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Abstract

We propose a new “hybrid” model for the simulation of biofilm growth in a
plug flow bioreactor. Our approach consists in combining three scales: a mi-
croscopic one for the individual bacteria, a mesoscopic or “coarse-grained” one
that homogenises at an intermediate scale the quantities relevant to the at-
tachment/detachment process, and a macroscopic one in terms of substrate
concentration. We compare our simulations with the numerical solutions of an
existing partial differential equations model at the macroscopic scale.

Keywords: biofilm, partial differential equations, individual-based model,
plug flow reactor, attachment-detachment, advection-diffusion

1. Introduction

Biofilms are made of complex communities of micro-organisms attached to
a surface. They are ubiquitous structures in nature and in industry, where
they can have positive roles such as water treatment or negative roles such
as material contamination in industrial processes. In the past years, several
modelling approaches were used to represent and study biofilms (see Wang and
Zhang 2010 for a general review). One approach is a mathematical description,
continuous in time and space, where biofilm development is summed up in a
few differential equations (see Wanner et al. 2006; Klapper and Dockery 2010
for reviews), whether ordinary (ODE) or partial (PDE). Using this approach,
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Figure 1: Double modelling diagram.

one is interested in following the whole biofilm at a macroscopic scale in terms
of its average concentration over a large surface, with the possibility of some
mathematical analyses. Analysis can become very difficult when the models
try to take into account hydrodynamics (fluid flow) (e.g. Eberl et al. 2001;
Duddu et al. 2009). The other approach is the use of cellular automata (CA)
and individual-based models (IBM). In the former, space is discretised into
microscopic-sized boxes and the evolution of the contents of each box is described
by simple rules, typically involving the contents of neighbouring cells. In the
latter, each individual bacterium is studied and can have its own set of rules to
follow (with a combination of deterministic and stochastic rules). Using the IBM
approach, one is interested in looking at interactions between the individuals
at a microscopic scale (see Hellweger and Bucci 2009; Laspidou et al. 2010 for
reviews). Empirical knowledge of the system and its biology can directly be
used as the roots of the elementary mechanisms of IBM models. Nevertheless,
simulation complexity and runtime can increase very quickly, for example with
the number of parameters or that of computer operations. It also means that
these models are better suited to study relatively small populations.

In this work, we developed an “hybrid” IBM making use of information
from both microscopic and macroscopic scales with coarse-grained descriptions
wherever possible (see Figure 1). Indeed, we know that some events at the mi-
croscopic scale can appropriately be simplified via mean-field approximations.
While there is a continuum between the scales, we chose to apply our approach
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Figure 2: Flow reactor with biofilm.

on a biological system that can be described on three scales spread over this
continuum (micro-, meso- and macroscopic). This case study is used to de-
termine the range of validity of our proposed approach. In more complicated
situations, where neither a completely microscopic IBM or a PDE system are
possible (too many variables or too complicated geometry and boundaries re-
spectively), a mesoscopic approach should prove useful. Also, it should be able
to accommodate more easily extensions, such as considering multiple strains in
the biofilm.

The biological system we describe is a plug-flow reactor, i.e. a long thin
tube fed by a laminar flow (Figure 2). It is well suited to study the use of a
coarse-grained description for bacterial growth and detachment, in a case where
the hydrodynamical aspects are straightforward. The description is pseudo-
1D insofar as diffusion that is transverse to the flow is negligible compared
to horizontal advection along the flow and the thickness of the biofilm is not
explicitly described.

In the coarse-grained IBM, each bacterium has its own coordinate along the
continuous space axis, but this space is also divided in discrete boxes, which
are the elements used for the coarse-graining approximations. Inside each box
along the tube length, we argue that substrate is uniformly distributed, bacteria
reaction rates follow a discretised Monod law, regulation of the attachment of
planktonic bacteria is well-accounted for by a logistic curve and the attachment
of new bacteria is regulated by another function to be described later on. The
use of discretised substrate diffusion and advection (with a discretised gradient
and Laplace operator), as well as a discretised Monod law for reaction rates are
already common (Picioreanu et al. 1998). The IBM spatial boxes have to be big
enough for the law of large numbers to hold inside each box but small enough
for our homogeneity assumptions regarding substrate concentration to hold as
well (Figure 3).

