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UNIQUENESS OF TRACES ON LOG-POLYHOMOGENEOUS

PDOS

C. DUCOURTIOUX and M.F. OUEDRAOGO

(June 28, 2011)

Dedicated to Alan Carey, on the occasion of his 60 th birthday

Abstract

We show how to derive the uniqueness of graded or ordinary traces on some algebras of log-polyhomogeneous

pseudodifferential operators (PDOs) from the uniqueness of their restriction to classical pseudodifferential

ones.
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1. Introduction

We consider a closed connected riemannian manifold M of finite dimension n and a finite

rank hermitian vector bundle E over M . A pseudodifferential operator acting on smooth

sections of E is called classical (or polyhomogeneous) ([12]) if locally its symbol is classical,

i.e. it admits an asymptotic expansion in positively homogeneous components.

A pseudodifferential operator L acting on smooth sections of E is called log-polyhomogeneous

if locally its symbol has the form
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ak(x, ξ) logk |ξ|+ ak−1(x, ξ) logk−1 |ξ|+ · · ·+ a0(x, ξ), (1)

where k ∈ N and a0, · · · , ak are classical symbols. We call the integer k the log-degree of

L. We denote by

• L the algebra of log-polyhomogeneous PDOs acting on smooth sections of E

• C` the subalgebra of classical PDOs of L

• Q an admissible classical PDO of positive order such that LogQ exists

• AC` a subalgebra of C` such that [AC`, LogQ] ⊂ AC` ( in general we only have that

the commutator of a classical PDO and a logarithm is a classical PDO, hence we

only have [AC`,LogQ] ⊂ C`).

• A the subalgebra of L generated by LogQ and AC`.

The assumption on AC` implies the following fundamental decomposition of A (see Lemma

?? Paragraph 2)

A =
+∞⊕
k=0

AC` LogkQ. (2)

We assume that AC` does not only contain smoothing operators. Otherwise, AC` and A

are algebras of smoothing operators and V. Guillemin ([4]) has shown that the L2 trace

is the unique trace on such algebras.

On an algebra, we say that a linear form τ is a trace if for any operators A and B in

the algebra, we have τ(AB) = τ(BA) i.e. τ vanishes on commutators. On a graded

algebra B =
⊕
k≥0
Bk, a graded trace is a sequence (τk)k∈N of linear forms τk on

⊕
0≤l≤k

Bl

which vanishes on
⊕

0≤l≤k−1
Bl and such that if A is in

⊕
0≤l≤k

Bl and if B is in
⊕

0≤l≤m
Bl then

τk+m(AB) = τk+m(BA).

Under the assumption of the uniqueness of a trace τ0 on AC` we show that there exists

a unique graded trace (τ0
k)k∈N on the whole algebra A extending τ0 (see Theorem ??
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Paragraph 3). We also prove that if there exists a trace on A extending τ0 then this

extension is unique (see Theorem ?? Paragraph 3).

Our first result applies to the Wodzicki-Guillemin residue (also called the non commutative

residue) res on the algebra C` provided M is of dimension n ≥ 2. It is well known that

the Wodzicki-Guillemin residue res is the unique trace on C`. Setting res0 = res, the

extension res0
k coincides with the higher non commutative residue resk introduced by M.

Lesch up to a multiplicative factor.

The k-th residue of an operator L in L of log-degree k with local symbol

σ(L) = ak(x, ξ) logk |ξ|+ ak−1(x, ξ) logk−1 |ξ|+ · · ·+ a0(x, ξ) is defined as

resk(L) = (k + 1)!

∫
M

∫
S∗M

tr((ak)−n(x, ξ))dξdx.

On L seen as a graded algebra (the grading is given by log-degrees), M. Lesch ([7]) has

shown that the sequence (resk)k∈N is the unique graded trace. We recover the same result

by an alternative approach.

Our second result applies to the canonical trace on the algebra of odd-class log-polyhomoge-

neous PDOs when the manifold M is odd dimensional.

According to M. Kontsevitch and S. Vishik [5], a classical operator A of order m ∈ Z is of

odd-class if locally the positively homogeneous components of its symbol {am−j : j ∈ Z}

are simply homogeneous, i.e. they have the property

am−j(x,−ξ) = (−1)m−jam−j(x, ξ). (3)

The odd-class classical PDOs form an algebra. Following [10] we say that a log-polyhomoge-

neous PDO L is of odd-class if locally, all the classical symbols a0, · · · , ak arising as coeffi-

cients of powers of log |ξ| in its symbol (see (1)) have the above property (3). Similarly to

odd-class classical PDOs, one can easely check that odd-class log-polyhomogeneous PDOs

form an algebra.

When M is odd dimensional, the canonical trace TR of [5] is well defined on the algebra of

odd-class classical PDOs. Recently, L. Maniccia, E. Schrohe and J. Seiler ([8]) have proved

that TR is the unique trace on this algebra. The canonical trace has been first extended
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by M. Lesch ([7]) to log-polyhomogeneous PDOs of non integer orders (this means that

the orders of a0, · · · , ak are not integers) and then by S. Paycha and S. Scott to odd-class

log-polyhomogeneous PDOs when M is odd dimensional ([10]). We refer the reader to

Paragraph 4 for more details. To our knowledge, the proof of the uniqueness of TR on

odd-class log-polyhomogeneous PDOs is new.
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