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EVERY PLANE GRAPH OF MAXIMUM DEGREE 8 HAS AN
EDGE-FACE 9-COLOURING

ROSS J. KANG∗, JEAN-SÉBASTIEN SERENI† , AND MATĚJ STEHLÍK‡

Abstract. An edge-face colouring of a plane graph with edge set E and face set F is a colouring
of the elements of E ∪ F such that adjacent or incident elements receive different colours. Borodin
proved that every plane graph of maximum degree ∆ > 10 can be edge-face coloured with ∆ + 1
colours. Borodin’s bound was recently extended to the case where ∆ = 9. In this paper, we extend it
to the case ∆ = 8.
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1. Introduction. Let G be a plane graph with vertex set V , edge set E and
face set F . Given a positive integer k, an edge-face k-colouring of G is a mapping
λ : E ∪ F → {1, 2, . . . , k} such that

(i) λ(e) 6= λ(e′) for every pair (e, e′) of adjacent edges;
(ii) λ(e) 6= λ(f) for edge e and every face f incident to e;

(iii) λ(f) 6= λ(f ′) for every pair (f, f ′) of adjacent faces with f 6= f ′.

The requirement in (iii) that f and f ′ be distinct is only relevant for graphs containing
a cut-edge; such graphs would not have an edge-face colouring otherwise. Let χef (G)
be the value of the smallest integer k such that there exists an edge-face k-colouring of
G. Although this problem is well-defined for graphs with loops or multiple edges, we
shall throughout the paper only consider graphs that are simple (and this requirement
is necessary, for instance, in Lemma 5.5). We comment here that the multigraph
formed by replacing each edge in a triangle by ∆/2 parallel edges is planar with
maximum degree ∆ and requires at least 3∆/2 colours in an edge colouring (let alone
an edge-face colouring).

Edge-face colourings were first studied by Jucovič [4] and Fiamč́ık [3], who con-
sidered 3- and 4-regular graphs. A conjecture of Mel’nikov [5] spurred research into
upper bounds on χef (G) for plane graphs G with ∆(G) 6 ∆. For small values of ∆,
the best bounds known are ∆ + 3 for ∆ ∈ {2, . . . , 6} [1, 6, 9] and ∆ + 2 for ∆ = 7 [7].
For ∆ > 10, Borodin [2] proved the bound of ∆ + 1. This is tight, as can be seen
by considering trees. Recently, the second and third authors [8] extended the ∆ + 1
bound to the case ∆ = 9 by proving that every plane graph of maximum degree 9 has
an edge-face 10-colouring. Here, we settle the case ∆ = 8.

Theorem 1.1. Every plane graph of maximum degree 8 has an edge-face 9-
colouring.
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Our result is a strengthening of the ∆ = 7 result of Sanders and Zhao [7]; it can
also be viewed as an extension of the recent work on ∆ = 9 [8]. The problem of finding
the provably optimal upper bounds on χef (G) for plane graphs G with ∆(G) 6 ∆
remains open for ∆ ∈ {4, 5, 6, 7}.

We prove Theorem 1.1 by contradiction. From now on, we let G = (V,E, F ) be
a counter-example to the statement of Theorem 1.1 with as few edges as possible.
That is, G is a plane graph of maximum degree 8 and no edge-face 9-colouring, but
every plane graph of maximum degree at most 8 with less than |E| edges has an
edge-face 9-colouring. In particular, for every edge e ∈ E the plane subgraph G− e of
G has an edge-face 9-colouring. First, we describe various structural properties of G in
Section 2; the proofs of these properties are given at the end of this paper in Section 5.
In Section 3 we describe the discharging rules. In Section 4 we use the discharging
rules and the structural properties of G to obtain a contradiction, and thus a proof of
Theorem 1.1.

Our discharging procedure was developed through several rounds, with corrective
adjustments and optimisations included in each round, starting from a näıve scheme
in which only the vertices of degree at least 7 compensated for the deficit of charge
on triangles. A breakthrough in the design of our strategy was the realisation that
Lemma 2.1 below could allow us to conserve considerable charge at degree 7 or 8
vertices incident to faces of a particular type. We could then balance these savings
against the loss of charge to incident triangles with the development of further reducible
configurations. As will become apparent, the analysis of the final charge of vertices of
degree 7 or 8 is particularly involved.

In the sequel, a vertex of degree d is called a d-vertex. A vertex is an (6d)-vertex
if its degree is at most d; it is an (>d)-vertex if its degree is at least d. The notions
of d-face, (6d)-face and (>d)-face are defined analogously as for the vertices, where
the degree of a face is the number of edges incident to it. A face of length 3 is
called a triangle. For integers a, b, c, an (6a,6b,6c)-triangle is a triangle xyz of G
with deg(x) 6 a, deg(y) 6 b and deg(z) 6 c. The notions of (a,6b,6c)-triangles,
(a, b,>c)-triangles, (a,6b, c, d)-faces, and so on, are defined analogously. A vertex is
triangulated if all its incident faces are triangles.

2. Reducible configurations. For our proof of Theorem 1.1, we identify that
some plane graphs are reducible configurations, i.e. configurations that cannot be part
of the chosen embedding of G. Their reducibility follows from Lemmas 2.1–5.11; these
lemmas are proved in Section 5. In this section, we give an explicit description of the
reducible configurations as well as the statement of Lemma 2.1.

For convenience, we depict these configurations in Figure 2.1. We use the following
notational conventions for vertices: 2-, 3- and 4-vertices are depicted by black bullets,
black triangles and black squares, respectively; a white bullet containing a number
represents a vertex of degree that quantity; an empty white bullet represents a vertex
of arbitrary degree (but at least that shown in the figure). For faces, we use the
following conventions: a straight line indicates a single edge; a curved line indicates a
portion of the face with an unspecified number of edges; a curved face that is shaded
grey represents an (64)-face.

The following configurations are reducible. Note that, for any of the below, if an
edge can be removed without affecting the prescribed incidence or facial structure,
then the configuration remains reducible; for example, B6 modified by replacing the 6
by a 5 or 4 is reducible.

A0 A 1-vertex.
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Configurations with faces incident to a 2-vertex.

A1 A triangle incident to a 2-vertex.
A2 A 4-face incident to a 2-vertex and an (63)-vertex.
A3 A 2-vertex adjacent to a 3-vertex and an (65)-vertex.

Configurations with an edge incident to a (64)-face.

B1 An edge uv that is incident to an (64)-face, with deg(u) + deg(v) 6 9.
B2 A triangle uvw with deg(u) + deg(v) 6 10 and deg(w) = 6.
B3 A triangle uvw with uw incident to two (64)-faces, and deg(u) + deg(v) 6 10

and deg(w) = 7.
B4 A triangle uvw with uw adjacent to two (64)-faces, vw incident to two

(64)-faces, and deg(u) + deg(v) 6 10.

Configurations with an edge incident to two (64)-faces.

C1 An edge uv that is incident to two (64)-faces, with deg(u) + deg(v) 6 10.
C2 A triangle uvw with uv incident to two (64)-faces, and deg(u) + deg(v) 6 11

and deg(w) = 6.
C3 A triangle uvw with uv and uw each incident to two (64)-faces, and deg(u) +

deg(v) 6 11 and deg(w) = 7.
C4 A triangle uvw with vw incident to the triangle vwx and wx incident to two

(64)-faces, and deg(u) = deg(x) = 3.
C5 A triangle uvw with vw incident to the triangle vwx and wx incident to two

(64)-faces, and deg(u) + deg(v) 6 10 and deg(v) + deg(x) 6 11.

Configurations along a 2-path.

D1 A 2-path uvw such that vwx is a triangle, with uv incident to an (64)-face,
vw and vx each incident to two (64)-faces, and deg(u) + deg(v) 6 10 and
deg(v) + deg(w) 6 11.

D2 A 2-path uvw such that vwx is a triangle, with uv, vw and vx each incident
to two (64)-faces, and deg(u) + deg(v) 6 11 and deg(v) + deg(w) 6 11.

D3 A 2-path uvw such that vwx is a triangle, with vx incident to two (64)-faces,
and deg(u) = 2, deg(v) = 7 and deg(u) = 3.

D4 A 2-path uvw such that vwx is a triangle, with vw and vx each incident to
two (64)-faces, and deg(u) = 2, deg(v) = 7 and deg(u) = 4.

Note on configurations D1 and D2. An (64)-face incident to uv is not ruled out
from also being an (64)-face (distinct from vwx) incident to vw or vx. In this sense,
the figures representing configurations D1 and D2 in Figure 2.1 belie the configurations’
fuller forms.

Exceptional configurations.

E1 A 4-path uvwxy, such that uvz, vwz, wxz and xyz are triangles, with yz
incident to two (64)-faces, and deg(v) = 3, deg(x) = 4.

E2 A 4-path uvwxy, such that uvz, vwz, wxz and xyz are triangles, and deg(v) =
3, deg(x) = 4 and deg(y) = 6.