2. Models

2.1. Basic hypotheses

Regarding the physical system, we study a plug flow reactor, i.e. a long
and thin tube flow reactor as illustrated on Figure 2. A tube with diameter
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Figure 3: Definition of the different scales.

D extends along the z-axis, from z = 0 to z = L. It is fed at z = 0 with
growth medium by a laminar flow of fluid in the direction of increasing z and
at velocity v which is constant. The external feed contains all nutrients in non-
limiting amounts except one, which is supplied in a constant, growth-limiting
concentration s0. The flow carries medium, depleted nutrients, bacteria and
their by-products out of the reactor at z = L. Substrate s is considered to diffuse
with coefficient ds. We assume negligible variation of nutrient concentration
transverse to the axial direction of the tube, because D is assumed to be small
compared to L.

Regarding the microbial cells, we consider only one bacterial strain. The
bacteria can either be suspended in the fluid or attached to the wall. We consider
that planktonic bacteria P have an unbiased random motility superimposed on
the advection mechanism. It is similar to regular diffusion and characterised
by a diffusion coefficient dP . Attached bacteria A are assumed to be immobile
and there is a finite carrying capacity of the wall for attachment. Planktonic
bacteria might attach themselves to the wall depending on surface availability,
while attached bacteria might detach themselves from the wall. Also, when
attached bacteria divide, their daughter-cells might either attach themselves or
become planktonic depending on surface availability.

2.2. The Partial Differential Equations

Our reference PDE model is a system of equations developed by Ballyk and

Smith (1999). This model is an extension of previous ones describing wall growth

in chemostat systems (see Ballyk et al. 2008 for a review of these models) based

on the work of Freter et al. (1983) on the mammalian gut. The purpose of the

extension by Ballyk and Smith (1999) was to account for spatial heterogene-

ity and material flow. The model accounts for the concentration of substrate

s(t, z), the concentration of planktonic bacteria cP (t, z) and the concentration

of attached bacteria cA(t, z). The latter concentration is measured as a weight
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Description PDE symbol IBM symbol Default
value

Space continuous posi-
tion z [m]

box number i,
space step dz [m]

200 boxes

Time [s] continuous time
t

discrete time t,
time step dt

–

Substrate concentration
[kg.m−3]

s(t, z) st,i –

Amount of planktonic bacteria concentration
cP (t, z) [kg.m

−3]
number NP,t,i or
mass mP,t,i [kg]

–

Amount of attached bacteria concentration
cA(t, z) [kg.m

−2]
number NA,t,i or
mass mA,t,i [kg]

–

Initial substrate concentration sinit sinit 1.10−3 kg.m−3

Initial amount of j-type bacteria
*1

concentration
cj,init [kg.m

−2]
number Nj,init 1000 ind.

Length of tube L L 0.01 m
Diameter of tube D D 1.10−3 m
Flow velocity v v 1.10−6 m.s−1

Conversion yield γ γ 1
Ratio of tube circumference to
cross-sectional area

δ – 4.103 m−1

Input substrate concentration s0 s0 1.10−3 kg.m−3

Attachment rate α α *2 1.10−8 s−1

Detachment rate β β *2 1.10−5 s−1

Diffusion rate of substrate ds ds *2 1.10−14 m2.s−1

Diffusion rate of planktonic bac-
teria

dP dP *2 1.10−13 m2.s−1

Maximum growth rate of j-type
bacteria *1

µj µj *2 1.10−4 s−1

Half-saturation constant for j-
type bacteria *1

Kj Kj *2 1.10−3 kg.m−3

Maximum amount of attached
bacteria

concentration
cA,∞ [kg.m−2]

mass mA,∞ [kg] 1.10−10 kg

Wall fraction occupied by at-
tached bacteria

CA = cA/cA,∞ MA = mA/mA,∞ –

Dimensionless coefficient of
G(CA)

