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Espaces de Hardy et compacité par compensation Un r ésultat en dimension 2

Nous donnons un résultat faisant apparaître un phénomène de léger gain en régularité dans des quantités non linéaires par rapport à leur régularité apparente.

On définit l'espace de Hardy généralisé introduit par E. Stein et G. Weiss [3] que nous noterons H 1

H 1 (R 2 ) = f ∈ L 1 (R 2 )/ sup η≥0 |h η f | ∈ L 1 (R 2 ) où h η (x) = 1 η 2 h x η ≥ 0 appartient à C ∞ 0 (R 2 ) et vérifie : supph η (x) ⊂ B x η , R 2 h η (x)dx = 1.
On travaille dans ce qui suit sur des espaces de Hardy définis sur des domaines bornés et en particulier on pose :

H 1 z (Ω) = f ∈ L 1 (Ω)/f z ∈ H 1 (R 2 )
où f z est le prolongement de f par 0 dans R 2 . Notons que toute fonction f dans

H 1 z (Ω) vérifie Ω f dx = 0.
Une norme sur cet espace est donnée par

||f || H 1 z (Ω) = ||f z || H 1 z (R 2 ) . On définit l'espace de Hardy-Sobolev W 1 H 1 z (Ω) comme l'ensemble des fonctions φ de H 1 z (Ω) dont les dérivées ∂Φ ∂x i appartiennent aussi à H 1 z (Ω). On note W 1 0 H 1 z (Ω) la fermeture de C ∞ 0 (Ω) dans W 1 H 1 z (Ω). On munit W 1 0 H 1 z (Ω) de la norme : ||φ|| W 1 0 H 1 z (Ω) = ||div φ|| H 1 z (Ω) + ||curl φ|| H 1 z (Ω) . On montre le résultat suivant : Théorème 1 -Soit Ω un ouvert borné de R 2 et v = (v 1 , v 2 ) ∈ L ∞ (0, T ; L 2 (Ω))∩ L 2 (0, T ; H 1 0 (Ω)) alors v i v j ∈ L 2 (0, T ; W 1 H 1 z (Ω)) ∀i, j ∈ {1, 2}.
Remarque 1 -On retrouve ainsi un résultat classique en mécanique des fluides lorsque le fluide est incompressible et que div v = 0. En effet, si

v i v j ∈ L 2 (0, T ; W 1 H 1 z (Ω)) alors le terme d'advection (v.∇)v appartient à L 2 (0, T ; H 1 z (Ω)) avec H 1 z (Ω) ⊂ H -1 (Ω) dans le cas de la dimension 2 [2]. Lemme 1 -Si v ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω)) alors : curl (v j v) ∈ L 2 (0, T ; H 1 z (Ω)) ∀j ∈ {1, 2}. Preuve du lemme 1 -Dans ce qui suit, comme v ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω)), on prolonge v et ∂v j ∂x i par 0 sur R 2 -Ω. Pour tout x ∈ Ω, on note B x
η la boule de R 2 de centre x et de rayon η. Sur chaque boule B x η , on peut toujours décomposer v de façon unique sous la forme :

v = ∇p x η + Curl q x η avec Curlq = ( ∂q ∂x 2 , -∂q ∂x 1 ), p x η ∈ H 1 (B x η ) et q x η ∈ H 1 0 (B x η ). Bien sûr, si B x η et B x η sont deux boules telles que B ∩ = B x η ∩B x η = ∅,
sur chacune de ces boules, v se décompose de façon unique et il est clair que l'on n'a pas nécessairement Curl q x η = Curl q x η sur B ∩ . Toutefois, on a curl u = curl Curl q x η = curl Curl q x η sur B ∩ . Cette propriété sera utile par la suite.

Sur chaque boule B x

η on a la décomposition :

curl (v j v) = curl (v j Curl q x η ) -∇p x η Curl v j .
On estime séparément chacun des termes du second membre en utilisant les propriétés de la décomposition v = ∇p x η + Curl q x η sur chaque boule. On obtient une borne de curl (v j v) dans L 2 (0, T ; H 1 z (Ω)) indépendante de η. 1ère étape -Estimation de ∇p x η Curl v j . On adapte le théorème div -curl [1] au terme ∇p x η Curl v j .

∇p x η Curl v j * h η (x) = B x η (∇p x η Curl v j )(y) 1 η 2 h x -y η dy
Comme h η (x) est à support compact sur B x η , il vient :

∇p x η Curl v j * h η (x) = B x η ∇p x η (y) v j -v j η (y) 1 η 2 Curl h x -y η dy où v j = B x η -v j dy et ∇p x η = v -Curl q x η . Si on pose C 0 = π||Curl h|| ∞ et mes(B x η ) = πη 2 on obtient : ∇p x η Curl v j * h η (x) ≤ C 0 B x η - v j (y) -v j η |v(y)|dy+C 0 B x η -|v j (y) -v j | Curl q x η (y) η dy
Avec l'inégalité de Holder, en posant 1 β + 1 β = 1, on a :

∇p x η Curl v j * h η (x) ≤ C 1 B x η - v j (y) -v j η β dy 1 β B x η -|v| β dy 1 β +C 1 B x η -|v j (y) -v j | β dy 1 β B x η - Curl q x η η β dy 1 β
On applique ensuite l'inégalité de Sobolev-Poincaré avec

1 α -1 2 = 1 -1 β = 1 β . Il vient d'une part : B x η - v j (y) -v j η β dy 1 β ≤ C 2 B x η -|∇v j | α dy 1 α et d'autre part, comme B x η -Curl q x η dy = 0, Curl q x η .n = 0 sur ∂B x η et curl v = curl Curl q x
η sur B x η , il est clair avec l'inégalité de Sobolev-Poincaré que :