E3 A triangulated 8-vertex that is adjacent to both a 3-vertex and a 4-vertex.
E4 A 3-path uvwx, with uv incident to an (64)-face, and deg(u) 6 5, deg(v) = 6,

deg(w) = 2 and deg(x) = 3.

Special lemmas for (>5)-faces. An edge uv is loose if deg(u) + deg(v) 6 8.
The following lemma implies a general set of reducible configurations for (>5)-faces.
These configurations are not depicted in Figure 2.1.
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Lemma 2.1. Let f be a d-face of G incident to x loose edges and q vertices of
degree 2. If d > 5 and x > 1, then 2d − q − x > 9. For (>6)-faces, we require one
more configuration not depicted in Figure 2.1.

Lemma 2.2. Let u and v be two adjacent 2-vertices in G. If u′ 6= v and v′ 6= u
are neighbours of u and v, respectively, then u′ = v′ and deg(u′) = 8.

3. Discharging rules. Recall that G = (V,E, F ) is a plane graph that is a
minimum counter-example to the statement of Theorem 1.1, in the sense that |E| is
minimum. (In particular, a planar embedding of G is fixed.) We obtain a contradiction
by using the Discharging Method. Each vertex and face of G is assigned an initial
charge; the total sum of the charge is negative by Euler’s Formula. Then vertices
and faces send or receive charge according to certain redistribution rules. The total
sum of the charge remains unchanged, but ultimately (by using all of the reducible
configurations in Section 2) we deduce that the charge of each face and vertex is
non-negative, a contradiction.

3.1. Initial charge. We assign a charge to each vertex and face. For every
vertex v ∈ V , we define the initial charge ch(v) to be 2 · deg(v)− 6, while for every
face f ∈ F , we define the initial charge ch(f) to be deg(f)− 6. The total sum is∑

v∈V
ch(v) +

∑
f∈F

ch(f) = −12 .

Indeed, by Euler’s formula |E| − |V | − |F | = −2. Thus, 6 |E| − 6 |V | − 6 |F | = −12.
Since

∑
v∈V deg(v) = 2 |E| =

∑
f∈F deg(f), it follows that

−12 = 4 · |E| − 6 · |V |+
∑
f∈F

(deg(f)− 6)

=
∑
v∈V

(2 deg(v)− 6) +
∑
f∈F

(deg(f)− 6) .

3.2. Rules. We need the following definitions to state the discharging rules.
Given an (>7)-vertex v, a face is special (for v) if it is an (>5)-face that is incident to
a degree 2 neighbour of v (and so, in particular, such a face is incident to v). Given
a 6-vertex v, a face f is exceptional (for v) if f is a 6-face vv1v2 . . . v5 where v1 is a
2-vertex and v2 is a 3-vertex.

Since G may have cut-vertices (of a type not forbidden by Lemma 5.1), some
vertices may be incident to the same face several times. Thus, in the rules below, when
we say that a vertex or a face sends charge to an incident face or vertex, we mean that
the charge is sent as many times as these elements are incident to each other.

The following describe how the charge is redistributed among the edges and faces
in G.

R0 An (>4)-face sends 1 to each incident 2-vertex.
R1 An (>7)-vertex sends

R1a 3/2 to incident (3,>7,>7)-triangles and (4, 6,>7)-triangles;
R1b 7/5 to incident (5, 5,>7)-triangles;
R1c 5/4 to incident (4,>7,>7)-triangles and (2, 8, 4, 8)-faces;
R1d 6/5 to incident (5, 6, 8)-triangles;
R1e 11/10 to incident (5, 6, 7)- and (5,>7,>7)-triangles, and incident (2, 8, 5, 8)-

faces;
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Fig. 2.1: The reducible configurations.
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R1f 1 to incident (>6,>6,>6)-triangles, to every incident 4-face that is not
a (2, 8,65, 8)-face, and to each of its incident special faces;

R1g 1/2 to each of its incident non-special 5-faces.
R2 A 6-vertex sends

R2a 11/10 to incident (5, 6, 6)- and (5, 6, 7)-triangles;
R2b 1 to every other incident triangle, to each incident 4-face, and to each of

its incident exceptional faces;
R2c 1/2 to each of its incident 5-faces and to each of its incident unexceptional

6-faces.
R3 A 5-vertex sends 4/5 to each incident face.
R4 A 4-vertex sends 1/2 to each incident face.

Note on rules R1 and R2. Since configurations A1, B1 and B2 are reducible, it
follows from rule R1 that an (>7)-vertex sends positive charge to every incident triangle.
We conclude that an (>7)-vertex sends zero charge only to incident (>6)-faces that
are not special. Similarly, a 6-vertex sends zero charge only to incident (>7)-faces.

4. Proof of Theorem 1.1. In this section, we prove that the final charge ch∗(x)
of every x ∈ V ∪ F is non-negative. Hence, we obtain

−12 =
∑

x∈V ∪F
ch(x) =

∑
x∈V ∪F

ch∗(x) > 0,

a contradiction. This contradiction establishes Theorem 1.1.

4.1. Final charge of faces. Let f be a d-face. Our goal is to show that
ch∗(f) > 0. Recall that the initial charge of f is ch(f) = d− 6.

First suppose that d > 6. Let p be the number of occurrences of an (>7)-vertex
having f as an incident special face, and q the number of 2-vertices incident to f .
In particular, ch∗(f) > d − 6 − q + p by rules R0 and R1f. We define x to be the
number of edges of f between a 2-vertex and an (66)-vertex, y the number of edges of
f between a 2-vertex and an (>7)-vertex, and z the number of edges of f between
two 2-vertices. We have 2q = x+ y + z and 2p > y. If x = 0, then p > q, and hence
ch∗(f) > 0. Assume now that x > 1. Then Lemma 2.1 implies that 2d− q − x > 9,
that is d− x/2 > (q + 9)/2. Now, ch∗(f) > d− 6− q + p > dd− 6− (x+ z)/2e since
p > y/2, q = (x+ y + z)/2 and d− 6− q + p is integral. Hence,

ch∗(f) >

⌈
q − 3− z

2

⌉
,

which is non-negative if q − z > 2. It remains to deal with the case where q − z 6 1.
Note that q > 2z due to Lemma 2.2. It therefore follows that z 6 1. Let us first
consider the case z = 1, hence q = 2. In this case, it follows by Lemma 2.2 that
p > 2 and therefore ch∗(f) > d − 6 − 2 + 2 > 0. We just need to check the case
z = 0 and q = 1 (since x > 1). Then we may assume that d = 6, for if d > 7 then
ch∗(f) > d − 6 − 1 > 0. Moreover, if y > 1 then ch∗(f) > 0 by rule R1f. Hence,
x = 2q − y − z = 2. Let v and v′ be the two (66)-neighbours of the 2-vertex of f .
First, if both v and v′ have degree more than 3, then each of them sends at least 1/2
to f by rules R2, R3 and R4, and hence ch∗(f) > 0. So, as q = 1, we may assume
that v has degree 3. Now, by the reducibility of configuration A3, the degree of v′ is
at least 6 and hence exactly 6. Consequently, f is exceptional for v′ and f receives 1
from v′ by rule R2b, which concludes the analysis for (>6)-faces.
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Suppose that d = 5, and let q be the number of 2-vertices incident to f . Lemma 2.1
implies that f is incident to at most one loose edge. Thus, if q = 0 (so that f sends
no charge to vertices) then f is incident to at least two (>4)-vertices, and hence
ch∗(f) > 5− 6 + 2 · 1/2 = 0 by rules R1g, R2c, R3 and R4. Moreover, if q > 1, then
Lemma 2.1 implies that f is not incident to a loose edge and f is thus incident to at
least q + 1 vertices of degree at least 7. herefore, f receives at least q + 1 from its
incident (>7)-vertices by rule R1f, and so ch∗(f) > 5− 6− q + q + 1 = 0.

Next suppose that d = 4. Let the four vertices incident to f be v0, . . . , v3 in
clockwise order and suppose without loss of generality that v0 has the least degree
among v0, . . . , v3. First, if deg(v0) > 4, then by rules R1f, R2b, R3 and R4, the charge
sent to f by each incident vertex is at least 1/2, so that ch∗(f) > −2 + 4 · 1/2 = 0.
If deg(v0) = 3, then since configuration B1 is reducible deg(v1) > 7 and deg(v3) > 7.
Thus, by rule R1f, ch∗(f) > −2 + 2 = 0. Last, assume that deg(v0) = 2. Since
configuration B1 is reducible, deg(v1) = deg(v3) = 8, and since configuration A2 is
reducible, deg(v2) > 4. By rule R0, f sends charge 1 to v0. But f receives charge 3: by
rules R1c and R4 if f is a (2, 8, 4, 8)-face; by rules R1e and R3 if f is a (2, 8, 5, 8)-face;
and by rules R1f and R2b if f is a (2, 8,>6, 8)-face. Thus, ch∗(f) > 0.