ǫ – 0.01

Fraction of daughters of attached
bacteria finding sites on the wall

G(CA) = 1−CA

1+ǫ−CA
– –

Initial individual mass – minit 1.10−15 kg
Mass over which an individual
divides

– mdiv 2.10−15 kg

Table 1: Description of the symbols used in both models, with units shown in brackets.
Footnotes: *1 j = P for planktonic bacteria or A for attached bacteria; here P and A

parameters have the same values. *2 Same coefficient in both models but may be used slightly
differently to account for discretisation.
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per surface unit (not per volume unit like the others) as it represents the surface

occupied by the attached bacteria. To convert cA(t, z) to the same dimension

as cP (t, z), a coefficient called δ is used, which is the ratio of the tube surface

to the tube volume (δ = πD
πD2/4 = 4/D).

The equations are the following:

∂s

∂t
= ds

∂2s

∂z2
− v

∂s

∂z
− cP fP (s)γ

−1
− δ cAfA(s)γ

−1

∂cP
∂t

= dP
∂2cP
∂z2

− v
∂cP
∂z

+ cP (fP (s)− kP ) + δcAfA(s)(1−G(CA))− αcP (1− CA) + δβcA

∂cA
∂t

= cA(fA(s)G(CA)− kA − β) + αcP (1− CA)δ
−1 (1)

The substrate uptake rates for planktonic and attached bacteria are given by

Monod functions:

fj(s) =
µjs

Kj + s
where j = A or P (2)

The fraction of daughter-cells of attached bacteria finding sites on the wall,

G(CA), depends on the amount of surface available for attachment, with CA =

cA/cA,∞ being the fraction of surface already occupied. The main biological

requirement on this function is to decrease when CA increases and reach zero

when CA is null. The particular function used since the work of Freter et al.

(1983) is the following one:

G(CA) =
1− CA

1 + ǫ− CA
(3)

where ǫ is typically small. We also have the following Danckwerts boundary

conditions (Dochain and Vanrolleghem 2001):

vs0 = −ds
∂s

∂z
(0, t) + vs(0, t),

∂s

∂z
(L, t) = 0

0 = −dP
∂cP
∂z

(0, t) + vcP (0, t),
∂cP
∂z

(L, t) = 0

and the following initial conditions:

s(z, 0) = sinit(z), cP (z, 0) = cP,init(z), cA(z, 0) = cA,init(z), 0 ≤ z ≤ L

These equations lead to two possible steady state regimes: complete washout
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of the bacteria from the reactor and successful colonisation of the reactor by the

bacteria. Details about these steady states can be found in Ballyk and Smith

(1999). In order to study the system more closely, a numerical approach was

used to solve it. We used a similar approach as that used by Ballyk and Smith

(1999) with a centered second-order finite difference scheme for diffusion, a

backward first-order finite difference scheme for advection and the semi-implicit

Crank-Nicholson method for time.

2.3. The microscopic rules

We are interested in describing attachment processes of our system and

understanding the impact and relevance of our description choices. Indeed,

studying the results of the PDE system shows that the choice of the G func-

tion for the attachment of daughter-cells of attached bacteria and the attach-

ment/detachment rates have an important impact in defining the location, shape

and length of the biofilm. There are two individual-level mechanisms that in-

volve bacterial attachment: attachment of planktonic bacteria and attachment

of daughter-cells of attached bacteria.

The space available for attachment is assumed to be limited. The most basic

description of these processes on a microscopic scale would be the following: any

arriving bacterium attaches itself with probability α if this bacterium is above

or next to an available position, else the bacterium becomes or remains plank-

tonic. This mechanism is the most “microscopic” one we consider, where the

complex physical and biological attachment process itself is summed up inside

the α parameter. In order to simplify neighbourhood references, it is possible to

homogenise such a mechanism at the mesoscopic scale. Thus, there is no more

need to follow exactly the trajectory of each bacterium and check whether the

position below it is available or not. Let us consider there are Xmax individ-

ual positions on the surface in a given neighbourhood, the elementary volume,

and already X individuals occupying some of these positions. A first possibility

would be: any arriving bacterium attaches itself with probability α if there are

available positions in the considered space (X < Xmax), else the bacterium be-

comes or remains planktonic. This “homogenised threshold” mechanism (HT)

is the most simple description at the mesoscopic level of an elementary volume,

without density-dependence effects. This also means that, using this mechanism

assumes bacteria can attach relatively easily, as long as there is some positions

available for attachment. Another more complex description would be: any ar-

riving bacterium attaches itself with probability α(1−X/Xmax), which means
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that the bacterium becomes or remains planktonic with probability αX/Xmax.