B x η - Curl q x η η β dy 1 β ≤ C 3 B x η -|curl v| α dy 1 α Ainsi : sup η>0 ∇p x η Curl v j * h η (x) ≤ C 4 sup η>0 B x η -|∇v j | α dy 1 α sup η>0 B x η -|v| β dy 1 β +C 5 B x η -|v j (y) -v j | β dy 1 β sup η>0 B x η -|curl v| α dy 1 α avec B x η -|v j (y) -v j | β dy 1 β ≤ C 5 B x η -|v j (y)| β dy 1 β + C 5 B x η -|v j (y)| dy En posant sup η>0 B x η -|f |dy = M (f ), on parvient à : Ω sup η>0 ∇p x η Curl v j * h η (x) dx ≤ C 4 Ω (M (|∇v j | α )) 1 α M |v| β 1 β dx +C 5 Ω M |v j | β 1 β (M (|curl v| α )) 1 α dx + C 5 Ω (M (|v j |)) (M (|curl v| α )) 1 α dx
On utilise à nouveau l'inégalité de Holder 1 p + 1 p = 1 :

Ω sup η>0 ∇p x η Curl v j * h η (x) dx ≤ C 6 ||M (|∇v j | α ) || 1 α L p α (Ω) M |v| β 1 β L p β (Ω) +C 7 M |v j | β 1 β L p β (Ω) ||M (|curl v| α ) || 1 α L p α (Ω) +C 8 ||M (|v j |)|| L p (Ω) ||M (|curl v| α ) || 1 α L p α (Ω)
.

Finalement en choisissant β < p et α < p on peut appliquer le théorème maximal de Hardy-Littlewood :

Ω sup η>0 ∇p x η Curl v j * h η (x) dx ≤ C 9 ||∇v j || L p (Ω) ||v|| L p (Ω) +C 10 ||v j || L p (Ω) ||curl v|| L p (Ω) Si on fixe p = p = 2, comme v ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 [Ω)), alors : Ω sup η>0 ∇p x η Curl v j * h η (x) dx ≤ C(t) ∈ L 2 (0, T ) Finalement, comme d'une part Ω ∇p x η Curl v j dx = 0 et que d'autre part ∇p x η Curl v j = 0 sur R 2 -Ω (car on a prolongé v j et ∂v j ∂x i par 0 sur R 2 -Ω), on obtient : ∇p x η Curl v j ∈ L 2 (0, T ; H 1 z (Ω)) (0.1)
2ème étape -Estimation de curl (v j Curl q x η ). On a :

curl (v j Curl q x η ) * h η (x) = B x η 1 η 2 Curl h x -y η v j (y) Curl q x η (y) η dy et avec l'inégalité de Holder si 1 β + 1 β = 1 : curl (v j Curl q x η ) * h η (x) ≤ C 1 - B x η |v j | β 1 β   - B x η Curl q x η η β   1 β . Comme B x η -Curl q x η dy = 0, Curl q x η .n = 0 sur ∂B x η et curl v = curl Curl q x η sur B x η
, il est clair avec l'inégalité de Sobolev-Poincaré que :

B x η - Curl q x η η β dy 1 β ≤ C 2 B x η -|curl v| α dy 1 α avec 1 α -1 2 = 1 -1 β = 1 β . Ainsi, en posant sup η>0 - B x η |f | = M (f ), on parvient à : Ω sup η>0 curl (v j Curl q x η ) * h η (x) dx ≤ C 4 Ω M |v j | β 1 β (M (|curl v| α )) 1 α dx
et toujours avec l'inégalité de Holder si 1 p + 1 p = 1 :

Ω sup η>0 curl (v j Curl q x η ) * h η (x) dx ≤ C 5 M |v j | β 1 β L p β (Ω) ||M (|curl v| α )|| 1 α L p α (Ω)
.

Finalement, si on choisit β < p = 2 et α < p = 2, le théorème du maximum de Hardy-Littlewood montre que :

Ω sup η>0 curl (v j Curl q x η ) * h η (x) dx ≤ C 6 ||v j || L 2 (Ω) ||curl v|| L 2 (Ω) ∈ L 2 (0, T ).
Finalement, comme d'une part :

Ω curl (v j Curl q x η )dx = 0 et que d'autre part curl (v j Curl q x η ) = 0 sur R 2 -Ω (car on a prolongé v j et ∂v j ∂x i par 0 sur R 2 -Ω), on obtient : curl (v j Curl q x η ) ∈ L 2 (0, T ; H 1 z (Ω)). (0.2)
De (0.1) et (0.2) on tire le résultat annoncé dans le lemme.

Lemme 2 -Si v ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω)) alors : div (v j v) ∈ L 2 (0, T ; H 1 z (Ω)). Preuve du lemme 2 -En dimension 2 on remarque que : div (v j v) = -curl (v j α(v)), α(v) = (-v 2 , v 1 ).
Sur chaque boule B x η , on peut toujours décomposer α(v) de façon unique sous la forme : α(v) = ∇r x η + Curl s x η avec r x η ∈ H 1 (B x η ) et s x η ∈ H 1 0 (B x η ). On remarque que : -div (v j v) = curl (v j α(v)) = curl (v j Curl s x η ) -Curl v j ∇r x η . On procède alors comme au lemme 1 et on prouve que : Preuve du théorème 1 -La preuve du théorème est une simple conséquence des lemmes 1 et 2.
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