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The propagation of waves in periodic media is related to the parametric oscillators. We transpose
the possibility that a parametric pendulum oscillates in the vicinity of its unstable equilibrium
positions to the case of waves in lossless unidimensional periodic media. This concept formally
applies to any kind of wave. We apply and develop it to the case of phonons in realizable structures
and evidence new classes of phonons. Discussing the case of electromagnetic waves, we show that
our concept is related to optic Tamm states one but extends it to periodic Optic Tamm state.

PACS numbers: 68.65.Cd,63.22.Np,78.67.Pt

Waves in periodic media have been the focus of in-
terest of many scientists and have found a multitude of
applications in different branches of physics: electromag-
netic (EM) waves in photonic crystals [1], phonon (elastic
wave) in crystalline solids or in phononic crystal [2], elec-
tron wave functions in crystalline solids [3] or electronic
super-lattice [4]. The periodicity of the media yields the
existence of band gaps (BG) in which the amplitude of
the wave exponentially varies, hence corresponding to un-
physical states in infinite media. Outside of these gaps,
waves are extended and periodic modes. In the presence
of localized defects, localized modes, including surface or
interface modes have been evidenced.
In a recent paper [5], we have exploited the equivalence

between the physic of the parametric oscillator and that
of the propagations of waves in a lossless unidimensional
infinite periodic (LUIP) medium. In this manuscript, we
reveal the potentiality to transpose the striking possi-
bility for an oscillator to oscillate in the vicinity of an
unstable equilibrium position using a parametric excita-
tion (in the inverted pendulum experiment, for instance)
to the case of waves in LUIP media. We evidence unex-
pected types of waves. This idea is totally general and
can formally apply to any kind of waves.
Before exposing our concept and applying it, we first ex-
plicit the equivalence between the parametric oscillator
and the propagations of waves in LUIP media.
Main features of the parametric oscillator can be derived
from the fixed point stability of a parametrically and si-
nusoidally excited pendulum (for instance, in the case of
Fig. 1a) governed by the Mathieu equation:

d2φ

dt̃2
+ [η0 + 2α cos(2t̃)]φ = 0 (1)

with t̃ = ωet/2, η0 = ±4ω2
0/ω

2
e and α = −2z0/l,

ω2
0 = g/l. where φ, l, g, ωe and z0 are respectively the

angle and length of the pendulum, the standard gravity
and the excitation frequency and amplitude. η0 is pos-
itive around the fixed point ~Φ = (φ, dφ

dt̃
) = (0, 0) and

negative around ~Φ = (π, 0). Depending on the parame-

ters η0 and α, solutions of Eq. (1) are either periodic or
unbounded. Unbounded solutions are oscillating with an
exponentially varying amplitude and correspond to the
parametric resonance of the oscillator. Fig. 1b reports
the phase diagram of this equation: using the Floquet
theory, it is deduced from the eigenvalues of Rπ

0 with Rt̃
t̃0

the resolvente (propagator) of Eq. (1): ~Φ(t̃) = Rt̃
t̃0
~Φ(t̃0).

A remarkable feature of the parametric oscillator is the
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FIG. 1. a) Sketch of a parametrically and sinusoidally excited
pendulum b) Phase diagram of Eq. (1). Solutions are respec-
tively periodic and unbounded in blue and dashed regions.
The vertical red line η0 = 0 is a guide to the eyes.

possibility to find periodic solutions in the vicinity of
the unstable fixed point ~Φ = (π, 0) of the pendulum.
Fig. 1b exhibits in the phase space η0 < 0 periodic so-
lutions: a striking example is the inverted pendulum ex-
periment [6].
Considering now the propagation of waves in LUIP

and focusing on two examples, EM and elastic waves, we
reveal the equivalence between the parametric oscillator
and the propagation of waves in a LUIP medium.
The time Fourier transform ~E(z, ω) of the electric field
~E(z, t) = ~E(z, ω)eiωt of an EM wave in a LUIP medium
with normal incidence is solution of:

d2 ~E

dz2
(z, ω) + p(z) ~E(z, ω) = ~0 (2)

Where p(z) = ǫ(z)ω2

c2
and ǫ(z) and c are the relative di-

electric permittivity and the light speed in vacuum.
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For a longitudinal elastic wave with normal incidence, the
time Fourier transform of the projected wave equation
of the phonon displacement field ~U(z, t) = U(z, ω)eiωt~z
writes using the linear elasticity theory:

C(z)
d2U

dz2
(z, ω)+

dC

dz
(z)Uz(z, ω)+ρ(z)ω2

U(z, ω) = 0 (3)

where C and ρ(z) are the elastic coefficient czzzz and
the volumic mass. Eq. (3) does not seem equivalent to
Eq. (2) though as suggested both equations describe the
same physic. A mathematical transformation clarifies
this point: setting U(z, ω) = Q(z, ω)u(z, ω) with Q(z, ω)
satisfying 2C dQ

dz
+ dC

dz
Q = 0, u(z, ω) is solution of:

d2u

dz2
(z, ω) + p(z)u(z, ω) = 0 (4)

Where p(z) = ρω2

C
+ 1

2
d2C
dz2 − 1

4C2 [
dC
dz

]2 is a generally pos-
itive quantity. Eq. (2) and (4) are actually equivalent.
In a LUIP medium, the function p(z) is real and periodic
(period λ) and Eq. (2)(Eq. (4)) is a Hill equation, the
equation of a parametric oscillator. Considering a sinu-
soidal variation of p(z) or limiting the Fourier series of
p(z) ≈ p0+p1 cos(

2πz
λ

), we recover the Mathieu equation

d2φ

dz̃2
+ [η0 + 2α cos(2z̃)]φ = 0 (5)

Where η0 = p0λ
2

π2 , α = p1λ
2

2π2 , z̃ = πz
λ
, and φ designs either

~E(z, ω) from Eq. (2) or u(z, ω) from Eq. (4).
Eq. (1) for the parametric oscillator and (5) for waves
in LUIP media are equivalent: they have thus the same
solutions [7]. Periodic solutions of Eq. (5) correspond to
extended waves whereas unbounded ones, to waves in the
BGs of the LUIP medium.
In this study, we address the following questions: Do

the periodic solutions in the phase space η0 < 0 of
Fig. (1)b exist for waves in real, eventually advanced ma-
terials? if yes to what kind of waves do they correspond?
In Eq. (2), in a lossless material, p(z) is either positive

(noticeably in dielectric media) or negative (noticeably in
metals below their plasma frequency). The propagation
of EM waves in a periodic metallic layered system below
the metals plasma frequencies seems a straightforward
transposition of the inverted pendulum cases: the nega-
tive values of the relative dielectric permittivity warrants
a negative value of η0 in Eq. (5). And indeed, calculating
the dispersion diagram of a theoretical lossless periodic
metallic layered system, we have evidenced some peri-
odic EM waves that propagate below the metals plasma
frequencies. However, such study is only theoretical: in
real metals, p(z) in Eq. (2) is a complex quantity whose
imaginary part is related to the absorption. A paramet-
ric excitation cannot affect the dissipation. Investigating
bi-metallic structures based on real common pure met-
als [8], the absorption dominates and screens the effect
we wish to evidence.

To overcome the absorption drawback of metals, we
will investigate in the following weakly absorbing mate-
rials i.e. dielectric materials and neglect their absorp-
tion. The dielectric permittivity in Eq. (2) is thus real
and positive i.e. a case equivalent to the propagation of
the elastic waves: p(z) > 0 ∀z in Eq. (4).
Waves in the BGs are oscillating with an exponentially

varying amplitude: this amplitude hence varies as the an-
gle of a free pendulum closed to its unstable equilibrium
position. The amplitude of the EM waves or elastic waves
in BGs behaves similarly to waves in a negative dielec-
tric permittivity medium or in a hypothetical imaginary
sound speed medium i.e. mimics a negative effective η0
in Eq. 5 with φ being the amplitude of the wave.
To model the inverted pendulum stabilization mecha-

nism, we propose to use a medium displaying two period-
icities: a first one that would create a BG (in the absence
of the second periodicity) and mimic a negative effective
η0, and a second one that parametrically creates some
periodic solutions inside this BG.
Eq. (5) is formally replaced by the following modified

Mathieu equation involving two parametric excitations:

dφ

dz̃2
+ (η0 + 2α cos(2z̃) + β cos(kez̃ + ϕ))φ = 0 (6)