This “homogenised probability” mechanism (HP) is equivalent to the micro-

scopic mechanism, with regard to the bacteria macroscopic behaviour.

It is interesting to notice that in their equations, Ballyk and Smith (1999)

use different mechanisms for the attachment of planktonic bacteria and for the

attachment of daughter-cells of attached bacteria. The former is a macroscopic

version of the HP mechanism while the latter is of the HT mechanism. These

choices are not discussed much in this work nor in their references (Ballyk and

Smith 1999). Thus, we have chosen to explore these different mesoscopic mech-

anisms in our coarse-grained IBM and their impact on model results. Unless

specified otherwise, the IBM runs by default with the HT mechanism.

2.4. The coarse-grained Individual-Based Model

The model description follows the ODD (Overview, Design concepts, Details)

protocol for describing individual- and agent-based models (Grimm et al. 2006,

2010). “Overview” is covered in Sections 2.4.1 to 2.4.3, “Design concepts” in

Section 2.4.4 and “Details” in Sections 2.4.5 to 2.4.7.

2.4.1. Purpose

The purpose of this IBM is to represent the biological system described in

Section 2.1 while taking into account information from both the macroscopic

PDE and a microscopic IBM. We use a “simple” case study to determine the

range of validity of this approach.

2.4.2. Entities, macroscopic state variables and scales

The entities in this model are bacteria. Their microscopic attributes are their

position, mass and attachment status. Our main state variables are the number

of bacteria in the tube, both attached or detached, as well as the concentration

of the substrate. The substrate is not described at a molecular level but its

concentration is an attribute of each grid box. The time scale of our simulations

is about a few days in duration with a few seconds for the time step. Simulation

duration is limited to the time it takes to reach a quasi-steady-state in the

system. The time step is constrained by the discretisation scheme used to model

the substrate diffusion and advection. The space scale is a few centimetres for

the tube length with about 50 micrometers for the space step.
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2.4.3. Process overview and scheduling

The first process is substrate reaction-diffusion. The substrate in each grid

box diffuses horizontally into the two neighbour boxes (the model being pseudo-

1D, we assume homogeneity in the directions transverse to the tube axis) and is

advected along the flow into the following box (discretised Laplacian). Bacteria

in the box eat one after the other in a random order. The speed with which

bacteria eat depends on the local substrate concentration and is given by the

Monod law (Eq. 2) as long as substrate is available in the box. The amount

eaten by the bacteria increases their mass by that same amount multiplied by

the yield factor γ. Substrate concentration in the boxes is updated only at the

end of these steps. Despite the artificiality of this sequence, discrepancies should

be small because the time step remains very small.

The second process is bacteria division. Bacteria that have a mass higher

that the division threshold mdiv divide into two bacteria of total mass that of

the mother bacteria (see 2.4.7 for details).

The third process is bacteria attachment/detachment. Finally, the detached

bacteria are advected by the flow and have a random horizontal motility.

2.4.4. Design concepts

Basic principles. This work is based on that of Mabrouk et al. (2010); Mabrouk

(2010), itself based on similar assumptions as that of Picioreanu et al. (1998);

Kreft et al. (2001). Main differences regard the presence of a flow and taking

the border into account.

Adaptation, objectives, learning, prediction. Given the small time scale of our

simulations, the bacteria in this model do not have adaptive traits and hence

do not attempt to meet objectives. They have no learning abilities and do not

attempt to predict their future environment.

Sensing. The internal variable taken into account by the bacteria is their own

mass (which determines division time). The environmental variables taken into

account are local substrate concentration (only that of the box in which the

bacterium is present), local bacteria abundance (only that of the box in which

the bacterium is present) and flow velocity (constant throughout the tube).