Finally suppose that d = 3. Let the three vertices incident to f be v0, v1 and v2,
and let us assume without loss of generality that deg(v0) 6 deg(v1) 6 deg(v2). Since
configuration A1 is reducible, deg(v0) > 3. Thus f sends no charge, but needs to
make up for an initial charge of −3. We analyse several cases according to the value
of deg(v0).
deg(v0) = 3. Since configuration B1 is reducible, deg(v1) > 7. By rule R1a, f receives

charge 2 · 3/2 = 3.
deg(v0) = 4. Since configuration B1 is reducible, deg(v1) > 6. If deg(v1) > 7, then f

receives charge 2 · 5/4 + 1/2 = 3 by rules R1c and R4. Otherwise, deg(v1) = 6
and hence deg(v2) > 7 since configuration B2 is reducible, but then f receives
charge 3/2 + 1 + 1/2 = 3 by rules R1a, R2b and R4.

deg(v0) = 5. If deg(v1) = 5, then deg(v2) > 7 since configuration B2 is reducible,
but then f receives charge 7/5 + 2 · 4/5 = 3 by rules R1b and R3. If
deg(v1) = 6, then we separately consider the cases of deg(v2) ∈ {6, 7, 8}. If
deg(v2) ∈ {6, 7}, then f receives charge 2 · 11/10 + 4/5 = 3 by rules R1e, R2a
and R3; if deg(v2) = 8, then f receives charge 6/5 + 1 + 4/5 = 3 by rules R1d,
R2b and R3. Last, if deg(v1) > 7, then f receives charge 2 · 11/10 + 4/5 = 3
by rules R1e and R3.

deg(v0) > 6. The face f receives charge at least 3 by rules R1f and R2b.

This concludes our analysis of the final charge of f , verifying that ch∗(f) > 0.

4.2. Final charge of (66)-vertices. Let v be an arbitrary vertex of G. Our goal
is to show that ch∗(v) > 0. Recall that the initial charge of v is ch(v) = 2 · deg(v)− 6.
Moreover, deg(v) > 2 since configuration A0 is reducible.

If deg(v) = 2, then v is incident to two (>4)-faces since configuration A1 is
reducible; thus, v receives charge 1 from both incident faces by rule R0 and the final
charge of v is ch∗(v) = −2 + 2 = 0.

If deg(v) = 3, then v neither sends nor receives any charge; hence, the final charge
of v is ch∗(v) = ch(v) = 0.

If deg(v) ∈ {4, 5}, then v sends charge ch(v)/ deg(v) to each incident face by rules
R3 and R4; the final charge of v is ch∗(v) = 0.

Suppose now that deg(v) = 6. The initial charge of v is ch(v) = 6. If v is incident
to a 5-face or an unexceptional (>6)-face, then it sends charge at most 1/2 to one
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of the faces by rule R2c and so by rule R2 the total charge sent by v is at most
5 · 11/10 + 1/2 = 6. If v is incident to an exceptional 6-face, then, since configuration
E4 is reducible, v has no incident (5, 6, 6)- or (5, 6, 7)-triangles and thus the total
charge sent is at most 5 · 1 + 1 = 6 by rules R2b and R2c. We conclude that v
is only incident to (64)-faces. Then, since configuration C2 is reducible, v has no
incident (5, 6, 6)-face; furthermore, since configuration C3 is reducible, v has no incident
(5, 6, 7)-face. Therefore, the charge sent by v is at most 6 and the final charge of v
satisfies ch∗(v) > 0.

4.3. Final charge of 7-vertices. Next, suppose that deg(v) = 7. For conve-
nience, let v0, v1, . . . , v6 be the neighbours of v in clockwise order, and let fi be the
face vvivi+1 for i ∈ {0, 1, . . . , 6}, where the index is modulo 7. The initial charge of
v is ch(v) = 8. We partition our analysis based on the number of incident special
(>5)-faces. Note that since configuration B1 is reducible, if v is adjacent to a 2-vertex
then both of the 2-vertex’s incident faces are special for v.

4.3.1. There is an adjacent 2-vertex. We first treat the cases in which v is
adjacent to some 2-vertex. In these cases, there are at least two incident special (>5)-
faces. Thus, we may assume that v is incident to at most one non-special (>5)-face
(which is sent at most 1/2 charge by rule R1g), for otherwise the total charge sent by
v is at most 3 · 3/2 + 2 + 2 · 1/2 < 8. Now note that, by rules R1a and R1b, any face
that is sent charge more than 5/4 must be a (3, 7,>7)-, (4, 6, 7)- or (5, 5, 7)-triangle.
And so we assert that if fi is such a triangle, then both fi−1 and fi+1 are (>5)-faces.
The assertion holds if fi is a (3, 7,>7)-triangle since configurations C1 and D3 are
reducible, and the fact that configuration B3 is reducible implies the assertion for the
two other cases.

Case 4.3.1(1). If v is incident to (exactly) one non-special (>5)-face, then v
is incident to only two special (>5)-faces (for otherwise the total charge sent by v
is 3 · 3/2 + 3 + 1/2 = 8). Thus, the remaining four incident faces are (64)-faces.
Observe that there are at least three of these faces that are adjacent around v to
another (64)-face. Hence by the assertion at the end of the last paragraph, each
of these three faces is sent at most 5/4 charge. So the charge sent by v is at most
3/2 + 3 · 5/4 + 2 + 1/2 < 8. Thus, v is not incident to a non-special (>5)-face.

Case 4.3.1(2). If v is incident to at least five (>5)-faces, then the charge sent is
at most 2 · 3/2 + 5 = 8 due to rule R1f.

Case 4.3.1(3). If v is incident to exactly four (>5)-faces, all of which are special,
then there must be two incident (64)-faces that are adjacent. (Recall that each special
face is adjacent to another special face.) By the assertion in the second paragraph of
the 7-vertex analysis, both of these are sent charge at most 5/4. Therefore, the total
charge sent by v in this case is at most 3/2 + 2 · 5/4 + 4 = 8.

Case 4.3.1(4). If v is incident to exactly three (>5)-faces, all of which are special,
then these faces are sequentially adjacent around v. Hence, by the assertion in the
second paragraph of the 7-vertex analysis, no face is sent charge more than 5/4 and
the total charge sent is at most 4 · 5/4 + 3 = 8

Case 4.3.1(5). Suppose that v is incident to exactly two (>5)-faces, say f0 and f1,
both special (so v1 is a 2-vertex). Recall that all other incident faces have size at most
4. Let us analyse which incident faces can be sent charge 5/4. By rule R1c, such a face
must be a (4, 7,>7)-triangle. Since configuration D4 is reducible, such a face must be
adjacent to a special face for v. Thus, there are at most two such faces, namely f2
and f6. Consequently, the total charge sent by v is at most 2 · 5/4 + 3 · 11/10 + 2 < 8
by rules R1c, R1e and R1f.
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4.3.2. There is no adjacent 2-vertex. Now we may assume that v is not
adjacent to a 2-vertex. In these cases, we may assume that v is incident to at most
two (non-special) (>5)-faces (which are sent at most 1/2 charge by rule R1g), for
otherwise the total charge sent by v is at most 4 · 3/2 + 3 · 1/2 < 8.

Case 4.3.2(1). Suppose that v is incident to two 5-faces (and hence to no other
(>5)-faces). First suppose that there are four (64)-faces that are sequentially adjacent
around v. Since configuration B3 is reducible, none of these is a (3, 7, 7)-, (4, 6, 7)-
or (5, 5, 7)-triangle. Also, since configuration C1 is reducible, at most two of these
are (3, 7, 8)-triangles. It follows that at most three faces are sent charge 3/2, and the
remaining two (64)-faces are sent charge at most 5/4; so the total charge sent by v is
at most 3 · 3/2 + 2 · 5/4 + 2 · 1/2 = 8. Next suppose that there are only three (64)-faces
that are sequentially adjacent around v. As before, we deduce that none of these is a
(3, 7, 7)-, (4, 6, 7)- or (5, 5, 7)-triangle and at most two of these are (3, 7, 8)-triangles. If
two of these faces are (3, 7, 8)-triangles, then the middle one is either a (7, 8, 8)-triangle
or a 4-face, and hence sent charge 1 by rule R1f. Hence, the total charge sent by v is
at most max{4 · 3/2 + 1 + 2 · 1/2, 3 · 3/2 + 2 · 5/4 + 2 · 1/2} = 8.

Case 4.3.2(2). Suppose that v is incident to exactly one 5-face, say it is f0 without
loss of generality. Then v cannot be adjacent to an (>6)-face, for otherwise the total
charge sent by v is at most 5 · 3/2 + 1/2 = 8. As above, since configurations B3 and
C1 are reducible, none of the remaining faces (all (64)-faces) is a (3, 7, 7)-, (4, 6, 7)-
or (5, 5, 7)-triangle and at most two of them are (3, 7, 8)-triangles (either f1 or f6).
Indeed, one of f1 and f6, must be a (3, 7, 8)-triangle, for otherwise the charge sent
by v is at most 6 · 5/4 + 1/2 = 8. Assume without loss of generality that v0 has
degree 3. Therefore, since configuration D1 is reducible, for each i ∈ {2, 3, 4, 5}, either
fi is a 4-face or both vi and vi+1 have degree at least 5. It follows that each of
f2, f3, f4 and f5 is sent charge at most 11/10; thus, v sends total charge at most
2 · 3/2 + 4 · 11/10 + 1/2 < 8.

