ
ǫ
+ 1− |t|

ǫ
if |t| 6 ǫ

ln τ
|t| if ǫ 6 |t| 6 τ

0 if τ < |t|
(4.63)

By using the expression of ρǫ, it is then plain to obtain the desired bound.
We can thus write

GN(z)N+k,N+k =

[
z −

N∑

t=1

Mk
ǫ (I

t
N)E [GN(z)tt] + ǫN,k(z) + δ(ǫ, N, z)

]−1

, (4.64)

where
sup
N

E[|δ(ǫ, N, z)|2] → 0 as ǫ→ 0, (4.65)

and also:

E [GN(z)N+k,N+k] = E



[
z −

N∑

t=1

Mk
ǫ (I

t
N)E [GN(z)tt] + ǫN,k(z) + δ(ǫ, N, z)

]−1

 .

(4.66)
The next step is to study the convergence of the above quantity. Hence we prove
(see the proof in the appendix):
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Lemma 4.13. The random variable
∑N

t=1M
k
ǫ (I

t
N)E [GN(z)tt] converges in probabil-

ity as N → +∞ towards
∫ 1

0
Kz(x)M

k
ǫ (dx).

We fix ǫ > 0. For that ǫ, the family of random variables (δ(ǫ, N, z))N is bounded
in L2 so that it is tight. Even if it means extracting again a subsequence we assume
that the couple (

∑N
t=1M

k
ǫ (I

t
N)E [GN(z)tt] , δ(ǫ, N, z))N converges in law towards the

couple (
∫ 1

0
Kz(x)M

k
ǫ (dx), Yǫ). We remind the reader of (4.47) which implies that

∣∣∣∣∣∣

(
z −

N∑

t=1

Mk
ǫ (I

t
N)E [GN(z)tt] + ǫN,k(z) + δ(ǫ, N, z)

)−1
∣∣∣∣∣∣
6

1

|ℑ(z)| .

The quantity
(
z −

∑N
t=1M

k
ǫ (I

t
N)E [GN (z)tt] + ǫN,k(z) + δ(ǫ, N, z)

)−1

is therefore bounded

uniformly with respect to N, ǫ and converges in law towards

(
z −

∫ 1

0

Kz(x)M
k
ǫ (dx) + Yǫ

)−1

.

We deduce that the expectation of the former quantity converges as ǫ → 0 towards
the expectation of the latter quantity. From (4.66), we deduce that

µ2
z = E

[(
z −

∫ 1

0

Kz(x)M
k
ǫ (dx) + Yǫ

)−1
]
. (4.67)

Clearly, standard arguments prove that
∫ 1

0
Kz(x)M

k
ǫ (dx) converges almost surely

towards
∫ 1

0
Kz(x)M

k(dx) as ǫ→ 0 (Kz is deterministic (see lemma 4.9), measurable
and bounded) and, because of (4.65), Yǫ converges almost surely towards 0 as ǫ→ 0.

Again, because the quantity
(
z −

∫ 1

0
Kz(x)M

k
ǫ (dx) + Yǫ

)−1

is bounded uniformly

with respect to ǫ, we deduce that:

µ2
z = E

[(
z −

∫ 1

0

Kz(x)M
k(dx)

)−1
]
. (4.68)

4.5 Second equation

Now we turn our attention to the terms GN(z)kk for k ∈ {1, . . . , N}. Again, by using
the Schur complement formula, we can write, for k ∈ {1, . . . , N}:

GN(z)kk =

[
z −

N∑

i,j=1

ri(k)rj(k)G
(k)
N (z)N+i,N+j

]−1

(4.69)

=

[
z −

N∑

i=1

ri(k)
2G

(k)
N (z)N+i,N+i + η1N,k(z)

]−1

(4.70)
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where, using Lemma A.3, η1N,k(z) is a complex valued random variable for which
there exists c > 0 such that for all N ∈ N and 1 6 k 6 N,E[|η1N,k(z)|2] < c/N .

With a further use of the Schur complement formula for the term G
(k)
N (z)N+i,N+i,

we obtain:

GN(z)kk =


z −

N∑

i=1

ri(k)
2

[
z −

N∑

s,t6=k
ri(s)ri(t)G

(k,N+i)
N (z)st

]−1

+ η1N,k(z)




−1

(4.71)

whereG
(k,N+i)
N (z) = A

(k,N+i)
N (z)−1. Note thatG

(k,N+i)
N (z) is independent of (ri(t))t=1,...,N .

Using the same arguments as in the derivation of the first equation (in particular
Lemmas A.2, 4.7, 4.10, B.1, 4.6 and 4.5), one can show that:

GN(z)kk =

[
z −

N∑

i=1

ri(k)
2

z −∑N
t=1M

i(I tN)E [GN(z)tt] + δN,k,i(z)
+ η1N,k(z)

]−1

(4.72)

where (δN,k,i(z))1 6 i 6 N are complex random variable such that

E[|δN,k,i(z)|] 6
C

Nmin( 1−γ2

4
,
ζ(2α)−1

α
)

(4.73)

for some positive constant C that does not depend on i, N and for α > 1 such that
ζ(2α) > 1.

Lemma 4.14. One can write:

GN(z)kk =

[
z −

N∑

i=1

ri(k)
2

z −
∑N

t=1M
i(I tN)E [GN(z)tt]

+ η1N,k(z) + η2N,k(z)

]−1

(4.74)

where η2N,k(z) is a random variable that tends to 0 in probability as N goes to ∞.

Proof. By using Lemma 4.4, we deduce that:

N∑

i=1

∣∣∣ ri(k)
2

z −
∑N

t=1M
i(I tN)E [GN(z)tt] + δN,k,i(z)

− ri(k)
2

z −
∑N

t=1M
i(I tN)E [GN(z)tt]

∣∣∣

6
1

|ℑ(z)|2
N∑

i=1

ri(k)
2min(|δN,k,i(z)|, 2). (4.75)

We stress that the lemma is proved as soon as we can prove that the left-hand side
in (4.75) converges in probability to 0. Hence it is enough to prove that

E

[
N∑

i=1

ri(k)
2min(|δN,k,i(z)|, 2)

]
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converges to 0 as N tends to ∞. By noticing that:

δN,k,i(z) =

N∑

s,t6=k
ri(s)ri(t)G

(k,N+i)
N (z)st −

N∑

t=1

M i(I tN)E [GN(z)tt] , (4.76)

it is straightforward to see that the variables
(
ri(k)

2min(|δN,k,i(z)|, 2)
)
1 6 i 6 N+1

are

identically distributed. Thus we have

E
[ N∑

i=1

ri(k)
2min(|δN,k,i(z)|, 2)

]
= NE

[
r1(k)

2min(|δN,k,1(z)|, 2)
]
.