Interaction. The interactions between the bacteria are only indirect ones, through

competition for resources: substrate and attachment sites.
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Stochasticity. Several events in the model are described with probability rules.

When a bacterium divides, the mass and location of the daughter bacteria have

a random component (see above). Attachment and detachment are also random

(see above).

Collectives. When a box reaches its carrying capacity (total attached mass in

the box superior or equal to mA,∞), the bacteria form a biofilm on the wall.

This can be considered as a collective. Once this collective is formed, new

bacteria cannot attach themselves in that box. Nevertheless, this collective is

not permanent, and if enough detachment occurs, the mass may again become

lower than the threshold mA,∞.

Observation. Data are collected as the last process in the schedule, for each box.

We gather information on substrate concentration, bacteria mass and numbers

(both attached or detached), attachment and detachment events.

2.4.5. Initialisation

Before the simulation starts, a number of bacteria are placed in the boxes

(location picked from a random uniform distribution), a certain number of which

are attached (NA,init), the others detached (NP,init). Each bacterium has an

initial mass of minit. Substrate is present throughout the tube at a given con-

centration sinit.

2.4.6. Input data

The input data, such as bacteria initial position, are chosen randomly. Nev-

ertheless, if one wanted to specifically reproduce a given part of a larger tube,

initial conditions of the model could be forced to resemble any point of the PDE

system representing the whole tube.

2.4.7. Submodels

Substrate diffusion, advection and reaction. All these processes are mingled in

the model and space is considered sequentially along the flow direction.

1. First, we consider the substrate reaching equilibrium where the flow ar-

rives. Thus, the concentration of substrate in box i, st,i, increases with

substrate arriving by diffusion and advection from the upflow box i − 1

and decreases from substrate leaving by diffusion into box i− 1.

2. Then, we determine the amount of substrate which is eaten by the bacteria

inside box i (reaction) based on the amount determined in step 1.
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3. Finally, we consider the substrate reaching equilibrium where the flows

leaves the box. The concentration of substrate in box i at t + dt, st+dt,i,

is the amount determined in step 2 added with substrate arriving by dif-

fusion from the downflow box i + 1 and once removed substrate leaving

by diffusion and advection into box i+ 1.

Bacterial biology and movement.

Growth Each bacterium consumes a given amount of substrate which is

determined by the Monod growth kinetics and its own mass m. We assume that

bacterial growth is directly equal to this amount consumed, multiplied by the

conversion yield factor γ. At time t and in box i, the increase in mass dm is the

following:

dm = γm
µjst,i

Kj + st,i

where j is either A or P for attached or planktonic bacteria respectively (see

Table 1 for more details).

Division Each bacterium that has a mass higher than the division thresh-

old mdiv divides into two bacteria of total mass that of the mother bacterium.

Each of the two daughter-bacteria receives half of the mother mass plus or mi-

nus a random amount (taken from a uniform distribution between 0 and 25%

of the mother mass). One of the daughter bacteria retains the mother location

and attachment status, and the other bacterium has the same location plus

or minus a random amount (taken from a uniform distribution between 0 and

mother diameter). That second daughter bacterium has the same attachment

status as its mother by default. If that status is attached, depending on the

mechanism used for attachment (see Section 2.3), then the new bacterium might

become detached. A daughter bacterium which location is outside the tube is

be considered washed out.

Attachment and detachment Each of the detached bacteria has a prob-

ability involving α times dt and mA,∞ to attach itself on the wall. The exact

mechanism can be varied according to the description in Section 2.3. Each of

the attached bacteria has a probability β times dt to detach itself.
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Movement The detached bacteria are advected by the flow and have a

random horizontal motility modelled as a Brownian motion process with an

apparent diffusion factor dP . The distance crossed over one time step thus

follows a Gaussian law of variance twice the diffusion-like factor dP multiplied

by the time step (Mabrouk 2010).

