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Abstract

We propose to compare discrete and continuous time implementations
of a simple birth-death individual-based model (IBM) to analytically de-
rived expression of the mean and variance of the population size. Our
results show that the discrete time implementation underestimate the
variance, especially when increasing the size of the timestep.

1 Introduction

Over the last two decades, the individual-based approach has been established
as an interesting technique for modelling ecological systems [9][6][10][5][3] [8].
With the increase of desktop computing power, it is quiet feasable today to sim-
ulate a population by simulating its constitutive individuals as they move across
a landscape, interact, reproduce and die [2]. Such simulations have shown to be
a valuable aid in studying many complex ecological systems and in reproducing
realistic spatial and temporal patterns observed in real systems [12][14][15][13].
However and before inferring any conclusion from these simlulations, the mod-
eler should ensure that the computer code producing these results faithfully
translates the formal rules as defined in the individual-based model and that
design decision relative to temporal and spatial discretization, events execution
order and state updating mode are not introducing simulation artifacts. This
step is of critical importance and yet it is one of the most difficult as most IBMs
have no reference solution (i.e. analytical solution) against which the simulation
results can be checked.

While the use of modern compilers and the adoption of good programming
practices (i.e. unit testing) can be very effective to prevent both syntically and
non-syntically programming faults, the effect of the design choices made by the
modeler to put the individual-based rules into a computer program is rarely
assessed during IBM developpment. In this work we are concerned with the
artifacts that may result from the temporal representation in individual-based
models. Time is represented in IBMs used either a discrete or a continuous
models. Most IBMs adopt a discrete time model where the time is subdivided
into constant timesteps. The processes are then executed at each timestep
based on the state of the system at the previous timestep and the state of
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the system is updated synchronuously at the end of the timestep [?]. This
mode of time representation is very common [10][?] due to the simplicity of its
implementation. In the continuous representation of time, the model time no
longer proceeds in time steps but from event to event. Each event (i.e. a birth
of a new individual or death of an existing one), has an exact execution time
and the computer simply executes the next action in a queue that is ordered
by time [5]. This way of proceeding is also called dynamic scheduling [5] or
discrete event model. Contrary to the discrete time model where the states of
all the individuals are updated sychronuously at the end of the time step, in the
continuous time model the state of an individual is usually updated immidiatly
after the event relative to that individual is executed. Hence, for the continuous
time model the updating scheme is said asynchronuous.

Artifacts due to the choice of the time model has been addressed by several au-
thors mainly from the perspective of comparing synchronous and asynchronous
updating modes as synchronous updating mode is associated with the discrete
time model and the asynchronuous updating scheme with the continous time
model. The comparison of the synchronous and asynchronous modes has been
performed for cellular automaton [16][?] and individual-based models [1]. These
comparisons showed the time model mode can influence the simulation results.
The synchronous update of the state of the individuals has been criticized for
its non-realism as many natural systems typically exhibit asynchronous dynam-
ics [7][?][?]. Additionnaly the synchronous mode requires from the modeler to
decide about the order of execution of the event during a timse step. Axtell
[?] showed that this may introduce additional artifacts and suggested that the
order of execution should be randomized.

In order to assess the effect of time representation on the simulation result
of an IBM, we use a simple IBM in which the individuals are subject to birth
and death events. The IBM is sufficiently simple to allow analytical developpe-
ment. We propose to compare the IBM simulation results to the analytically
developped solution and analyze how time representation and individuals state
updating scheme can affect the IBM simulation results. Birth-death IBMs are
common in ecology as these two processes are encountered in many ecological
systems and are involved in the dynamic of the population size and the spatial
distribution of the individuals. In a birth-death IBM, an initial population of
individuals evolve in time due to individuals births and deaths. Each individual
has proper birth and death probabilities per unit of time. these probabilities
can be constant or may vary depending the local environment of the individual.
For simplicity we consider only the case of constant density independent birth
and death rates.

The paper is organized in three parts: in the first part we provide a de-
tailed description of the IBM and the underlying algorithms representing time
as discrete and continuous. In the second part we present the results of the
comparison to the analytical solution and the comparison the spatial patterns.
The third part is dedicated to the discussion of these results and concluding
remarks.
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2 Methods

We propose to derive a simple IBM for a (virtual) population of individuals living
in a two-dimentional domain and subject to stochastic constant-rate birth and
death processes. Such IBMs are valuable in showing the degree of variability
that we might expect to observe in practice [?]. In this work, however, we
use this IBM to illustrate how the choice of the time model (e.g continuous
time versus discrete time) may affect the individual-based simulation results.
The simplicity of this IBM allows the derivation of analytical expressions for
the mean and variance of the number of individuals N(t) at the instant t. We
propose to compare the individual-based simulations results to the analytical
results.