Then for all A > 1 and α > 0, we have

NE
[
r1(k)

2min(|δN,k,1(z)|, 2)
]
=NE

[
r1(k)

2min(|δN,k,1(z)|, 2)1{Nr1(k)2 6 A}
]

+NE
[
r1(k)

2min(|δN,k,1(z)|, 2)1{Nr1(k)2>A}
]

6 AE[|δN,k,1(z)|] + 2E
[
Nr1(k)

2
1{Nr1(k)2>A}

]

6
AC

N
ζ(2)−1

4

+
2

Aα
E
[
N1+αr1(k)

2(α+1)
]

=
AC

N
ζ(2)−1

4

+
2N1+α

Aα
E
[
M1(0,

1

N
)α+1

]

By using the scale invariance property of the measure M1, we have:

E
[
M1(0, 1/N)α+1

]
=

1

N ζ(1+α)
E
[
M1(0, 1)α+1

]
,

in such a way that

NE
[
r1(k)

2min(|δN,k,1(z)|, 2)
]
6

AC

N
ζ(2)−1

4

+ 2E
[
M1(0, 1)α+1

] Nψ(1+α)

Aα
. (4.77)

Since ζ(2) > 5 − 4ζ ′(1) (this inequality is clear with ζ(q) = (1 + γ2/2)q + q2γ2/2
and is due to our hypotheses of Assumption 3.7 in the more general case), we can
choose p > 0 such that

ζ(2)− 1

4
> p > 1− ζ ′(1) = ψ′(1). (4.78)

The mapping α ∈]0,+∞[7→ pα − ψ(1 + α) reduces to 0 for α = 0 and, because
p > ψ′(1), is strictly positive for α > 0 small enough. So we choose α < 1 such that
pα− ψ(1 + α) > 0 and we set A = Np. We obtain:

NE
[
r1(k)

2min(|δN,k,1(z)|, 2)
]
6

C

N
ζ(2)−1

4
−p

+ 22+αE
[
M1(0, T )α+1

] 1

Nαp−ψ(1+α) .

The result follows by letting N → ∞ since min((ζ(2)− 1)/4− p, αp− ψ(1 + α)) >
0.
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Lemma 4.15. There exists a constant c > 0, which does not depend on N , such
that for each N ∈ N:

E

[∣∣∣∣
N∑

i=1

(
ri(k)

2

z −
∑N

t=1M
i(I tN)E [GN(z)tt]

− E

[
ri(k)

2

z −
∑N

t=1M
i(I tN)E [GN(z)tt]

])∣∣∣∣
2
]
6

c

N1−γ2 .

Proof. The proof is straightforward using the fact that for i ∈ {1, . . . , N}, the
random variables

ri(k)
2

z −
∑N

t=1M
i(I tN)E [GN(z)tt]

(4.79)

are i.i.d. random variables and Lemma 4.4.
Therefore we can write

GN(z)kk =

[
z −

N∑

i=1

ri(k)
2

z −
∑N

t=1M
i(I tN)E [GN(z)tt]

+ η1N,k(z) + η2N,k(z) + η3N,k(z)

]−1

(4.80)

with E[(η3N,k(z))
2] 6 c

N1−γ2
.

Now we can take the expectation in (4.80) to obtain

E[L1,z
N (f)]

=
1

N

N∑

k=1

f(k/N)E[GN(z)kk]

=
1

N

N∑

k=1

f(k/N)E
[(
z − E

[ N∑

i=1

ri(k)
2

z −∑N
t=1M

i(I tN )E
[
GN (z)tt

]
]
+ ηN,k(z)

)−1]

=
1

N

N∑

k=1

f(k/N)E
[(
z −NE

[ M
[
k−1
N

; k
N

]

z −
∑N

t=1M(I tN )E
[
GN(z)tt

]
]
+ ηN,k(z)

)−1]

with ηN,k(z) = η1N,k(z)+η
2
N (z)+η

3
N,k(z). Then, by introducing the truncated measure

Mǫ and by using the Girsanov formula, we can approximate (uniformly in N) this
last expression by:

1

N

N∑

k=1

f(k/N)E
[(
z−NE

[ Mǫ

[
k−1
N

; k
N

]

z −
∑N

t=1Mǫ(I
t
N)E

[
GN(z)tt

]
])−1

+ δ̂(N, k, z, ǫ)
]
(4.81)

with supN,k E[|δ̂(N, k, z, ǫ)|2] going to 0 when ǫ is going to 0. Along some appropriate
subsequence, this latter quantity converges as N → +∞ to:

∫ 1

0

f(x)E



(
z − E

[
eωǫ(x)

z −
∫ 1

0
Kz(r)Mǫ(dr)

])−1

+ Y ǫ


 dx (4.82)
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where Y ǫ is such that E[(Y ǫ)2] converges to 0 when ǫ is going to 0. And, we thus
obtain gathering the above arguments that:

∫ 1

0

f(x)Kz(x) dx =

∫ 1

0

f(x)E



(
z − E

[
eωǫ(x)

z −
∫ 1

0
Kz(r)Mǫ(dr)

])−1

+ Y ǫ


 dx.

(4.83)

It remains to pass to the limit as ǫ → 0 in that expression. This job is carried out
with the help of a Girsanov type transform in Appendix C.

4.6 Uniqueness of the solution to the system of equations

Let X be the space of bounded measurable functions [0, 1] → C endowed with the
uniform norm defined for f ∈ X by:

||f ||∞ = sup
x∈[0,1]

|f(x)|. (4.84)

Define the operator T : X → X by setting, for g ∈ X and for all x ∈ [0, 1]:

Tg(x) =
1

z − qE

[(
z −

∫ 1

0

(
τ

|t−x|

)γ2
+
g(t)M(dt)

)−1
] (4.85)

For g, h ∈ X and for all x ∈ [0, 1], we have:

|Tg(x)− Th(x)| 6 q

|ℑ(z)|4E
[∫ 1

0

(
τ

|t− x|

)γ2

+

|g(t)− h(t)|M(dt)

]

6
q

|ℑ(z)|4E
[∫ 1

0

(
τ

|t− x|

)γ2

+

M(dt)

]
||g − h||∞

6
q

|ℑ(z)|4
∫ 1

0

(
τ

|t− x|

)γ2

+

dt||g − h||∞.