Case 4.3.2(3). It cannot be that v is incident to two (>6)-faces, for then the
total charge sent by v would be at most 5 · 3/2 < 8. The case in which v is incident
to exactly one (>6)-face is handled by an argument identical to the one used in the
previous paragraph.

Case 4.3.2(4). If v is incident only to (64)-faces, then, since configurations B3
and C1 are reducible, v is not incident to a (3, 7,>7)-, (4, 6, 7)- or (5, 5, 7)-triangle. If
v is incident to a (4, 7,>7)-triangle, then, since configuration D2 is reducible, v cannot
be adjacent to any other 4-vertex. It therefore follows that the total charge sent by v
in this case is at most 2 · 5/4 + 5 · 11/10 = 8.

This concludes the analysis of the final charge of the 7-vertices.

4.4. Final charge of 8-vertices. Last, suppose that deg(v) = 8. For conve-
nience, let v0, . . . , v7 be the neighbours of v in clockwise order, and for i ∈ {0, . . . , 7},
let fi be the face of G incident with vvi and vvi+1, where the index is modulo 8. The
initial charge of v is ch(v) = 10. We partition our analysis based on the number of
incident special faces. Note that since configuration C1 is reducible, if v is adjacent to a
2-vertex then at least one of the 2-vertex’s incident faces is special for v. Furthermore,
since configurations A2 and B1 are reducible, if one of the 2-vertex’s incident faces is
an (64)-face, then it must be a (2, 8,>4, 8)-face.

4.4.1. There is an incident special face. We start with the cases in which
there is a face that is special for v. In these cases, we may assume that there is at
most one incident non-special (>5)-face (that is sent charge at most 1/2 by rule R1g),
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for otherwise the total charge sent by v is at most 5 · 3/2 + 1 + 2 · 1/2 < 10.

Suppose that v is incident to (exactly) one non-special (>5)-face. It may not be
that v is incident to more than one special face, since then v would send charge at most
5 · 3/2 + 2 + 1/2 = 10. So the remaining faces are (64)-faces. Let us suppose that v0
is the 2-vertex, f0 is the special face and f7 is a (2, 8,>4, 8)-face (sent charge at most
5/4 by rules R1c, R1e and R1f), without loss of generality. Among the faces f1, . . . , f6,
(disregarding which one is the non-special (>5)-face), there must be three (64)-faces
that are sequentially adjacent around v. Since configurations B4 and D1 are reducible,
the middle of these faces may not be a (3,>7, 8)-, (4, 6, 8)- or (5, 5, 8)-triangle and
hence is sent charge at most 5/4. Therefore, the total charge sent by v is at most
4 · 3/2 + 2 · 5/4 + 1 + 1/2 = 10.

So we assume now that every (>5)-face incident to v is special for v. If v has at
least four incident special faces, then the charge sent is at most 4 · 3/2 + 4 = 10.

Case 4.4.1(1). Suppose that v is incident to exactly three special faces. If v is
incident to at least two (2, 8,>4, 8)-faces, each sent charge at most 5/4 by rule R1c,
then the total charge sent by v is at most 3 · 3/2 + 2 · 5/4 + 3 = 10. If v is incident to
exactly one (2, 8,>4, 8)-face, then it must be that v is incident to three sequentially
adjacent (64)-faces, say f0, f1 and f2. Since configuration B4 is reducible, f1 is
not a (3, 7, 8)-, (4, 6, 8)- or (5, 5, 8)-face; since v is incident to a (2, 8,>4, 8)-face and
configuration D1 is reducible, f1 is not a (3, 8, 8)-face; hence, f1 receives charge at
most 5/4. Consequently, the total charge sent by v is at most 3 · 3/2 + 2 · 5/4 + 3 = 10.
If v is not incident to a (2, 8,>4, 8)-face, then the three incident special faces are
sequentially adjacent around v. In the following we shall assume that f5, f6 and f7
are the three special faces. The remaining five faces are all triangles, otherwise (by
rule R1f) the total charge sent by v is at most 4 · 3/2 + 4 = 10. Note that there is
no i ∈ {1, 2, 3} such that all of fi−1, fi, fi+1 are (3,>7, 8)-triangles since configuration
C4 is reducible. Since configuration B4 is reducible, none of f1, f2, f3 is a (3, 7, 8)-,
(4, 6, 8)- or (5, 5, 8)-triangle. Furthermore, since configuration D2 is reducible, v is
incident to at most one pair of adjacent (3,>7, 8)-triangles. Thus, at most one of
v1, . . . , v4 is a 3-vertex.

If none of v1, . . . , v4 is a 3-vertex, then the only faces that can be sent charge more
than 5/4 are f0 and f4. Therefore, the total charge sent by v is at most
2 · 3/2 + 3 · 5/4 + 3 < 10.

Suppose that v2 or v3 is a 3-vertex, say v2 by symmetry. Then v1 and v3 are 8-vertices.
Since configuration C4 is reducible, v0 and v4 are (>4)-vertices and hence f0
and f3 are each sent charge at most 5/4. Thus, the total charge sent by v is
at most 3 · 3/2 + 2 · 5/4 + 3 = 10.

Suppose that v1 or v4 is a 3-vertex, say v1 by symmetry. Then f4 is the only face
other than f0 and f1 that can be sent charge more than 5/4. In this case, the
total charge sent by v is at most 3 · 3/2 + 2 · 5/4 + 3 = 10.

Case 4.4.1(2). Suppose that v is incident to exactly two special faces (and hence
is incident to at most two (2, 8,>4, 8)-faces). First, assume that v is incident to a
(2, 8,>4, 8)-face. Since configuration B4 is reducible, if fi is a (3, 7, 8)-, (4, 6, 8)- or
(5, 5, 8)-triangle, then fi−1 or fi+1 is an (>5)-face; also, since configuration D1 is
reducible (and v is incident to a (2, 8,>4, 8)-face), the same conclusion holds if fi
is a (3, 8, 8)-triangle. Since each incident special face is sequentially adjacent either
to an incident (2, 8,>4, 8)-face or to the other special face, we deduce that at most
two faces are sent charge more than 5/4. Thus, the total charge sent by v is at most
2 · 3/2 + 4 · 5/4 + 2 = 10.
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Now we deal with the case where v is not incident to a (2, 8,>4, 8)-face. Suppose
f6 and f7 are the two special faces, with v7 being a 2-vertex. Recall that none of
f0, . . . , f5 is an (>5)-face. Note also that at most one of f0, . . . , f5 is a 4-face, for
otherwise the charge sent by v is at most 4 · 3/2 + 4 = 10. We analyse possible
(3,>7, 8)-triangles among these six faces. First, note that there is no i ∈ {1, 2, 3, 4}
such that all of fi−1, fi, fi+1 are (3,>7, 8)-triangles since configuration C4 is reducible.
Since configuration B4 is reducible, none of f1, . . . , f4 is a (3, 7, 8)-, (4, 6, 8)- or (5, 5, 8)-
triangle. Furthermore, since configuration D2 is reducible, v is incident to at most one
pair of adjacent (3,>7, 8)-triangles.

Case 4.4.1(2)(a). First, we suppose that all of f0, . . . , f5 are triangles. It follows
that at most one of v1, . . . , v5 is a 3-vertex. We consider several cases regarding which
neighbours of v are (64)-vertices.

If none of v1, . . . , v5 is a 3-vertex, then the only faces that can be sent charge more
than 5/4 are f0 and f5. Therefore, the total charge sent by v is at most
2 · 3/2 + 4 · 5/4 + 2 = 10.

Suppose that v3 is a 3-vertex. Hence, v2 and v4 are 8-vertices. We show that f0 and
f1 are sent charge at most 5/2 altogether by v. Indeed, if v1 is a 4-vertex,
then deg(v0) > 7 because configurations B1 and E2 are reducible. Hence, v
sends charge 5/4 to each of f0 and f1 by rule R1c. If v1 is a 5-vertex, then
deg(v0) > 5 as configuration B1 is reducible, and hence v sends charge 11/10
to f1 and at most 7/5 to f0 by rules R1b and R1e. Last, if deg(v1) > 6 then
v sends charge 1 to f1 and at most 3/2 to f0 by rules R1a and R1f. Similarly,
we deduce that v sends charge at most 5/2 to f4 and f5 altogether. Therefore,
the total charge sent by v is at most 2 · 3/2 + 2 · 5/2 + 2 = 10.