2.5. Numerical experiments

We have run a large number of numerical experiments for both the PDE

system and the IBM. Parameter values are those indicated in Table 1 unless

mentioned otherwise. In the case of the PDE system, one run gives the de-

terministic output for a given set of parameters. But in the case of the IBM,

several runs were done with different random seeds in order to obtain means of

the output variable to represent the average behaviour of the model. Because

the stochastic aspects of the IBM are small-scale events, a relatively low num-

ber of repetitions was sufficient to average out their effects (a dozen runs). The

results we study are: the profiles along the tube for all three variables (in terms

of mass, for comparison between the two models), the biofilm length defined as

the location along the tube where the difference between two following positions

is the largest over the whole profile, and the sum over the whole tube of the

attached biomass.

3. Results

3.1. General description of steady state profiles

In both models, we find similar profiles at the steady state for the default val-

ues (Figure 4). These profiles indicate an important development of the biofilm

in the leftmost side of the tube where the nutrient flow enters. Parallel to this

biofilm development which reaches the carrying capacity, there is an important

decrease in substrate concentration. Once a threshold substrate concentration

is crossed, there is not enough substrate to allow the growth of a thick biofilm

and the amount of attached bacteria reaches a value close to one bacterium

along the remainder of the tube. Meanwhile, the amount of detached bacteria

increases along the whole tube, these bacteria being released by the thick biofilm

of the leftmost part of the tube.

There are nevertheless differences between the two models. First of all, in

the right-most part of the tube, there are few attached bacteria and the two

models represent this situation differently. The IBM gives a presence-absence
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Figure 4: General profile along the tube observed at the steady state for the PDE numerical
resolution (dashed lines) and the average over 12 IBM runs (solid lines) with default values
as shown in Table 1. The mass of attached bacteria mA is represented in blue, the mass of
planktonic bacteria mP in green and the mass of substrate mS in red. The horizontal axis is
the length of tube.
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information: there is no point in case no attached bacteria are present due to

the log-scale of Figure 4. Meanwhile, the PDE gives a continuous expression

which in the right-most part of the graph corresponds to about a tenth of an

individual bacterium. Nevertheless, both cases give similar values. Second, the

attached bacteria in the thick biofilm are slightly more developed in the IBM

than in the PDE, which implies a slightly shorter biofilm length. The difference

in biofilm length is exaggerated by the log-scale but it remains quite small

(about 1 “box” of difference) and the difference in overall attached biomass is

about 2%. Finally, there is also the effect of fluctuations in the IBM to be

considered. This variability does not reflect individual variance because there

has already been some homogenisation but it could be thought of as a “quality”

assessment of the coarse-grained IBM. Overall, the variance along the profile is

relatively low, in particular for the substrate concentration and the planktonic

bacteria. Indeed, these two elements are affected by diffusion processes which

smooth their distribution along the tube and there is less variability between

runs. For the attached biomass, it is quite low over the thick biofilm length but

increases afterwards, in particular over the switch from thick biofilm to almost

no attached bacteria (data not shown).

3.2. Parallel between discretisation to solve PDE and discretised events in IBM

In both cases, whether the model was conceived in a continuous or a discrete

manner, the resulting simulations relied on a discretised code. Thus, in both

cases, we can compare the impact of the number of spatial boxes making up the

whole tube. By keeping the tube length constant and increasing the number

of boxes, the size and volume of each box is reduced. Using a large number of

boxes increases the similarity of the results with those that might be obtained

with a continuous representation. But it also increases simulation run time and

it reduces the number of individuals or biomass present in each box which may

lead to observing quantities smaller than one individual in the case of the PDE

system. In this work, we find that the numerical experiments are relatively

resilient to the number of boxes and thus to box size as well (Figure 5). By

using a small number of boxes, there is a slight tendency to overestimate the

biofilm length in both models, but the difference remains well under 1%.

3.3. Sensitivity analysis

Overall, the same effects are observed on PDE and IBM simulations. Differ-

ences in the main results (length of biofilm, mass of attached bacteria) between
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Figure 5: Effect of the number of boxes on the steady state profile for (a) the PDE numerical
resolution and (b) the average over ... IBM runs. The mass of attached bacteria mA is
represented in blue, the mass of planktonic bacteria mP in green and the mass of substrate
mS in red. The horizontal axis is the box coordinate along the tube divided by the number
of boxes in order to compare between cases.

the two models remained well under 5%. The parameters tested here are those

which have a major impact on the results.