Where η0 is positive (since we assume p(z) > 0). cos(kez̃)
is the periodicity supposed to create some periodic so-
lutions inside the BG induced by cos(2z̃)(with β = 0).
Eq. (6) has been studied in the general case [9, 10]: actu-
ally, for some set of parameters η0, α and β 6= 0, Eq. (6)
has periodic solutions that would be unbounded if β = 0.
However, rather than discussing on the solutions of

this theoretical equation, we propose to apply the pre-
vious concept to the propagation of phonons in an ex-
perimentally realizable structure. Such structure needs
to involve two periodicities: we propose to use a Super-
SuperLattice (SSL) (see Fig. 2a): a L-periodic structure
whose elementary unit cell is composed of two super-
lattices (SL) SL1 and SL2: respectively, 10 + x peri-
ods of a 5.65 nm (10 monolayers(ML))/2.26 nm (4ML)
GaAs/AlAs SL (period L1) with x = 0.5 and 10 peri-
ods of a 11.3 nm (20ML)/4.52 nm (8ML) GaAs/AlAs
SL (period L2) [11]. Considering only wave vectors with
normal incidence, Fig. 2b report the dispersion diagrams
of the SSL, SL1 and SL2 and, Fig. 2c a zoom in the
frequency range 0.26 THz-0.34 THz, corresponding to a
BG region of both SL1 and SL2. These dispersion di-
agrams are calculated from the transfer matrix [12], a
representation of the resolvante of the wave equations in
these systems. The x-axis of Fig. 2b and c reports the
Block wave vector normalized by kf = π

L
. In Fig. 2b, the

multiple foldings and the mini-gaps created by the peri-
odicity L of the SSL appear. More interestingly, the SSL
phase diagram shows some phonons (blue point curves in
Fig. 2 c) referred in the following as interface acous-

tic phonons in the overlapping region of SL1 and SL2
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FIG. 2. a)Sketch of the elementary cell of a SSL. The back-
ground colors are respectively cyan and red in the SL1 and
SL2 regions, dashed regions underline the stratified structure
in each SL. b) and c) Dispersion diagram of the SSL (black),
SL1 (cyan) and SL2 (red) between 0-0.6 THz and 0.26-0.34
THz . In c), the blue point curve identifies the acoustic in-
terface modes band in the SSL. The orange and green crosses
mention the mode of the SSL at ν = 0.3012 THz plotted in
Fig. 3 and at ν = 0.3104 THz.

BGs. Fig. 3 reports the displacement fields u(z), solu-
tions of the wave equation in the SSL for ν = 0.3012
THz, an interface acoustic phonons identified by an or-
ange cross in Fig. 2c). Though in the BGs of both SL1
and SL2, this solution describes a periodic mode that can
thus propagate in an infinite medium. It is formed by an
oscillating function whose envelop is alternatively expo-
nentially increasing and decreasing. The Fourier anal-
ysis of this mode evidences three characteristic lengths:
a short wavelength (roughly 2L1 = L2) oscillation exhib-
ited in Fig. 3b, an intermediate length ≈ L, related to
the exponential variation of the wave amplitude and, a
long ≫ L characteristic length related to the Bloch wave
vector of this mode. An orange curve emphasizes this
latter oscillation in Fig. 3a. Its wavelength corresponds
to the Bloch wave vector of this mode reported in Fig. 2c.

These interface acoustic modes precisely correspond to
some periodic solutions of the parametric oscillator in the
phase space η0 < 0 in Fig. 1b).

We believe that the physical mechanism described here
also leads to the existence of interface optical phonon [13]
in SLs: the atomic potential induces a fast periodic-
ity (term cos(2z̃) in Eq. (6)) responsible of the BG be-
tween acoustic and optic phonons, and the SL periodicity
plays the role of a parametric stabilizing excitation (term
cos(kez̃) in Eq. (6)). The common description of interface
optical phonon involves a frequency dependent dielectric
constant that accounts for the fast periodicity [14].

FIG. 3. Displacement fields u(z) solutions of the wave equa-
tion in the SSL for ν = 0.3012 THz between 0-7000nm a) and
500-2000 nm b). The background colors are respectively cyan
and red in the SL1 and SL2 regions. An orange curve, a guide
to the eye in Fig.a emphasizes the oscillations at the Block
wave vector.