Suppose that v2 or v4 is a 3-vertex, say v2 by symmetry. Then, v1 and v3 are
8-vertices. We have deg(v0) > 4 since configuration C4 is reducible, so that
f0 receives charge at most 5/4 from v. Thus, it suffices to show that v sends
to f3, f4 and f5 charge at most 15/4 altogether: the total charge sent by
v would then be at most 2 · 3/2 + 5/4 + 15/4 + 2 = 10. First, deg(v4) > 5
since configuration E1 is reducible. Recall that deg(v4) + deg(v5) > 11. If
deg(v4) + deg(v5) > 12, then f3 and f4 are sent charge at most 9/4 altogether
by v. Thus, the conclusion holds since f6 is sent charge at most 3/2 by v. Now,
if deg(v4) + deg(v5) = 11, then deg(v5) + deg(v6) > 11 since configuration C5
is reducible. Consequently, each of f4 and f5 is sent charge at most 5/4 by
v: recall that none of v3, v4 and v5 is a 3-vertex, and if v6 were a 3-vertex
then v5 would be an 8-vertex so that v4 would have to be a 3-vertex in order
for the charge sent to be more than 5/4. Moreover, f3 is sent charge at most
11/10 by rule R1e, so that the conclusion holds.

Suppose that v1 or v5 is a 3-vertex, say v1 by symmetry. Then, deg(v0) = 8 = deg(v2),
and deg(v3) > 5 since configuration E1 is reducible. Further, recall that v4
and v5 both have degree at least 4. If deg(v6) 6 4, then deg(v5) > 6. Since
deg(v3) + deg(v4) > 11 (because configuration B4 is reducible), at least one
of f2 and f4 is sent charge at most 1, implying that the total charge sent by v
is at most 3 · 3/2 + 2 · 5/4 + 3 = 10. If deg(v6) > 5, then f5 is sent charge at
most 7/5 and f2 is sent charge at most 11/10, so the total charge sent by v is
at most 2 · 3/2 + 7/5 + 2 · 5/4 + 11/10 + 2 = 10.

Case 4.4.1(2)(b). Assume now that (exactly) one of f0, . . . , f5 is a 4-face. (Such a
4-face is assumed to not have an incident 2-vertex.) Without loss of generality, we may
suppose that it is one of f0, f1 and f2. Recall that none of f1, . . . , f4 is a (3, 7, 8)-,
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(4, 6, 8)- or (5, 5, 8)-triangle since configuration B4 is reducible. Also, at most one of
v1, . . . , v5 is a 3-vertex since configurations C4 and D2 are reducible. Moreover, if at
most one of f1, . . . , f4 is sent charge 3/2 by v (i.e. is a (3, 8, 8)-triangle), then the total
charge sent by v is at most 3 · 3/2 + 2 · 5/4 + 3 = 10. In particular, we assume that
(exactly) one of v2, v3, v4 has degree 3.

Suppose that the 4-face is f0. At most three of f1, . . . , f5 are sent charge more than
5/4, so the total charge sent by v is at most 3 · 3/2 + 2 · 5/4 + 3 = 10.

Suppose that the 4-face is f1. By the remark above, one of v3 and v4 has degree
3. If deg(v4) = 3, then deg(v3) = deg(v5) = 8. Further, deg(v6) > 4 since
configuration C4 is reducible. Consequently, the total charge sent by v is at
most 3 · 3/2 + 2 · 5/4 + 3 = 10. If deg(v3) = 3, then deg(v4) = 8 and we shall
see that f4 and f5 are sent at most 5/2 altogether by v. Indeed, let us check
all of the subcases: if deg(v6) 6 4, then deg(v5) > 6, implying that f4 is sent
charge 1 and f5 is sent charge at most 3/2; if deg(v6) = 5, then deg(v5) > 5,
implying that f4 is sent charge at most 11/10 and f5 is sent charge at most
7/5; if deg(v6) = 6, then deg(v5) > 5 since configuration E2 is reducible, and
so each of f4 and f5 are sent charge at most 6/5; if deg(v6) > 7, then each of
f4 and f5 are sent charge at most 5/4. Therefore, the total charge sent by v
is at most 3 · 3/2 + 3 + 5/2 = 10.

Suppose that the 4-face is f2. Then, deg(v4) = 3, for otherwise at most one face
among f1, . . . , f4 is sent charge 3/2 by v. Then, deg(v5) = 8 and deg(v6) > 4
since configuration C4 is reducible. Therefore, the total charge sent by v is at
most 3 · 3/2 + 2 · 5/4 + 3 = 10.

Case 4.4.1(3). Suppose that v is incident to exactly one special face. Then v is
incident to a (2, 8,>4, 8)-face and, since configurations B4 and D1 are reducible, v is
incident to at most one (3,>7, 8)-, (4, 6, 8)- or (5, 5, 8)-face; the total charge sent by v
is at most 3/2 + 6 · 5/4 + 1 = 10.

4.4.2. There is no incident special face. Suppose that v is not incident to a
special face. Any (>5)-face incident to v is sent charge at most 1/2 by rule R1g. If
there are two such faces, then the total charge sent by v is at most 6 ·3/2 + 2 ·1/2 = 10.

Case 4.4.2(1). Suppose there is exactly one incident (>5)-face, say f0. None of
the faces f2, . . . , f6 is a (3, 7, 8)-, (4, 6, 8)- or (5, 5, 8)-triangle since configuration B4
is reducible. Since configuration D2 is reducible, among the vertices v2, . . . , v7 there
is at most one 3-vertex that is incident to some triangle among f2, . . . , f6. None of
the vertices v2, . . . , v7 is a 2-vertex since configuration C1 is reducible (so in particular
none of f2, . . . , f6 is a (2, 8,65, 8)-face). Consequently, f1, . . . , f7 are all triangles, or
else the total charge sent by v is at most 4 · 3/2 + 2 · 5/4 + 1 + 1/2 = 10. Moreover,
one of v2, . . . , v7 must be a 3-vertex or else the total charge sent by v is at most
3 · 3/2 + 4 · 5/4 + 1/2 = 10. Suppose, without loss of generality, that the 3-vertex
is v2, v3 or v4. If it is v2, then at most three faces are sent charge 3/2 and the
total charge sent by v is at most 3 · 3/2 + 4 · 5/4 + 1/2 = 10. If it is v3, then v2
has degree 8 and v sends charge at most 10 unless v1 has degree 3; however, this
contradicts the reducibility of configuration C4. If it is v4, then v3 has degree 8 and
there are three sub-cases. First, if v2 has degree 6, then v sends f2 charge 1 and
charge at most 4 · 3/2 + 2 · 5/4 + 1 + 1/2 = 10 in total; second, if v2 has degree 5,
then v sends f2 charge at most 11/10, f1 charge at most 7/5, and charge at most
3 · 3/2 + 7/5 + 11/10 + 2 · 5/4 + 1/2 = 10 in total; third, if v2 has degree 4, then,
since configuration E2 is reducible, v1 has degree at least 7, so v sends f1 and f2 each
charge at most 5/4, and charge at most 3 · 3/2 + 4 · 5/4 + 1/2 = 10 in total.
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Case 4.4.2(2). Finally, we are in the case that v is only incident to (64)-faces
(in particular none of which are (2, 8,65, 8)-faces since configuration C1 is reducible).
Since configuration B4 is reducible, v is incident to no (3, 7, 8)-, (4, 6, 8)- or (5, 5, 8)-
triangle. If v is not incident to a (3, 8, 8)-triangle, then no face is sent charge more
than 5/4 and hence the total charge sent by v is at most 8 · 5/4 = 10. So assume
that v7 is a 3-vertex, and that f7 is a (3, 8, 8)-triangle. Since configuration D2 is
reducible, v is adjacent to no other 3-vertices. We may assume that v is incident
to fewer 4-faces than the number of (3, 8, 8)-triangles incident to v. (Otherwise, if
x is the number of 4-faces incident to v, then the total charge sent by v is at most
x · (3/2 + 1) + (8 − 2 · x) · 5/4 = 10.) If f7 were the only (3, 8, 8)-triangle then f6
would necessarily be a 4-face. We conclude, therefore, that v is incident to exactly
two (3, 8, 8)-triangles, namely f6 and f7, and to at most one 4-face. Now, if v is
incident to only triangles, then since configuration E3 is reducible, every neighbour
of v other than v7 has degree at least 5, and so the total charge sent is at most
2 · 3/2 + 4 · 6/5 + 2 · 11/10 = 10 (where we observe that the faces adjacent around v to
the (3, 8, 8)-triangles are (>5, 8, 8)-faces and hence sent charge at most 11/10).

Therefore, in addition to the two (3, 8, 8)-triangles, v must be incident to exactly
one 4-face. By symmetry, let us assume that f0, f1 and f2 are triangles. Since
configuration E1 is reducible, v1 has degree at least 5. If v1 has degree at least 6, then
v sends f0 charge 1 and total charge at most 2 · 3/2 + 4 · 5/4 + 2 = 10. If v1 has degree
5, then v sends f0 charge 11/10 and v2 has degree at least 6. If v2 has degree at least 7,
then v sends f1 charge 11/10 and total charge at most 2 ·3/2+3 ·5/4+2 ·11/10+1 < 10.
If v2 has degree 6, then v sends f1 and f2 each charge at most 6/5, and total charge
at most 2 · 3/2 + 2 · 5/4 + 2 · 6/5 + 11/10 + 1 = 10.