An increase in s0 leads to an increase in the length of biofilm formed (Figure

6). An increase in v leads to a similar effect. Indeed, increasing v leads to an

increased amount of substrate available for the bacteria.

An increase in both µj or both Kj leads first to an increase in the length of

biofilm formed and after reaching a peak value it leads to a decrease (Figure 7).

Indeed, for low values of µj , bacteria are washed out while for high values of µj ,

the bacteria are very efficient in eating the substrate and only a short length

of biofilm can develop before the tube is emptied of substrate. Thus, it is for

intermediate values of µj that a maximum length of biofilm is observed. Similar

results are observed for Kj but with high values of Kj leading to a wash-out

and low values of Kj leading to a short and efficient biofilm.

An increase in mA,∞ leads to a decrease in the length of biofilm which is

formed (Figure 8). Indeed, since the biofilm is thicker, the substrate is com-

pletely eaten earlier along the tube and prevents further biofilm development.

An increase in α has very little effect on the development of the main biofilm

in the leftmost part of the tube. Nevertheless, it leads to an increase in the
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Figure 6: Effect of the input concentration of substrate s0 on the steady state profile for (a)
the PDE numerical resolution and (b) the average over 12 IBM runs. The mass of attached
bacteria mA is represented in blue, the mass of planktonic bacteria mP in green and the mass
of substrate mS in red. The horizontal axis is the length of tube.
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Figure 7: Effect of (i) both µj or (ii) both Kj on the steady state profile for (a) the PDE
numerical resolution and (b) the average over 12 IBM runs. The mass of attached bacteria mA

is represented in blue, the mass of planktonic bacteria mP in green and the mass of substrate
mS in red. The horizontal axis is the length of tube.
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Figure 8: Effect of mA,∞ on the steady state profile for (a) the PDE numerical resolution
and (b) the average over 12 IBM runs. The mass of attached bacteria mA is represented in
blue, the mass of planktonic bacteria mP in green and the mass of substrate mS in red. The
horizontal axis is the length of tube.

development of the biofilm in the rest of the tube (Figure 9). Bacteria in this

part of the biofilm do not grow because there is very little substrate left but the

biofilm is built via attachment of planktonic bacteria flowing by. An increase in

β leads to a decrease in the length of biofilm formed (Figure 9). Indeed, for large

values of β, the amount of substrate needed for biofilm development (including

compensation for biofilm detachment) is higher than for smaller values of β. For

a large enough value of β, there is wash-out.

3.4. Impact of microscopic attachment mechanisms

Different attachment mechanisms were considered (Figure 10). The PDE

mechanism of the G function and the “homogenised threshold” (HT) mecha-

nism lead to similar macroscopic behaviours, with an abrupt limit to attachment

possibilities for bacteria and thus an abrupt distinction between a part of the

tube with a thick biofilm and the other part with almost no attached bacteria.

Whichever mechanism is followed for the attachment of planktonic bacteria, the

results are similar because this attachment is mostly important in the part of

the tube with little attached bacteria and thus for values where all mechanisms

behave similarly. On the other hand, whether the attachment of daughter bac-

teria follows the HT or the HP mechanism has a much more important impact
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Figure 9: Effect of (i) α and (ii) β on the steady state profile for (a) the PDE numerical
resolution and (b) the average over 12 IBM runs. The mass of attached bacteria mA is
represented in blue, the mass of planktonic bacteria mP in green and the mass of substrate
mS in red. The horizontal axis is the length of tube.
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Figure 10: Comparison of different mechanisms for the attachment of bacteria in the IBM
(various dashed and dotted lines) with the reference PDE (solid lines) at the steady state.
In the IBM, the PDE mechanism of the G function and the “homogenised threshold” (HT)
mechanism give similar results whether used for the attachment of planktonic or daughter
bacteria and their results are thus both represented by the dotted lines. The dashed lines
represent the use of the “homogenised threshold” (HT) mechanism for the attachment of
daughter bacteria and of the “homogenised probability” (HP) for the attachment of planktonic
bacteria in the IBM. The dash-dot lines represent the use of the “homogenised probability”
(HP) mechanism for both kinds of attachment in the IBM. The mass of attached bacteria mA

is represented in blue, the mass of planktonic bacteria mP in green and the mass of substrate
mS in red. The horizontal axis is the length of tube.
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on the overall profile along the tube. Indeed, the “homogenised probability”

(HP) mechanism leads to a much smoother transition between the part of the

tube with a thick biofilm and the other part with almost no attached bacteria.