Recall that γ2 < 1/3, and thus it is easy to see that:

sup
x∈[0,1]

∫ 1

0

(
τ

|t− x|

)γ2

+

dt < +∞ (4.86)

And we can deduce that there exists a positive constant C such that:

sup
x∈[0,1]

|Tg(x)− Th(x)| 6 C

|ℑ(z)|4 ||g − h||∞ (4.87)
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If z is such that C/|ℑ(z)|4 < 1, the operator T is contracting and thus has a unique
fixed point g in the Banach space X . We conclude that, for each z with |ℑ(z)| large
enough, there exists a unique bounded function Kz : [0, 1] → C such that for all
x ∈ [0, 1]:

Kz(x) =
1

z − qE

[(
z −

∫ 1

0

(
τ

|t−x|

)γ2
+
Kz(t)M(dt)

)−1
] . (4.88)

Using the first equation, it is now plain to see that, for z such that C/|ℑ(z)|4 < 1,
the constant µ2

z is uniquely defined by the system of equations (by the first equation,
it is a function of the function Kz, which is uniquely defined for such z).

Now it remains to show that the limit point µ2
z is uniquely defined for all z ∈ C\R.

It will be easy to see using analycity arguments. Indeed, from the Montel theorem,
every limit point µ2

z is holomorphic on the set C\R since it is the pointwise limit of a
subsequence of the sequence of holomorphic functions L1,z

N ([0, 1]) that are uniformly
bounded on each compact set of C\R (see Lemma 4.4). Thus, µ2

z is uniquely defined
for each z ∈ C\R by analytic extension (we have just seen that µ2

z is uniquely defined
for a set of z with accumulation points).

The same argument holds for the unicity of the integral
∫ 1

0
Kz(x)dx. Indeed,

every limit point
∫ 1

0
Kz(x)dx is a holomorphic function on C \ R that has some

prescribed value on the set {z ∈ C \ R : C/|ℑ(z)|4 < 1}, which has accumulation
points.

4.7 Proof of Theorem 3.2, 3.3 and 3.4

Let us gather the above arguments to prove the main theorems.
Proof of theorem 3.4: it is a direct consequence of sections 4.4, 4.5 and 4.6.
Proof of theorem 3.3 i): The limit points Kz(x)dx and µ2

zdx of the two complex
measures E[L1,z

N ] and E[L2,z
N ] are uniquely defined because µ2

z and Kz(x) satisfy a
fixed point system of equations (we have just seen this in theorem 3.4).

Proof of theorem 3.3 iii): We need to prove that µ2
z is the Stieltjes transform

of a probability measure υ. From [6], it suffices to prove that µ2
z is holomorphic

over C \ R, maps {z ∈ C \ R;ℑ(z) < 0} to {z ∈ C \ R;ℑ(z) > 0} and that
limy→∞ iyµ2

iy = 1 (y ∈ R). Let us check those properties. We have already seen in
section 4.6 that µ2

z is holomorphic. From Lemma 4.4, µ2 maps {z ∈ C\R;ℑ(z) < 0}
to {z ∈ C \ R;ℑ(z) > 0}. Finally, from Theorem 3.4, we have

zµ2
z = E

[
1

1− z−1
∫ 1

0
Kz(x)M(dx)

]
.

As |Kz(x)| 6 |ℑ(z)|−1, the term
∫ 1

0
Kz(x)M(dx)/z converges pointwise towards 0

when z = iy and y → ∞. Furthermore, from Lemma 4.8, we have ℑ(z)ℑ(Kz(x) 6 0
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in such a way that
∣∣∣z −

∫ 1

0
Kz(x)M(dx)

∣∣∣
−1

6 |ℑ(z)|−1. Therefore

∣∣ z

z −
∫ 1

0
Kz(x)M(dx)

∣∣ 6 1

when z takes on the form z = iy (y ∈ R). The dominated convergence theorem
then implies that limy→∞ iyµ2

iy = 1 and we can conclude µ2 is indeed the Stieltjes
transform of a (unique) probability measure υ.

Proof of theorem 3.2 i) and 3.3 ii) We observe that, for z ∈ C \ R:

AN(z)

(
zIT 0
XN zIN

)
=

(
z2IT − tXNXN −ztXN

0 z2IN

)
. (4.89)

Let us rewrite the matrix GN(z) = AN(z)
−1 under the form:

GN(z) =

(
G1(z)

tG1,2(z)
G1,2(z) G2(z)

)
, (4.90)

where G1(z), G1,2(z), G2(z) are respectively of size T × T , N × T , N ×N .
By taking the inverse in the relation (4.89), we obtain:

(
IT/z 0

−XN/z
2 IN/z

)(
G1(z)

tG1,2(z)
G1,2(z) G2(z)

)
=

(
(z2IT − tXNXN)

−1 B
0 IN/z

2

)
(4.91)

where B = (z2IT − tXNXN )
−1tXN/z.

It can be rewritten, using the fact that−XNG1(z)+zG1,2(z) = 0 and−XN
tG1,2(z)+

zG2(z) = IN , as:

(
G1(z)/z

tG1,2(z)/z
0 IN/z

2

)
=

(
(z2IT − tXNXN)

−1 B
0 IN/z

2

)
(4.92)

Therefore, taking the trace we get:

1

Tz

T∑

k=1

GN(z)kk =
1

T
tr(z2IT − tXNXN)

−1, (4.93)

and, by using the fact that the eigenvalues of tXNXN are those of XN
tXN aug-

mented with T −N zeros:

1

Tz

T∑

k=1

GN(z)kk =
1

T
tr(z2IN −XN

tXN)
−1 +

T −N

Tz2
. (4.94)

Now, taking expectation and using theorem 3.3, we deduce:

∫ 1

0

Kz(x)dx = qz lim
N→∞

1

N
E
[
tr(z2IN −XN

tXN)
−1
]
+

1− q

z
(4.95)
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Using the fact that (by (2.7)) the spectrum of BN contains 2N eigenvalues which
are the positive and negative square-roots of the spectrum of RN = tXNXN plus
T −N zero eigenvalues and the fact that 1/(z − λ) + 1/(z + λ) = 2z/(z2 − λ2), we
can see that:

1

N + T

N+T∑

k=1

GN(z)kk =
2z

N + T
tr(z2IN −XN

tXN)
−1 +

T −N

T +N

1

z
(4.96)

Using the relation 2.12 and theorem 3.3, it is easy to see that:

lim
N→+∞

1

N + T

N+T∑

k=1

E[GN (z)kk] =
1

1 + q

(
qµ2

z +

∫ 1

0

Kz(x)dx

)
(4.97)

Taking expectation in 4.96 and using (4.97), we get:

1

1 + q

(
qµ2

z +

∫ 1

0

Kz(x)dx

)
=

2qz

1 + q
lim
N→∞

1

N
E
[
tr(z2IN −XN

tXN)
−1
]

(4.98)

+
1− q

1 + q

1

z
. (4.99)

From equations (4.95) and (4.98), we get the following relation:
∫ 1

0

Kz(x)dx = qµ2
z +

1− q

z
. (4.100)

and theorem 3.3 ii). is proved.
With (4.100), (4.97) becomes:

lim
N→+∞

1

N + T

N+T∑

k=1

E[GN (z)kk] =
1

1 + q

(
2qµ2

z +
1− q

z

)
(4.101)

and, we note that the right hand side of (4.101) is the Stieltjes transform of the
measure 2q/(1 + q)υ(dx) + (1− q)/(1 + q)δ0(dx). Thus, the mean spectral measure
E[µBN

] converges weakly to the measure 2q/(1 + q)υ(dx) + (1− q)/(1 + q)δ0(dx).
We have also:

lim
N→∞

1

N
E
[
tr(z2IN −XN

tXN )
−1
]
=
µ2
z

z
(4.102)

Again using the fact that, for all x ∈ R, 1/(z2−x2) = (1/(z−x)+1/(z+x))/(2z)
and the fact that υ(dx) is a symmetric measure on R (υ(dx) is the weak limit of
E [µBN

], which is symmetric since the spectrum of BN is symmetric with respect to
0 almost surely), we see that:

lim
N→∞

1

N
E
[
tr(z2IN −XN

tXN)
−1
]
=

1

z

∫

R

υ(dx)

z − x
(4.103)

=

∫

R

υ ◦ (x2)−1(dx)

z2 − x
. (4.104)
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This implies that, for each z ∈ C \ R,

lim
N→∞

1

N
E
[
tr(zIN −XN

tXN)
−1
]
=

∫

R

υ ◦ (x2)−1(dx)

z − x
. (4.105)

and thus, the probability measure E[µRN
] converges weakly to the measure υ ◦

(x2)−1(dx).
Proof of theorem 3.2 ii): using relation (2.12) and lemma 4.9, it is plain to check

that
∫
R
(z − x)−1µBN

(dx) converges in probability to the Stieltjes transform of the
probability measure 2q/(1+ q)υ(dx)+ (1− q)/(1+ q)δ0(dx). This convergence holds
for finite dimensional vectors (

∫
R
(zi− x)−1µBN

(dx)), i = 1, . . . , d) as well. Using the
fact that the set of functions {(z − x)−1, z ∈ C \ R} is dense in the set C0(R) of
continuous functions on R going to 0 at infinity, we can show, for each f ∈ C0(R),
that

∫
f(x)µBN

(dx) converges in probability to
∫
f(x)(2q/(1+q)υ(dx)+(1−q)/(1+

q)δ0(dx)). But, since µBN
(R) = 2q/(1 + q)υ(R) + (1 − q)/(1 + q)δ0(R) = 1, this

vague convergence can be strengthened in a weak convergence. With the relations
µB2

N
= 2N/(N + T )µRN

+ (T − N)/(T + N)δ0 and the fact that
∫
f(x)µB2

N
(dx) =∫

f(x2)µBN
(dx), it is plain to conclude that µRN

converges weakly in probability to
υ ◦ (x2)−1(dx).

Proof of theorem 3.2 iii): again using relation (2.12) and lemma 4.9 together with
Borel-Cantelli’s lemma, one can show that the two spectral measures µBNk

converges
weakly almost surely to 2q/(1 + q)υ(dx) + (1 − q)/(1 + q)δ0(dx). It is then easy to
deduce as before that µRNk

converges weakly almost surely to υ ◦ (x2)−1(dx).

A. Auxiliary lemmas

Lemma A.1. Let A be a n × n complex matrix such that the Hermitian matrix
M = AĀT has spectral radius λmax. Then, for all i, we have:

n∑

j=1

| Aij |2 6 λmax. (A.1)

Proof. It is straightforward to see that all the entries of M are, in modulus, smaller
than λmax. On the other hand, we have:

Mii =

n∑

j=1

| Aij |2 .

and, thus:
n∑

j=1

| Aij |2 6 λmax. (A.2)

�
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Lemma A.2. There exists C > 0 such that for each N ∈ N and k ∈ {1, . . . , N}:

E



∣∣∣∣∣

N∑

s 6=t
rk(s)rk(t)G

(N+k)
N (z)st

∣∣∣∣∣

2

 6

C

N1−γ2 .

Similarly, for each N ∈ N and k ∈ {1, . . . , N}, i ∈ {1, . . . , N}, we have the following
inequality concerning the conditional expectation with respect to M i:

E



∣∣∣∣∣

N∑

s,t6=k,s 6=t
ri(s)ri(t)G

(k,N+i)
N (z)st

∣∣∣∣∣

2

|M i


 6

C

N1−γ2 .