We have shown that if deg(v) = 8, then ch∗(v) > 0. This allows us to conclude our
analysis of the final charge of v, having shown ch∗(v) > 0 in all cases. This completes
the proof of Theorem 1.1. �

5. Proofs of reducibility. In this section, we prove that the graph G cannot
contain any of the configurations given in Section 2.

Let λ be a (partial) edge-face 9-colouring of G. For each element x ∈ E ∪ F , we
define C(x) to be the set of colours (with respect to λ) of the edges and faces incident or
adjacent to x. If x ∈ V we define E(x) to be the set of colours of the edges incident to
x. Moreover, λ is nice if only some (64)-faces are uncoloured. Observe that every nice
colouring can be greedily extended to an edge-face 9-colouring of G, since |C(f)| 6 8
for each (64)-face f , i.e. f has at most 8 forbidden colours. Therefore, in the rest of
the paper, we shall always suppose that such faces are coloured at the very end. More
precisely, every time we consider a partial colouring of G, we uncolour all (64)-faces,
and implicitly colour them at the very end of the colouring procedure of G. We make
the following observation about nice colourings, which we rely on frequently.

Observation. Let e be an edge of G incident to two faces f and f ′. There exists a
nice colouring λ of G− e, and hence a partial edge-face 9-colouring of G in which only
e and f are uncoloured. Moreover, if f is an (64)-face, then it suffices to properly
colour the edge e with a colour from {1, 2, . . . , 9} to extend λ to a nice colouring of G.

The following lemma implies the reducibility of configuration A0. We require the
stronger form as it is necessary for later arguments, in particular, for the reducibility
of configurations A1–A3.

Lemma 5.1. Let v be a vertex of G with neighbours v0, v1, . . . , vd−1 in clockwise
order. If v is a cut-vertex of G, then no component C of G − v is such that the
neighbourhood of v in C is contained in {vi, vi+1} for some i ∈ {0, 1, . . . , d− 1}, where
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the index i is taken modulo d.

Proof. Suppose on the contrary that C is a component of G − v such that the
neighbourhood of v in C is contained in, say, {v0, v1}.

First, assume that the neighbourhood of v in C is {v0, v1}. Then G is the edge-
disjoint union of two plane graphs G1 = (C ∪ {v}, E1) and G2 = (V \ C,E2). The
outer face f1 of G1 corresponds to a face f2 of G2. By the minimality of G, the graph
Gi has an edge-face 9-colouring λi for i ∈ {1, 2}. Since both vv0 and vv1 are incident
in G1 to f1, we may assume that λ1(f1) = 1, λ1(vv0) = 8 and λ1(vv1) = 9. Regarding
λ2, we may assume that λ2(f2) = 1. Furthermore, up to permuting the colours, we
can also assume that the colours of the edges of G2 incident to v are contained in
{1, 2, . . . , 7}, since there are at most 6 such edges.

We now define an edge-face 9-colouring λ of G as follows. For every edge e of G,
set λ(e) := λ1(e) if e ∈ E1 and λ(e) := λ2(e) if e ∈ E2. To colour the faces of G, let f
be the face of G incident to both vv0 and vvd−1. (Note that there is only one such
face, since otherwise v would have degree 2, which would be a contradiction.) Now
observe that there is a natural one-to-one correspondence between the faces of G1 and
a subset F1 of the face set F of G that maps f1 to f . Similarly, there is a natural
one-to-one correspondence between the faces of G and a subset F2 of F that maps f2
to f . Note that F1 ∩ F2 = {f}. Now, we can colour every face f ∈ Fi using λi. This
is well defined since λ1(f1) = λ2(f2) = 1.

Let us check that λ is proper. Two adjacent edges of G are assigned different
colours. Indeed, if the two edges belong to Ei for some i ∈ {1, 2}, then it comes from
the fact that λi is an edge-face 9-colouring of Gi. Otherwise, both edges are incident
with v, and one is in G1 and the other in G2. The former is coloured either 8 or 9, and
the latter with a colour of {1, 2, . . . , 7} by the choice of λ1 and λ2. Two adjacent faces
in G necessarily correspond to two adjacent faces in G1 or G2, and hence are assigned
different colours. Last, let g be a face of G and e an edge incident to g in G. If g 6= f ,
then g and e are incident in G1 or G2, and hence coloured differently. Otherwise e is
incident to fi in Gi for some i ∈ {1, 2}, and hence λ(e) = λi(e) 6= λi(fi) = 1 = λ(f).

The case where the neighbourhood of v in C is {v0}, i.e. vv0 is a cut-edge, is dealt
with in the very same way so we omit it.

The next lemma shows the reducibility of configurations B1 and C1.

Lemma 5.2. Let uv be an edge of G, and let s ∈ {1, 2} be the number of (64)-faces
incident to uv. Then deg(u) + deg(v) > 9 + s.

Proof. Suppose on the contrary that deg(u) + deg(v) 6 8 + s. Let f and f ′ be the
two faces incident to uv.

Without loss of generality assume that f is an (64)-face. By the minimality of G,
the graph G− uv has a nice colouring λ. Let f ′′ be the face of G− uv corresponding
to the union of the two faces f and f ′ of G after having removed the edge uv. We
obtain a partial edge-face 9-colouring of G in which only uv, f and the (64)-faces
are uncoloured by just assigning the colour λ(f ′′) to f ′, and keeping all the other
assignments.

Consequently, |C(uv)| 6 deg(u) + deg(v)− 2 + 2− s 6 8. Hence, we can properly
colour the edge uv, thereby obtaining a nice colouring of G; a contradiction.

In light of Lemma 5.2, we make the following definition and observation. An edge
uv of G is called tight if deg(u) + deg(v)− s = 9, where s ∈ {1, 2} is the number of
(64)-faces incident to uv.

Observation. Assume that c is an edge-face 9-colouring of G in which only uv and
the (64)-faces are uncoloured. Let S be the (possibly empty) set of colours assigned
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by c to the (>5)-faces incident to uv. If uv is tight, then the sets E(u), E(v) and S
are pairwise disjoint, and C(uv) = E(u) ∪ E(v) ∪ S = {1, . . . , 9}.

The reducibility of configurations B2, B3, B4, C2 and C3 follows from the next
lemma.

Lemma 5.3. Let uvw be a triangle of G such that deg(u) + deg(v) = 10 + s,
where s ∈ {0, 1} is the number of (64)-faces distinct from uvw incident to uv, and
let t ∈ {0, 1, 2} be the number of (64)-faces distinct from uvw incident to uw or vw.
Then deg(w) > 7 + t.

Proof. As we pointed out, there exists a partial edge-face 9-colouring c of G in
which only uv and the (64)-faces are left uncoloured. Let αuv, αvw and αuw be the
colours, if any, assigned to the (>5)-faces incident to uv, vw and uw, respectively.
Since the edge uv is tight, E(u), E(v) and {αuv} form a partition of {1, 2, . . . , 9}. Thus,
if there is a colour ξ ∈ E(u) ∪ {αuv} that is not in E(w) ∪ {αvw}, then we can colour
uv with c(vw) and next recolour vw with ξ to obtain a nice colouring of G. We deduce
that E(u) ∪ {αuv} ⊆ E(w) ∪ {αvw}. Similarly, E(v) ∪ {αuv} ⊆ E(w) ∪ {αuw}. Hence,
deg(w) + 2− t > 9, so deg(w) > 7 + t, as required.

The following verifies that configuration A1 is reducible. The lemma is also needed
for showing the reducibility of configurations A3, C4 and C5.

Lemma 5.4. Let u, v, w be vertices of G with deg(v) = 2. Then uvw is not a face
of G.

Proof. Suppose on the contrary that uvw is a face of G. There exists a nice
colouring c of G− uv. Note that the face f1 of G other than uvw that is incident to
both uv and vw must be an (>5)-face, or else |C(uv)| 6 8 and we can immediately
extend c to a nice colouring of G. Note that f1 is distinct from the face f2 of G other
than uvw that is incident to uw; otherwise, one of u or w is a cut-vertex of a type
forbidden by Lemma 5.1. Let βuw be the colour, if any, assigned by c to f2.

Observe that c(f1) /∈ {βuw, c(uw)}. Indeed, since uv is tight, the sets E(u), {c(vw)}
and {c(f1)} are pairwise disjoint. Since vw is tight, we deduce that c(f1) /∈ E(w), for
otherwise we could colour uv with c(vw) and next recolour vw with a colour from
{1, . . . , 9} \ E(w). Hence c(f1) /∈ E(u)∪E(w)∪{βuw}, so that colouring uv with c(uw)
and next recolouring uw with c(f1) yields a nice colouring of G; a contradiction.

The next lemma will be used to show the reducibility of configurations A3 and
E4.

Lemma 5.5. Let v be a 2-vertex of G, and let u and w be its two neighbours. If
deg(u) 6 6, then u and w are adjacent in G.