Besides the interface acoustic modes and as in the case
of optic modes, we have also evidenced from Fig. 2b some
confined acoustic phonons. Their frequency belongs
to only one of the BG of SL1 or SL2: for instance the
mode at ν = 0.3104THz identified by a green cross in
Fig. 2b, in the BG of SL1 but ouside the BG of SL2.
These confined acoustic phonons correspond to some pe-
riodic solutions of the parametric oscillator either in the
phase space η0 < 0 or η0 > 0 in Fig. 1b). A detailed
discussion will be reported elsewhere.
Beyond the existence of the interface acoustic modes,

we now show that it is possible to fully control their fre-
quencies from the engineering of the SSL, and more pre-
cisely by using fractional number of the period of SL1 or
SL2. We consider a SSL formed by 10+x periods of SL1
and 10 periods of SL2 and vary x from 0 to 1. Fig.4 shows
a band frequency (blue point curve in Fig. 4) that contin-
uously shifts from above to below the overlapping region
of SL1 and SL2 BGs. Hence, by judiciously choosing the
value of x, some periodic SSL modes in the gaps of SL1
and/or SL2 at arbitrarily frequencies can be produced.
As already mentioned the concept described here is to-

tally general and can formally apply to any kind wave.
We now discuss this possibility for EM waves. The prop-
agation of an EM wave in a structure approaching the
one of a SSL has been considered and is related to the
existence of optic Tamm state(OTS). Kavokin et al. [15]
have considered the propagation of EM waves across two
different semi-infinite Photonic Crystals(PC) PC1 and
PC2 with a common interface and with overlapping stop
bands (or band gap). By assuring the continuity of the
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FIG. 4. Dispersion diagram of the SSL between 0.26-0.34 THz
as a function of x. The BGs of SL1 and SL2 are represented
by the cyan+red and red regions.

in-plane components of the electric and magnetic fields
at the interface between the two PCs, they evidence some
modes, called OTS in the overlapping region of both PC1
and PC2 stop bands. Experimental evidences of OTS
have been given recently (for instance [16]).
Similarly to the work performed for phonons, we have

calculated the phase diagram of a SuperPhotonic Crystal
(SPC) whose unit cell is composed by (5+0.4) periods of
a PC Ta2O5/SiO2 101.6 nm/149.2 nm and 5 periods of
a PC Bi : Y IG/SiO2 86 nm/138 nm [16] [17] . We have
exhibited a band of periodic modes of energy E ≃ 1.5eV
in the overlapping region of BG of both PCs. The cor-
responding modes, referred in the following as periodic
OTS are similar to the interface acoustic modes depicted
in Fig. 3. Moreover, as expected, the transmission spec-
tra of a finite SPC (with several unit cells) exhibits trans-
mission peaks corresponding to these modes.
The concept described in this paper not only relates

OTS to the physic of the parametric oscillator, but also
extends the idea of Kavokin et al. showing the possibility
to simultaneously assure the continuity conditions at all
interfaces of an infinite succession of different finite PCs.
As a conclusion, we would like to underline the intrinsic

relation between the propagation of wave in LUIP media
and the physics of the parametric oscillator. Especially,
we have shown how we can transpose the possibility to
stabilize an inverse parametric pendulum to the case of
waves. This concept is very general and can formally ap-
ply to any kind of waves: while it is well known that the
periodicity induces some forbidden band frequency, a pe-
riodicity can also stabilize solutions that were expected
to be unbounded. We have chosen here to develop this
concept to the case of elastic waves evidencing some new

classes of phonons in realizable structures. The case of
EM waves has been discussed: we have evidenced the re-
lation between the inverse parametric pendulum and the
OTS and have extended their existence to periodic OTS.
This work opens numerous possibilities of applications
of this concept. Due to the high localized amplitude of
interface type modes, exhibited devices (SSL or SPC)
are expected to be useful in the investigation of non-
linear effects or in the improvements of electron-phonon
or electron-photon couplings. Moreover, they can also be
used to elaborate advanced interferential filters.
Finally, numerous perspectives to this work can be
thought about: one can consider to apply the present
concept to any kind of waves: electronic, spin, capillary
waves. . .While our study has focused on normal incident
waves in lossless materials, it needs to be extended to
oblique wave incidence and to investigate the effect of
absorption. Though for simplicity we have considered
an unidimensional system, the generalization of the de-
scribed concept to 2 and 3-dimensional devices might be
considered.
The author thanks J. Morillo, M. Benoit, A. Ponchet

and J.R. Huntzinger for useful discussions.
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