Proof. We first expand the square and use the independence of (rk(s))s fromG
(N+k)
N (z):

E



∣∣∣∣∣

N∑

s 6=t
rk(s)rk(t)G

(N+k)
N (z)st

∣∣∣∣∣

2

 = 2

N∑

s 6=t
E
[
rk(s)

2rk(t)
2
]
E

[∣∣∣G(N+k)
N (z)st

∣∣∣
2
]

Now we compute

E
[
rk(s)

2rk(t)
2
]
= E

[
Mk(

s− 1

N
,
s

N
)Mk(

t− 1

N
,
t

N
)

]

=

∫ s
N

s−1
N

∫ t
N

t−1
N

max

(
1,

τ

|r − u|

)ψ(2)
drdu

6

∫ 1
N

0

∫ 2
N

1
N

max

(
1,

τ

|r − u|

)ψ(2)
drdu

We consider N large enough so as to make 2/N 6 τ . The above integral is then
plain to compute and we get

E
[
rk(s)

2rk(t)
2
]
6

τψ(2)(22−ψ(2) − 2)

(1− ψ(2))(2− ψ(2))

1

N2−ψ(2) . (A.3)

Thus we have for some positive constant C

E



∣∣∣∣∣

N∑

s 6=t
rk(s)rk(t)G

(N+k)
N (z)st

∣∣∣∣∣

2

 6

C

N2−ψ(2)

N∑

s 6=t
E

[∣∣∣G(N+k)
N (z)st

∣∣∣
2
]

6
C

N1−ψ(2)
1

|ℑ(z)|2 ,

where we have used the fact that almost surely:

1

2N − 1

2N∑

s,t6=N+k

∣∣∣G(N+k)
N (z)st

∣∣∣
2

6
1

|ℑ(z)|2 .
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It just remains to see that ψ(2) = γ2. To prove the second relation, we follow the

same argument by noticing that (ri(t))t and G
(k,N+i)
N (z) are independent condition-

ally to M i.

Lemma A.3. There exists some constant c > 0 such that for each N ∈ N and
k ∈ {1, . . . , N}:

E



∣∣∣∣∣

N∑

i 6=j
ri(k)rj(k)G

(k)
N (z)N+i,N+j

∣∣∣∣∣

2

 6

c

N
.

Proof. Again we expand the square and we use the fact that, conditionally to the
(M i)i, the quantities ri(k), rj(k), G

(k)
N (z)N+i,N+j are independent and ri(k), rj(k) are

centered. Indeed, conditionally to the (M i)i, the variables ri(k), rj(k), G
(k)
N (z)N+i,N+j

involve different increments of the Brownian motion. Thus we have

E



∣∣∣∣∣

N∑

i 6=j
ri(k)rj(k)G

(k)
N (z)N+i,N+j

∣∣∣∣∣

2

 =

N∑

i 6=j
E
[
ri(k)

2rj(k)
2
]
E

[∣∣∣G(k)
N (z)N+i,N+j

∣∣∣
2
]

6

N∑

i 6=j
E[ri(k)

2]E[rj(k)
2]E

[∣∣∣G(k)
N (z)N+i,N+j

∣∣∣
2
]

= N−2

N∑

i 6=j
E

[∣∣∣G(k)
N (z)N+i,N+j

∣∣∣
2
]

6
c

N
,

where we have used the fact that almost surely:

1

2N − 1

2N∑

i,j 6=k

∣∣∣G(k)
N (z)i,j

∣∣∣
2

6
1

|ℑ(z)|2 .

Proof of Lemma 4.13. We define the function fk,ǫN on the interval [0, 1] by

fk,ǫN (x) = NMk,ǫ(I tN) if x ∈ I tN .

Notice the relation:

N∑

t=1

Mk
ǫ (I

t
N )E [GN(z)tt] =

∫ 1

0

fk,ǫN (r) dE[L1,z
N ](dr).
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Then, by stationarity, we have:

E

[∣∣∣∣
∫ 1

0

fk,ǫN (r) dE[L1,z
N ](dr)−

∫ 1

0

eω
k
ǫ (r) dE[L1,z

N ](dr)

∣∣∣∣
]

6

N∑

t=1

E

[∣∣∣∣∣

∫

It
N

(fk,ǫN (r)− eω
k
ǫ (r)) dE[L1,z

N ](dr)

∣∣∣∣∣

]

6
N

|ℑ(z)| supr∈I1
N

E

[∣∣∣∣∣

∫

I1
N

(eω
k
ǫ (u) − eω

k
ǫ (r)) du

∣∣∣∣∣

]

6
N

|ℑ(z)| supr∈I1
N

∫

I1
N

E

[∣∣∣eωk
ǫ (u) − eω

k
ǫ (r))

∣∣∣
2
]1/2

du

6
N

|ℑ(z)| supr∈I1
N

∫

I1
N

(
2eψ(2)ρǫ(0) − 2eψ(2)ρǫ(r−u)

)1/2
du.

Because of the continuity of the function ρǫ over [0, 1], we have

E

[∣∣∣
∫ 1

0

fk,ǫN (r) dE[L1,z
N ](dr)−

∫ 1

0

eω
k
ǫ (r) dE[L1,z

N ](dr)
∣∣∣
]
→ 0 as N → ∞. (A.4)

In a quite similar way, we can prove that

E

[∣∣∣
∫ 1

0

eω
k
ǫ ∗φp(r) dE[L1,z

N ](dr)−
∫ 1

0

eω
k
ǫ (r) dE[L1,z

N ](dr)
∣∣∣
]
→ 0 as p→ ∞ uniformly w.r.t. N

(A.5)
and

E

[∣∣∣
∫ 1

0

eω
k
ǫ ∗φp(r)Kz(r) dr−

∫ 1

0

eω
k
ǫ (r)Kz(r) dr

∣∣∣
]
→ 0 as p→ ∞ uniformly w.r.t. N

(A.6)
where (φp)p∈N is a regularizing sequence and ∗ stands for the convolution. Fur-
thermore, for each fixed p and because of the weak convergence of E[L1,z

N ] towards
Kz(x)dx, we have almost surely

∫ 1

0

eω
k
ǫ ∗ φp(r) dE[L1,z

N ](dr) →
∫ 1

0

eω
k
ǫ ∗ φp(r)Kz(r) dr as N → ∞. (A.7)

We prove the result by gathering (A.4) (A.5) (A.6) and (A.7).

B. Sup of MRW

Here we prove

Proposition B.1. We have for all k = 1, . . . , N + 1

E

[
sup

t=1,...,N
rk(t)

4

]
6 C

(lnN)2

N
ζ(2α)−1

α

.

for some positive constant C.
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Proof. To prove the result, we first prove

Lemma B.2. There exists a constant C such that, if (Xi)1 6 i 6 N are iid centered
Gaussian random variables then:

E

[
max

1 6 i 6 N
|Xi|4

]
6 C max

1 6 i 6 N
E[X2

i ]
2(lnN)2.