Proof. Suppose on the contrary that u and w are not adjacent in G. Then, the
graph G′ obtained by contracting the edge uv is planar, simple and has maximum
degree at most 8. By the minimality of G, let λ be a nice colouring of G′. Let g and g′

be the faces of G′ corresponding to the contracted faces f and f ′ of G, respectively. We
obtain a partial edge-face 9-colouring of G in which only uv is uncoloured by assigning
the colour λ(g) to f , the colour λ(g′) to f ′, and keeping all the other assignments.

Now, |C(uv)| 6 deg(u) + deg(v)− 2 + 2 6 8. Consequently, we can properly colour
the edge uv to obtain a nice colouring of G; a contradiction.

We now deduce the reducibility of configuration A3.

Corollary 5.6. Let v be a 2-vertex of G and let u and w be its two neighbours.
If deg(u) = 3, then deg(w) > 6.

Proof. Suppose on the contrary that u has degree 3 and w has degree at most 5.
Lemma 5.5 implies that u and w are adjacent. Note that uvw cannot be a face by
Lemma 5.4. Let u′ be the neighbour of u besides v and w. By Jordan’s curve theorem,
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the curve uvw splits the plane into two parts, I and O with u′ ∈ O. First, note
that w has a neighbour in O, for otherwise u would be a cut-vertex that contradicts
Lemma 5.1. Moreover, Lemma 5.4 implies that w has a neighbour in I . Consequently,
w has either one or two neighbours in I , and hence w is a cut-vertex that contradicts
Lemma 5.1.

The following demonstrates that configuration A2 is reducible.

Lemma 5.7. Let u, v, w, x be vertices of G with deg(v) = 2 and deg(x) 6 3. Then
uvwx is not a face of G.

Proof. Suppose on the contrary that uvwx is a face of G. There exists a partial
edge-face 9-colouring c of G in which only uv and the (64)-faces are uncoloured. Let
α be the colour, if any, assigned to the (>5)-face incident to both uv and vw, and let
βux and βwx be the colours, if any, assigned to the (>5)-faces incident to ux and wx,
respectively.

By Lemma 5.1, observe that α /∈ {βux, βwx, c(ux), c(wx)}. Since uv is tight, the
sets E(u), {c(vw)} and {α} are pairwise disjoint. Since vw is tight, we deduce that
α /∈ E(w), for otherwise we could colour uv with c(vw) and next recolour vw with a
colour from {1, . . . , 9} \ E(w). Hence α /∈ E(u) ∪ E(w) ∪ {βux, βwx}.

Let x′ be the vertex adjacent to x distinct from u and w. We must have c(xx′) = α,
otherwise we could colour uv with c(ux) and next recolour ux with α. Since βux 6= βwx,
at least one of βux and βwx is distinct from c(vw). Observing that we can colour
uv with c(vw) and next uncolour vw, we may assume without loss of generality that
βwx 6= c(vw). As a result, colouring uv with c(vw), and next swapping the colours of
vw and xw yields a nice colouring of G; a contradiction.

The following verifies that configurations C4 and C5 are reducible.

Lemma 5.8. Let uvw and vwx be triangles of G such that wx is incident to two
(64)-faces.

(i) At least one of u and x has degree at least 4.
(ii) If uv is tight, then deg(v) + deg(x) > 12.

Proof. (i). Suppose on the contrary that both u and x have degree less than 4.
Then both have degree 3 by Lemma 5.4. Let u′ (respectively x′) be the neighbour of
u (respectively x) distinct from v and w. Let c be a partial edge-face 9-colouring of G
in which only wx and the (64)-faces are uncoloured. Let αuv, αuw and αvx be the
colours, if any, assigned to the (>5)-faces incident to uv, uw and vx, respectively.

Since the edge wx is tight, the sets E(w) and E(x) are disjoint. Hence c(xx′) ∈ E(v),
otherwise we could colour wx with c(vw) and recolour vw with c(xx′).

We first assert that αvx 6= c(vw). Otherwise, |C(vx)| = |E(v)| 6 8 and there exists
ξ ∈ {1, 2, . . . , 9} \ C(vx). Now, colouring wx with c(vx) and recolouring vx with ξ
yields a nice colouring of G; a contradiction. Consequently, we can safely swap the
colours of vw and vx, if necessary.

Our next assertion is that {c(uu′), αuw} = {c(vw), c(vx)}. For, if c(vx) /∈
{c(uu′), αuw}, we can colour wx with c(uw) and recolour uw with c(vx); a con-
tradiction. The same argument after swapping the colours of vw and vx shows that
c(vw) ∈ {c(uu′), αuw}. Thus, up to swapping the colours of vw and vx, we may
assume that c(vx) = αuw.

Let us recolour uv with c(vx), colour wx with c(vx) and uncolour vx. The obtained
colouring is proper, since αuv 6= αuw = c(vx) and E(w) ∩ E(x) = ∅. Now, if vx cannot
be coloured greedily, then for the obtained colouring E(v)∪E(x)∪{αvx} = {1, 2, . . . , 9}.
But then, since there are at most ten in the set of edges incident to v or x, two of
which (uv and wx) have the same colour and one of which is uncoloured, it follows
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that c(xx′) /∈ E(v) ∪ E(w). Now we can colour vx with c(vw) and colour vw with
c(xx′) to obtain a nice colouring of G; a contradiction.

(ii). Suppose on the contrary that uv is tight and deg(v)+deg(x) = 11. Let c be a
partial edge-face 9-colouring of G in which only uv and the (64)-faces are uncoloured.
Let αuv, αuw and αvx be the colours, if any, assigned to the (>5)-faces incident to uv,
uw and vx, respectively. Since the edge uv is tight, the sets E(u), E(v) and {αuv} are
pairwise disjoint.

Let ξ be the colour in {1, . . . , 9}\E(w) (unique since we can assume that deg(w) = 8
without loss of generality). Then ξ ∈ E(v), otherwise we could colour uv with c(vw)
and recolour vw with ξ. It follows that ξ /∈ E(u). Therefore, αuw = ξ, otherwise we
could colour uv with c(uw) and recolour uw with ξ. Thus, the colours of uw and vw
may be exchanged, if necessary.

Let us show that E(u) ∪ {αuv, c(vw)} ⊆ E(x) ∪ {αvx}. First, if there is a colour
γ ∈ E(u)∪{αuv} that is not in E(x)∪{αvx}, then we can recolour vx with γ and then
colour uv with c(vx) to obtain a nice colouring of G, which is a contradiction. Similarly,
by exchanging the colours of uw and vw, we conclude that c(vw) ∈ E(x) ∪ {αvx}.

Since uv is tight and deg(v) + deg(x) = 11, we deduce that E(x) ∪ {αvx} =
E(u) ∪ {αuv, c(vw), c(vx)}. (Indeed, |E(x) ∪ {αvx}| 6 deg(x) + 1 = 12− deg(v), and
|E(u) ∪ {αuv}| = 9 − (deg(v) − 1) = 10 − deg(v).) In particular, αvx 6= c(wx) and
ξ /∈ E(x) \ {c(vx)}. Now, colour uv with c(vx), and then recolour vx with c(wx) and
wx with ξ to obtain a nice colouring of G; a contradiction.

The next lemma implies that configurations D1–D4 are reducible.
Lemma 5.9. Let vwx be a triangle of G and u a neighbour of v distinct from x

and w. If vx is incident to two (64)-faces, then either uv or vw is not tight.
Proof. Suppose on the contrary that both uv and vw are tight. Let c be a partial

edge-face 9-colouring of G in which only vw and the (64)-faces are left uncoloured.
Let α be the colour, if any, assigned to the (>5)-face incident to vw. Since vw is
tight, we know that the sets E(v), E(w) and {α} form a partition of {1, 2, . . . , 9}. In
particular, c(vx) /∈ E(w) and c(wx) /∈ E(v).

If an edge e that is adjacent to vw could be properly recoloured with a colour
ξ, then colouring vw with c(e) and recolouring e with ξ would yield a nice colouring
of G; a contradiction. Applying this to vx yields that E(w) ∪ {α} ⊆ E(x), since
C(vx) = E(x)∪ E(v), and as we noted above {1, . . . , 9} \ E(v) = E(w)∪ {α}. Applying
the same remark to wx, we obtain E(v) ∪ {α} ⊆ E(x) ∪ {β}, where β is the colour, if
any, assigned to the (>5)-face incident to wx.

Since 9 = |E(v) ∪ E(w) ∪ {α}| 6 |E(x) ∪ {β}| 6 9, we deduce that β /∈ E(x).
Therefore, we can safely swap the colours of vx and wx if needed (recalling that
E(v) ∩ E(w) = ∅).

Let S be the set of colours of the (>5)-faces incident to uv. Thus, |S| = 2−s where
s is the number of (64)-faces incident to uv. Again, we apply the same arguments
as above to uv: since uv cannot be recoloured, we deduce that E(u) ∪ E(v) ∪ S =
{1, 2, . . . , 9}. But |E(u) ∪ E(v) ∪ S| 6 deg(u) − 1 + deg(v) − 1 + 2 − s = deg(u) +
deg(v)− s 6 9 since uv is tight and vw is uncoloured. Consequently, E(u), E(v) and S
are pairwise disjoint. In particular, c(vx) /∈ E(u) ∪ S. As a result, colouring vw with
c(uv), then recolouring uv with c(vx) and finally swapping the colours of vx and wx
yields a nice colouring of G; a contradiction.