2.1 Individual-based model description

We consider a two-dimensional spatial domain containing a population of indi-
viduals. The individuals are considered as point particles characterized by their
location x = (x1, x2) in this plane discretized with a constant space step dx. We
suppose that the individuals are subject to stochastic birth and death processes.
An individual in location x produces a new individual in location x′ with a prob-
ability B(x, x′) and can be removed from the system with a probability D(x).
We suppose that the birth and death rates of the individuals are constant and
independant from their location (though we keep the general notation where B
and D are functions of the location x). The expression of B(x, x′) is given by:

B(x, x′) = bK

(

||x− x′||

wb

)

(1)

where b is the constant density-independent probability per unit of time

that an individual gives birth to a new individual. K
(

||x−x
′||

wb

)

is a birth kernel

describing the dispersion of the newly formed individuals arround the location
x of the parent individual. The death rate of the individuals is given by:

D(x) = d (2)

where d is a density-independent death probability per unit of time. Because
of the stochasticity of the births and deaths of the individuals each individual-
based simulation represent a realisation of a stochastic process. The number of
individuals at an instant t is a stochastic variable which mean and variance can
be derived analytically and are given by [?]:

mean :M [N(t)] = N0e
(b−d)t (3)

variance : V [N(t)] = 2N0bt (4)

Note that for the particular case where b = d, the average population size
remains constant M [N(t)] = N0 while the population size grows exponontially
for b > d and goes to extinction for b < d. In this work we assume that b = d.
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2.2 Continuous time implementation

In the continuous time model, the time evolution of the system is defined by
calculating the waiting time to the next event to occur. The time scale is then
progressed with calculating the waiting time which is a real value. Gillespie
[4] proposed a Monte Carlo procedure for implementing such time model. the
procedure iterates over the following steps:

1. Set time to t = 0

2. Calculate the sums rb =
∑

N(t)
i=1 bi = bN(t) and rd =

∑

N(t)
i=1 di = dN(t).

The total rate at which events occur (births or deaths) is given by r(t) =
rb(t) + rd(t)

3. Choose a waiting time τ for the next event to occur according to τ =
− 1

r
lnλ, where 0 < λ ≤ 1 is a uniformly distributed random number

4. Choose a birth or death event with a probability rb/r and rd/r respectively

5. Choose an individual k with a probability bk/rb (if the event is a birth)
or dk/rd if the event is a death, where bk = b and dk = d are respectively
the birth and death rates of the individual k

6. Perform the selected event on the individual k

7. Update time according to t = t+ τ

8. Update the number of the individuals N(t)

9. Continue from step 2 until t < tend

One of the advantages of the continuous time formulation is that designing
actions concerning the order of execution of the individuals and the updating
mode of the state of the system are implicitly solved in this algorithm. The
events are scheduled in a randomized order and the update of the states of the
individuals is asychronuous.

2.3 Discrete time implementation

The discrete time model can be implemented in different ways all having in
common that time is subdivided into discrete time steps (not necessary with a
constant size, but for simplicity we assume that ∆t = constant). The different
implementations differ in the order of execution of the different processes (birth,
death and update of the individual states). Figure 1 shows 4 examples with
different orders of execution of the processes. For each process we iterate over
the individuals according to the following generic algorithm :

1. Set time to t = 0

2. iterate over the individuals and execute process 1

3. iterate over the individuals and execute process 2

4. ..
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Figure 1: Discrete time model: different scheduling possibilities

5. Update time according to t = t+∆t

6. Continue from step 2 until t < tend

One of the difficulties that raises the discrete time model is that the order
of execution of the processes can have an impact on the simulated results. This
point will be illustrated by comparing the 4 configurations presented in figure
1.

3 Simulation results

We compare the IBM simulated results using the continuous and the discrete
time representation to the analytical solution provided by equations 3 and 4.
We proceed by replicating each individual-based simultion a number of times
and than calculate the average and variance of N(t). The number of replicates is
determined experimentally by testing 50, 150 and 250 replicates. It is expected
that, in the absence of artifacts the increase of the number of replicates should
yield to better matching between the analytical and the simulated results.

3.1 Comparison of the continuous time model and the an-

alytical solution

Figure 2 compares the continuous time IBM simulation results to the analytical
solution for 50, 150 and 250 replicates of the IBM simulation. The results show
that with the increase of the number of replicates the continuous time model
coverges successufully to the analytical solution.