Proof. By homogeneity, it suffices to assume that E[X2
i ] = 1. Then we have for all

δ > 0

E

[
max

1 6 i 6 N
|Xi|4

]
6 δ +N

∫ ∞

δ

P(|X1|4 > t)dt

6 δ + 2N

∫ ∞

δ

P(X1 > t1/4)dt

6 δ +
2N√
2π

∫ ∞

δ

e−
√
tdt

6 δ +
4N√
2π

∫ ∞

√
δ

e−ttdt

6 δ +
4N√
2π

(√
δe−

√
δ + e−

√
δ
)
,

and this last expression can be made smaller than C(lnN)2 by choosing δ = (lnN)2.

We want apply the above lemma after conditioning with respect to the law of
the MRM Mk:

E

[
sup

t=1,...,N
rk(t)

4

]
= E

[
E

[
sup

t=1,...,N
rk(t)

4|Mk

]]
.

Notice then that, conditionally to Mk(0, 1
N
) = x1, . . . ,M

k(N−1
N
, 1) = xN , the vector

(rk(1), . . . , rk(N) has the same law as the increments of B: (Bx1 − B0, . . . , BxN −
BxN−1

). By applying Lemma B.2, we deduce that

E

[
sup

t=1,...,N
rk(t)

4|Mk

]
6 C(lnN)2 max

t=1,...,N
Mk
(t− 1

N
,
t

N

)2
.

Thus we deduce

E

[
sup

t=1,...,N
rk(t)

4

]
6 C(lnN)2E

[(
max

t=1,...,N
Mk
(t− 1

N
,
t

N

))2
]
. (B.1)

Finally we have for all δ > 0 and for α > 1 such that ζ(2α) > 1:

E

[(
max

t=1,...,N
Mk
(t− 1

N
,
t

N

))2
]
6 δ +N

∫ ∞

δ

P
(
Mk
(t− 1

N
,
t

N

)2
> x

)
dx

6 δ +N

∫ ∞

δ

1

xα
E
[
Mk
(t− 1

N
,
t

N

)2α]
dx

6 δ + Cδ1−αN1−ζ(2α)
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for some constant C only depending on α, τ and γ2. Choose now δ = N
1−ζ(2α)

α so as
to get

E

[
sup

t=1,...,N
rk(t)

4

]
6 (1 + C)

(lnN)2

N
ζ(2α)−1

α

(B.2)

C. Girsanov transform

Lemma C.1. Let µ be an independently scattered infinitely divisible random measure
associated to (ψ, θ), where

∀q ∈ R, ψ(q) = mq +
1

2
σ2q2 +

∫

R

(eqz − 1)ν(dz),

ψ(2) < +∞ and ψ(1) = 0. Let B be a bounded Borelian set. We define a new
probability measure PB (with expectation EB) by:

∀Ameasurable set, PB(A) = E[1Ae
µ(B)].

Then, under PB, µ has the same law as µ+µB where µB is an independently scattered
infinitely divisible random measures independent of µ and is associated to (ψB, θB)
given by

ψB(q) = qσ2 +

∫

R

(eqx − 1)(ex − 1)ν(dx)

θB(·) = θ(· ∩B).

Proof. It suffices to compute the joint distribution of p disjoint sets A1, . . . , Ap. We
have for any λ1, . . . , λp ∈ R:

EB

[
eλ1µ(A1)+···+λpµ(Ap)

]
= E

[
eλ1µ(A1)+···+λpµ(Ap)+µ(B)

]

= E

[
eλ1µ(A1\B)+···+λpµ(Ap\B)+λ1µ(A1∩B)+···+λpµ(Ap∩B)+µ(B)

]

= E

[
eλ1µ(A1\B)+···+λpµ(Ap\B)+(λ1+1)µ(A1∩B)+···+(λp+1)µ(Ap∩B)+µ(B\

⋃n
i=1Ai)

]

= E

[
eλ1µ(A1\B)+···+λpµ(Ap\B)

]
E

[
e(λ1+1)µ(A1∩B)+···+(λp+1)µ(Ap∩B)

]

= eψ(λ1)θ(A1\B)+···+ψ(λp)θ(Ap\B)eψ(λ1+1)θ(A1∩B)+···+ψ(λp+1)θ(Ap∩B)

= eψ(λ1)θ(A1)+···+ψ(λp)θ(Ap)e(ψ(λ1+1)−ψ(λ1))θ(A1∩B)+···+(ψ(λp+1)−ψ(λp))θ(Ap∩B).

Then it suffices to notice that:

ψ(q + 1)− ψ(q) = m+ σ2q +
1

2
σ2 +

∫

R

(e(q+1)z − eqz)ν(dz)

and ψ(1) = 0.
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Lemma C.2. If the process ωǫ is defined as ωǫ(x) = µ(Aǫ(x)) where µ is an indepen-
dently scattered random measure associated to (ϕ, θ) with ϕ(q) = −iqγ2/2− q2γ2/2
and θ given by 2.3, then:

lim
ǫ→0

E

[
eωǫ(x)

z −
∫ 1

0
Kz(r)eωǫ(r)dr

]
= E



(
z −

∫ 1

0

(
τ

|r − x|

)γ2

+

Kz(r)M(dr)

)−1



where M is the lognormal MRM.

Proof. One can check that (ωǫ(x))x∈[0;1] is a stationary gaussian process with covari-
ance given by γ2ρǫ(x− y). So, using Girsanov transform, we can write:

E

[
eωǫ(x)

z −
∫ 1

0
Kz(r)eωǫ(r)dr

]
= E

[(
z −

∫ 1

0

Kz(r)e
γ2ρǫ(r−x)eωǫ(r)dr

)−1
]

We are interested in the limit when ǫ goes to 0 of this latter term, we thus
approximate it with a simpler term:

∣∣∣∣∣E
[(

z −
∫ 1

0

Kz(r)e
γ2ρǫ(r−x)eωǫ(r) dr

)−1
]

− E



(
z −

∫ 1

0

Kz(r)

(
τ

|r − x|

)γ2

+

eωǫ(r) dr

)−1


∣∣∣∣∣

6
1

|ℑ(z)|2E
[∫ 1

0

|Kz(r)|eωǫ(r)

∣∣∣∣∣e
γ2ρǫ(r−x) −

(
τ

|r − x|

)γ2

+

∣∣∣∣∣ dr
]

6
1

|ℑ(z)|3
∫ 1

0

∣∣∣∣∣e
γ2ρǫ(r−x) −

(
τ

|r − x|

)γ2

+

∣∣∣∣∣ dr (C.1)

where we have used Lemmas 4.4 and 4.8 and the normalization ψ(1) = 0.
Because γ2 < 1, the dominated convergence theorem implies that C.1 converges

to 0 when ǫ goes to 0.
We thus look at the limit when ǫ goes to 0 of the term:

E



(
z −

∫ 1

0

Kz(r)

(
τ

|r − x|

)γ2

+

eωǫ(r) dr

)−1

 .