The next lemma implies that configurations E1 and E2 are reducible.
Lemma 5.10. Let v be an 8-vertex of G with neighbours v0, v1, . . . , v7 in anti-

clockwise order. Assume that vivi+1 is an edge for i ∈ {0, 1, 2, 3}, and that v1 an
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(64)-vertex. If v0 is an (66)-vertex or vv0 is adjacent to two (64)-faces, then v3 is
an (>4)-vertex.

Proof. Suppose on the contrary that v3 is a 3-vertex. By the minimality of G, the
graph G− vv3 has a nice colouring and hence G has a partial edge-face 9-colouring c
in which only vv3 and the (64)-faces are left uncoloured. Since vv3 is tight, we deduce
that |E(v) ∪ E(v3)| = 9 and E(v) ∩ E(v3) = ∅.

Let α be the colour, if any, of the (>5)-face incident with both v2v3 and v3v4. If
v2v3 can be recoloured with a colour ξ, then colouring vv3 with c(v2v3) and then v2v3
with ξ would yield a nice colouring of G; a contradiction. Thus, E(v) ⊆ E(v2) ∪ {α}.

Let j ∈ {1, 2}. If there exists a colour ξ ∈ E(v3) \ E(vj), then colouring vv3 with
c(vvj) and then vvj with ξ yields a nice colouring of G (recalling that E(v3) and E(v)
are disjoint). Therefore, E(v3) ⊆ E(vj) for j ∈ {1, 2}. Letting γ be the colour, if any,
of the (>5)-face incident to vv0 we similarly find that E(v3) ⊆ E(v0) ∪ {γ}.

Since E(v2) ∪ {α} ⊇ E(v) ∪ E(v3) = {1, 2, . . . , 9} and |E(v2) ∪ {α}| 6 9, it follows
that α 6= c(vv2). As E(v) ∩ E(v3) = ∅, this implies that the colours of vv2 and v2v3
can be freely swapped. By doing so, we can conclude that E(v3) ∪ {c(vv2)} ⊆ E(vj)
for j ∈ {1, 2} and E(v3) ∪ {c(vv2)} ⊆ E(v0) ∪ {γ}.

Since deg(v1) = 4, we find that E(v1) = {c(vv1), c(vv2)} ∪ E(v3). Furthermore,
by swapping the colours of vv2 and v2v3 if necessary, we may assume that c(v0v1) ∈
E(v3). Now, if v0v1 could be recoloured with a colour ξ, then colouring vv3 with
c(vv1), then vv1 with c(v0v1) and then v0v1 with ξ would yield a nice colouring of
G. Thus, letting β be the colour, if any, of the (>5)-face incident to v0v1 we obtain
E(v0) ∪ E(v1) ∪ {β} = {1, 2, . . . , 9}.

Let us partition our analysis now based on if v0 is an (66)-vertex or if vv0 is
adjacent to two (64)-faces.

Suppose we are in the former case. Since E(v3)∪ {c(vv2)} ⊆ (E(v0)∪ {γ})∩E(v1),
we deduce that |E(v0) ∪ E(v1)| 6 deg(v0) + deg(v1)− 2 6 8. Consequently, β 6= c(vv1)
and c(vv1) /∈ E(v0). In particular, the colours of vv1 and v0v1 can safely be swapped
if needed. As a result, colouring vv3 with c(vv1) and then swapping the colours of vv1
and v0v1 yields a nice colouring of G; a contradiction.

Now suppose we are in the latter case. Then there is no colour γ. For j ∈ {0, 1},
it cannot be that c(vvj) ∈ E(v1−j) (and hence c(vvj) ∈ E(v0) ∩ E(v1)). Otherwise, we
would have, using E(v3) ∪ {c(vv2)} ⊆ E(v0) ∩ E(v1), that |E(v0) ∪ E(v1)| 6 deg(v0) +
deg(v1)− 4 6 8, in which case, recolouring as we did in the last paragraph, we would
reach a contradiction. However, for some j ∈ {0, 1}, we must have β 6= c(vvj), and so
the colours of vvj and v0v1 can be swapped safely. Thus, colouring vv3 with c(vvj) and
then swapping the colours of vvj and v0v1 yields a nice colouring of G; a contradiction.

In the following lemma, we show that configuration E3 is reducible.

Lemma 5.11. Let v be a triangulated 8-vertex of G with neighbours v0, v1, . . . , v7
in anti-clockwise order. If v0 is a 3-vertex, then every vertex vi with i 6= 0 has degree
at least 5.

Proof. Suppose on the contrary that vj is an (64)-vertex with j ∈ {1, . . . , 7}.
First, note that j /∈ {1, 7} by Lemma 5.3 (the reducibility of configuration B2, in
particular). By the minimality of G, the graph G−vv0 has a nice colouring, and hence
the graph G has a partial edge-face 9-colouring in which only vv0 and the (64)-faces
are left uncoloured. Since vv0 is tight and incident to two triangles, we infer that
|E(v) ∪ E(v0)| = 9 and E(v) ∩ E(v0) = ∅.

Note that E(v0) ⊂ E(vi) for i 6= 0, for otherwise we could colour vv0 with c(vvi)
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and then recolour vvi with a colour in E(v0) \ E(vi) to obtain a nice colouring of G
(recalling that E(v) ∩ E(v0) = ∅). Since {c(vvj)} ∪ E(v0) ⊆ E(vj) and deg(vj) 6 4, we
deduce that one of c(vv1) and c(vv7) does not belong to E(vj), say c(vv7).

Let α be the colour of the face incident to both v0v1 and v0v7. We prove that
α 6= c(vv7). Indeed, suppose on the contrary that α = c(vv7). Then, there exists
a colour ξ that does not belong to E(v7) ∪ {α} = E(v7), since deg(v7) 6 8. As
E(v0) ⊂ E(v7), we deduce that ξ /∈ E(v0) ∪ E(v7) ∪ {α}. Therefore, colouring vv0 with
c(v0v7) and then v0v7 with ξ yields a nice colouring of G; a contradiction. Hence,
α 6= c(vv7). Consequently, we can freely swap the colours of vv7 and v0v7. Now,
colouring vv0 with c(vvj), then recolouring vvj with c(vv7) and last swapping the
colours of vv7 and v0v7 yields a nice colouring of G; a contradiction.

The next lemma implies that configuration E4 is reducible.
Lemma 5.12. Let v be a 6-vertex of G with neighbours u and w, and suppose

x 6= v is a neighbour of w. Suppose w is a 2-vertex and x is a 3-vertex. Assume that
uv is adjacent to an (64)-face. Then u is an (>6)-vertex.

Proof. First of all note that, due to Lemma 5.5, v and x are adjacent in G.
Suppose on the contrary that u is an (65)-vertex. By the minimality of G, the graph
G− uv has a nice colouring and hence G has a partial edge-face 9-colouring in which
only uv and the (64)-faces are left uncoloured. Let us further uncolour vw and vx.
Now, |C(uv)| 6 deg(u) − 1 + deg(v) − 1 − 2 + 1 6 8, so we may properly colour
uv. It remains to colour vw and vx. Next, since vw was uncoloured, we see that
|C(vx)| 6 deg(v)− 1 + deg(x)− 1− 1 + 2 = 8, so we may properly colour vx. Finally,
we consider vw and notice that |C(vw)| 6 deg(v)− 1 + deg(w)− 1 + 2 = 8, which does
not prevent us from properly colouring vw. We have thereby obtained a nice colouring
of G; a contradiction.

It remains to prove Lemmas 2.1 and 2.2.
Proof of Lemma 2.1. By the minimality of G, the (proper) subgraph G′ formed

from G by deleting all loose edges incident to f has a nice colouring. To extend this
to a nice colouring of G, it would suffice to properly colour f , as every loose edge on
f can then be greedily coloured. Indeed, a loose edge uv on f is incident to at most
deg(u)− 1 + deg(v)− 1 6 6 other edges. Consequently, since G cannot have a nice
colouring, we conclude that f is incident or adjacent to elements of all nine colours.
Now, f is adjacent to at most d− q other faces, and incident to d− x coloured edges.
Therefore, d− q + d− x > 9, as asserted.

Proof of Lemma 2.2. That u′ = v′ follows directly from Lemma 5.5. Note that by
Lemma 5.4, uvu′ is not a face. By Jordan’s curve theorem, the curve uvu′ splits the
plane into two parts, I and O. Then u′ must have three neighbours in I and three
neighbours in O, or else it would be a cut vertex of a type forbidden by Lemma 5.1.
This implies that u′ has degree 8.
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Henri Poincaré in Paris for the thematic term “Statistical physics, combinatorics and
probability: from discrete to continuous models”, supported by the European Research
Council (ERC), grant ERC StG 208471 ExploreMaps.

REFERENCES



20 ROSS J. KANG, JEAN-SÉBASTIEN SERENI AND MATĚJ STEHLÍK
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