It remains to be seen which may be the more realistic approach.

4. Discussion

4.1. Modelling choices

First of all, our model represents a 3-dimensional system in a pseudo-1-

dimensional manner. We take only the coordinate along the tube axis (z-axis)

into account, assuming that at a given z-coordinate substrate concentration is

homogeneous inside the tube and that the precise location of bacteria is much

less important than whether they are attached or planktonic. In general, it

has been observed that minimal models offer an interesting trade-off between

realism and generality.

In this work we have built an IBM with the aim to represent a given biolog-

ical system and then justify choices made in the pre-existing PDE system. In

order to build the IBM, a number of elements could not be derived straightfor-

wardly. For example, all kinds of stochastic events had to be added, in particular

regarding the division mechanism. We chose to use individual mass as a non-

stochastic indicator of division time, but the distribution of this mass between

the two daughter bacteria had a stochastic component. This simple mechanism

proved sufficient to prevent any synchronisation among the bacteria and thus

more complex ones were not used in the IBM.

An important part of this work relied on the study of attachment patterns

and various mechanisms were proposed both for attachment of planktonic bac-

teria and daughters of attached bacteria. Following the equation system, we

studied both kinds of attachment separately. Nevertheless, one might wonder

whether it is relevant to distinguish between them. Thus, we might suggest

using the same mechanism for both, keeping in mind that in this particular sys-

tem the precise mechanism behind the attachment of planktonic bacteria has a

much minor effect than that of the daughters of attached bacteria.

4.2. Perspectives

Using an IBM approach to describe this plug-flow system has several ad-

vantages. First of all, it allows us to use “biological” rules, i.e. rules that

can intuitively be suggested (and tested) by biologists based on their in-depth
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knowledge of the real system. This makes the system more amenable to in-

teractions with experiments and also to changes in the choice of mechanisms.

This IBM may thus lead to improvement over the original model proposed by

Freter et al. (1983) and its variations (Ballyk and Smith 1999) by allowing us to

test mechanisms that could not be easily formulated or even solved analytically.

One possibility would be to explore the biofilm dynamics when considering dif-

ferent bacterial strains competing inside the tube for space and/or substrate

resources. Also, we could consider taking into account the (transversally) in-

homogeneous velocity profile through a shear rate, generating a shear force on

attached bacteria which would promote their detachment (with an effect on the

β parameter) and limit the thickness of biofilm (effect on the cA,∞ carrying

capacity parameter).

Regarding the density issue (thick biofilm in one part of the tube, few at-

tached bacteria in the other part), we could consider an association of the dif-

ferent models. Indeed, currently we have compared the PDE and IBM models

but a prospect could be to use them sequentially with the PDE at the start of

the tube where the population is larger and a transition to the IBM for the rest

of the tube where the population is smaller.

Finally, with this coarse-grained IBM, we open discussions on top-down in-

teractions (macroscopic constraints on individual bacteria or mesoscopic boxes,

feedbacks) and on bottom-up interactions (emergent collective features).

4.3. Conclusion

We have proposed a new multiscale model of biofilm growth in a plug flow

reactor, with reasonable runtimes for the simulations while remaining close to

microscopic processes and knowledge. In particular, our approach focuses on the

hypotheses regarding the attachment/detachment process that is at the core of

biofilm growth. The comparison with the PDE model has led to similar steady-

state concentration profiles at the macroscopic level, justifying qualitatively

the attachment/detachment terms introduced at the mesoscopic scale, although

some differences could be observed. An IBM approach such as the one we use

provides additional information on second-order terms or variance around the

average profile that have been compared with the PDE model. Our framework

is suitable for extensions to multi-species biofilm or more complex interactions

between individuals.
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