The random variable

∫ 1

0

Kz(r)

(
τ

|r − x|

)γ2

+

M(dr)
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is well defined and is finite almost surely since:

E

[∣∣∣∣∣

∫ 1

0

Kz(r)

(
τ

|r − x|

)γ2

+

M(dr)

∣∣∣∣∣

]
6

∫ 1

0

|Kz(r)|
(

τ

|r − x|

)γ2

+

dr < +∞.

And thus, we can compute:

∣∣∣∣∣E



(
z −

∫ 1

0

Kz(r)

(
τ

|r − x|

)γ2

+

eωǫ(r) dr

)−1



− E



(
z −

∫ 1

0

Kz(r)

(
τ

|r − x|

)γ2

+

M(dr)

)−1


∣∣∣∣∣

6
1

|ℑ(z)|2E
[∣∣∣∣∣

∫ 1

0

Kz(r)

(
τ

|r − x|

)γ2

+

(eωǫ(r)dr −M(dr))

∣∣∣∣∣

]
,

and, for all n ∈ N, this latter term is smaller than

E

[∣∣∣∣∣

∫ 1

0

Kz(r)

[(
τ

|r − x|

)γ2

+

−min

((
τ

|r − x|

)γ2

+

, n

)]
eωǫ(r)dr

∣∣∣∣∣

]
(C.2)

+ E

[∣∣∣∣∣

∫ 1

0

Kz(r)min

((
τ

|r − x|

)γ2

+

, n

)
(eωǫ(r)dr −M(dr))

∣∣∣∣∣

]
(C.3)

+ E

[∣∣∣∣∣

∫ 1

0

Kz(r)

[(
τ

|r − x|

)γ2

+

−min

((
τ

|r − x|

)γ2

+

, n

)]
M(dr)

∣∣∣∣∣

]
. (C.4)

The two quantities C.2 and C.4 are smaller than

∫ 1

0

|Kz(r)|
[(

τ

|r − x|

)γ2

+

−min

((
τ

|r − x|

)γ2

+

, n

)]
dr (C.5)

and thus converge to 0, uniformly in ǫ as n goes to infinity.

For a fixed n, the function min((τ/|r− x|)γ2+ , n) is measurable and bounded and
thus it is plain to see that, for a fixed n, the term C.3 goes to 0 when ǫ goes to 0.

The lemma follows gathering the above estimates.

Lemma C.3. If the process ωǫ is defined as ωǫ(x) = µ(Aǫ(x)) where µ is an indepen-
dently scattered random measure associated to (ϕ, θ) where ϕ is given by (2.1),i.e.

ϕ(q) = imq − γ2

2
q2 +

∫

R

(eiqx − 1)ν(dx)

and where θ given by (2.3), then:

lim
ǫ→0

E

[
eωǫ(x)

z −
∫ 1

0
Kz(r)eωǫ(r)dr

]
= E

[(
z −

∫ 1

0

(
τ

|r − x|

)κ

+

Kz(r)Q(dr)

)−1
]
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with κ = γ2 +
∫
R
(ex − 1)2ν(dx) and where the random Radon measure Q is defined,

conditionally on a MRM denoted by M whose structure exponent is ζ(q) := q −
ϕ(−iq), as the almost sure weak limit as ǫ goes to 0 of the family of random measures
Qǫ(dt) := eωǫ(t)M(dt) where, for each ǫ > 0, the random process ωǫ is independent
of M and defined as ωǫ(t) = µ(Aǫ(t)) where µ is the independently scattered log
infinitely divisible random measure associated to (ϕ̄, θ(· ∩A0(x))) where

ϕ̄(p) = ip(γ2 − κ) +

∫

R

(eipx − 1)(ex − 1)ν(dx). (C.6)

Proof. We want to apply Lemma C.1 to the process ωǫ. If we set B = Aǫ(x), Lemma
C.1 tells us that, under PB, the process ωǫ possesses the same law as the process

ω(1)
ǫ (r) + ω(2)

ǫ (r) with ω(1)
ǫ (r) = µ(1)(Aǫ(r)) and ω

(2)
ǫ (r) = µ(2)(Aǫ(r)),

where µ
(1)
ǫ , µ

(2)
ǫ are independent independently scattered log infinitely divisible ran-

dom measures respectively associated to (ϕ, θ) and (ϕ(2), θ(2)) with:

ϕ(2)(q) = iγ2q +

∫

R

(eiqx − 1)(ex − 1)ν(dx) and θ(2)(·) = θ(· ∩ Aǫ(x)). (C.7)

Define:

κ = γ2 +

∫

R

(ex − 1)2ν(dx), ϕ(q) = ϕ(2)(q)− iqκ, ψ(q) = ϕ(−iq). (C.8)

Notice that ψ is then normalized so as to make ψ(1) = ψ(0) = 0. Let us define the
process ωǫ by:

ωǫ(r) = ω(2)
ǫ (r)− κθ(Aǫ(r) ∩ Aǫ(x)) = ω(2)

ǫ (r)− κρǫ(r − x), (C.9)

and notice that E[eiqωǫ(r)] = eϕ(q)ρǫ(r−x).
We can now apply Lemma C.1:

E

[
eωǫ(x)

z −
∫ 1

0
Kz(r)eωǫ(r)dr

]
= E

[(
z −

∫ 1

0

Kz(r)e
ωǫ(r)+κρǫ(r−x)+ωǫ(r)dr

)−1
]

We are interested in the limit when ǫ goes to 0 of this latter term, we thus
approximate it with a simpler term:

∣∣∣∣∣E
[(

z −
∫ 1

0

eωǫ(r)+ωǫ(r)+κρǫ(r−x)Kz(r) dr

)−1
]

− E

[(
z −

∫ 1

0

eωǫ(r)+ωǫ(r)

(
τ

|r − x|

)κ

+

Kz(r) dr

)−1
] ∣∣∣∣∣

6
1

|ℑ(z)|2E
[∫ 1

0

eωǫ(r)+ωǫ(r)

∣∣∣∣e
κρǫ(r−x) −

(
τ

|r − x|

)κ

+

∣∣∣∣ |Kz(r)| dr
]

6
1

|ℑ(z)|3
∫ 1

0

∣∣∣∣e
κρǫ(r−x) −

(
τ

|r − x|

)κ

+

∣∣∣∣ dr (C.10)
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where we have used Lemmas 4.4 and 4.8, the normalizations ψ(1) = 0, ψ(1) = 0 and
the independence between ωǫ and ωǫ.