3.2 Comparison of the discrete time model and the ana-

lytical solution

Before comparing the discrete time IBM results to the analytical equations
we assess wether the order of execution of the processes has an impact on the
simulated results. Figure 3 shows the average number of individuals calculated
over 250 runs of the discrete time IBM using the configuration (a) and (c) (see
figure ??). The results clearly show that the order of execution of the processes
can habe an important impact on the simulated results. When death process
is executed first the IBM predicts the rapid extinction of the population. This
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(a) runs = 50 (b) runs = 50

(c) runs = 150 (d) runs = 150

(e) runs = 250 (f) runs = 250

Figure 2: Continuous time simulation. Number of individuals and variance over
50, 150 and 250 of the individual-based model
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(a) death− birth (b) birth− death

Figure 3: Number of individuals versus time simulated using two algorithms of
the discrete time implementation. (a) death events are executed first, (b) birth
events are executed first

results is due to a bias induced by the order of execution of the birth, death and
updating process. The individuals that dies are removed from the system and
has no chance to give birth to new individuals during the time step ∆t. Only
the remaining individuals can give birth, but as their number is reduced by the
number of deaths, the number of birth does not compensate over the long run the
number of deaths which yields to the extinction of the population. This artifact
is corrected by executing the birth and death processes and storing the changes
in a temporary list of individuals. the state of the system is updated only after
all the individuals have beed tested for birth and for death (configurations (c)
and (d) in figure ??).

We proceed to the comparison of the discrete time IBM simulation (configura-
tion (c)) to the analytical expression of the mean and variance of the population
size. The simulations are replicated 50, 150 and 250 times and the results are
reported in figure 4. While the mean number of individuals convergence rapi-
dely to the analytical solution, the variance calulated by the individual-based
simulation seems to be slightly lower than the analytical solution. This result is
confirmed by taking a larger time steps (∆t = 5) as can be viewed from figure 5.
Hence it seems that a large timestep induces an underestimation of the variance
but has no effect (for this simple IBM) on the mean population size.

3.3 Comparison of the spatial patterns simulated with

continuous and discrete time implementations

We assessed the effect of the time model on the spatial patterns simulated using
the individual-based model. We use the radial pair correlation to caracterise
the spatial pattern. The spatial pattern in this simple birth death depend to a
large extent on their properties of the birth kernel. If the size of the birth kernel
is small in comparison to the size of the domain, than the newborn individuals
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(a) runs = 50 (b) runs = 50

(c) runs = 150 (d) runs = 150

(e) runs = 250 (f) runs = 250

Figure 4: Continuous time simulation. Number of individuals and variance over
50, 150 and 250 replicates
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(a) dt = 1 (b) dt = 5

Figure 5: Variance of the simulated number of individuals (over 250 replicates)
for two different time steps of the discrete-time algorithm

tend to accumulate arround the parent individuals yielding the formation of
small groups of individuals. This pattern tend towards a uniform distribution
of the individuals as the size of the birth kernel is increased. Such patterns can
be well caracterized using pair correlation functions which mesures the average
density of individual at different distance from a focal individuals. The pair-
correlation function is normalized such that a value of 1 is obtained for a uniform
distribution. Value higher than 1 at a distance r means that the average number
of neighbors located at a distance r is higher than what would be obtained if
the individuals are distributed uniformily.

As for the variance, the discrete time model tends to underestimate the ag-
gregation of the individuals measured with the pair correlation function (figure
6). The increase of the time step reinforces this tendency confirming that the
pattern is sensitive to the choice of the timestep in the discrete time IBM.

4 Discussion

While a great effort has been devoted during the last years towards the devel-
opment of improved software libraries for the implementation of IBMs [11] [17][?]
many researcher agree that there is an increasing need to develop a good practice
that guide the IBM developer during all the phases of the model construction
and implementation. Often IBM developer are faced with several design de-
cisions relative to space and time representations (discrete versus continuous),
events scheduling and individuals state updating processes (synchronuous versus
asynchronuous). These decisons can in many situations induce artifacts that,
due to the IBM complexity and the absence of a reference solution, are difficult
to assess.

Time representation is a reccurent design decision in individual-based models.
Our work shows that the choice of a discrete time model can introduce artifacts,
mainly by underestimating the variance. The choice of the discrete time rep-
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(a) Continuous time (b) dt = 1

(c) dt = 5

Figure 6: Pair correlation function
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resentation requires also from the modeler to specify the order in which the
processes are executed. This step can introduce additional artifacts. We show
that by executing death events systemitically before birth events the simulated
population size vanishes to zero. Similar artifacts have been reported in [?].

While the discrete time model is easier to implement and in many situations
can reduce simulation time, much care should be considered in the choice of
the time step in particular for IBMs where different time scales are considered.
In many situations the computationnal advantage of the discrete time model is
lost if the time step is set considering the rapid processes.
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