Let us show that κ < 1. Indeed, we have:

κ = γ2 +

∫

R

(ex − 1)2ν(dx)

= γ2 +

∫

R

(e2x − 1)ν(dx)− 2

∫

R

(ex − 1)ν(dx)

= γ2 +

∫

R

(e2x − 1)ν(dx) + 2(m+
1

2
γ2)

= 2m+ 2γ2 +

∫

R

(e2x − 1)ν(dx)

= ψ(2)

where, in the third line, we used the fact that ψ(1) = 0 (which implies the relation∫
R
(ex − 1)ν(dx) = −(m + γ2/2)). We will now show that ψ(2) is strictly less than

1. It suffices to show that ζ(2) > 1. Using the concavity of the function ζ , we have
the inequality:

ζ(2 + ǫ)− ζ(1)

1 + ǫ
< ζ(2)− ζ(1) (C.11)

and with assumption 3.7, we see that ζ(2) − ζ(1) = ζ(2) − 1 > 0. We can thus
conclude that κ < 1.

Because κ < 1, the dominated convergence theorem implies that C.10 converges
to 0 when ǫ goes to 0.

For each Borelian set A of [0; 1], the family Mǫ(A) :=
∫
A
eωǫ(r)dr, ǫ > 0 is a

positive martingale with respect to ǫ and that it converges almost surely to M(A).
With the assumption 3.7 and in particular the condition ζ(2 + ǫ) > 1, we can show
(see [1] for a proof) that the family (Mǫ(A))ǫ>0 is in fact uniformly integrable. In
particular, if we let Fǫ be the sigma field generated by the family of random variables
(ωη(r))η>ǫ,r∈R, we have the following almost sure equality:

E [M(A)|Fǫ] =Mǫ(A). (C.12)

Conditionally to the random measureM , the family Pǫ(A) :=
∫
A
eωǫ(r)M(dr), ǫ >

0 is also a positive martingale with respect to ǫ. Thus, Pǫ(A) converges almost surely
to a random variable that we will denote by P (A). We know that this defines a
random Radon measure P on [0; 1] and that the family of random Radon measures
Pǫ converges, when ǫ goes to 0, weakly almost surely to P in the space of Radon
measures. Denote, conditionally to the random measure M , by PM the law P[·|M ]
and let us show that the family (Pǫ([0; 1]))ǫ>0 is PM -uniformly integrable. Let δ be
such that ψ(1 + δ) < +∞ (we can show, using the condition ψ(2 + δ) < +∞, that
that there exists such δ ). We will show that the family (Pǫ([0; 1]))ǫ>0 is uniformly
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bounded in L1+δ(PM). Indeed, conditionally to the random measure M :

EM

[(∫ 1

0

eωǫ(r)M(dr)

)1+δ
]
6 EM

[∫ 1

0

e(1+δ)ωǫ(r)M(dr)

]
M [0; 1]δ

6

∫ 1

0

eψ(1+δ)ρǫ(r−x)M(dr)M [0; 1]δ

6 M [0; 1]δeψ(1+δ)
∫ 1

0

(
τ

|r − x|

)κ

+

M(dr) < +∞.

The family (Pǫ([0; 1]))ǫ>0 is therefore PM -uniformly integrable, in particular, Pǫ([0; 1])
converges to P ([0; 1]) also in L1, which implies that P is a non degenerated random
measure. Moreover, denoting by F ǫ the sigma field generated by the family of ran-
dom variables (ωη(r))η>ǫ,r∈R, we have, almost surely, conditionally to M , for all
Borelian set A of [0; 1]:

EM [P (A)|Fǫ] = Pǫ(A).

Now, as before, it is easy to see that the family Qǫ(A) :=
∫
A
eωǫ(r)+ωǫ(r)dr, ǫ > 0

is also a positive martingale with respect to ǫ. Therefore, Qǫ(A) converges almost
surely to a random variable that we will denote by Q(A). This defines a random
Radon measure Q and the family of random Radon measure Qǫ converges, as ǫ→ 0,
weakly almost surely to Q in the space of Radon measure. We want to show that
the two random measures P and Q have the same law.

Gathering the above arguments, we can write, almost surely:

E
[
P (A)|σ(Fǫ,F ǫ)

]
= E

[
E[P (A)|F ǫ]

]

= E

[∫

A

eωǫ(r)M(dr)|Fǫ

]

=

∫

A

eωǫ(r)+ωǫ(r)dr,

and the latter quantity has the same law asQǫ(A). Since the martingale (E[P (A)|σ(Fǫ,F ǫ)])ǫ>0

is uniformly integrable, we deduce that the family (Qǫ(A))ǫ>0 is also uniformly in-
tegrable. Hence, both random variables P (A) and Q(A) have the same law. We can
show easily that in fact the two random measures P and Q have the same law. In
particular, Q is non degenerated.

It is now easy to see that, for all bounded and continuous function f , the two
random variables

∫
R
f(r)P (dr) and

∫
R
f(r)Q(dr) have the same law. By regularizing

the function
(

τ
|r−x|

)κ
+
and with the dominated convergence theorem, we conclude as

in the proof of lemma C.2 using the fact that κ < 1 that:
∫ 1

0

Kz(r)

(
τ

|r − x|

)κ

+

Q(dr)
(law)
=

∫ 1

0

Kz(r)

(
τ

|r − x|

)κ

+

P (dr). (C.13)

Gathering the above argument and letting ǫ go to 0 concludes the proof.
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