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1. Introduction

In recent years, entanglement has attracted the attention of many physicists working

in the area of quantum mechanics [1, 2]. This is due to the ongoing research in the

area of quantum information [3], and also because of the advances made in different

experimental disciplines, such as in ion traps [4] and Bose-Einstein condensation

[5, 6]. Developments in the field of cavity QED, where experiments in the strong

coupling regime are carried out [7,8] provide plenty of motivation for studying quantum

information and entanglement. Theoretical studies are also important in the context

of atom-light interactions inside structured reservoirs [9] such as resonant cavities or

photonic band gap materials. The theoretically predicted atom-photon bound state

could also lead to entanglement and this can also be linked to another problem: that of

atom-laser out-coupling from Bose-Einstein condensates [10–12], where analogous effects

were predicted in the past.

Besides entangling atoms with each other, or atoms with a few modes, or modes

with each other, it is clear that even a single atom can become entangled with a

reservoir comprised of modes. The issue we address here is how to describe this kind of

entanglement. In the analysis of Ref. [13] the reservoir is treated (in a limiting process)

as a collective object, and the entanglement between the atom and each reservoir mode,

or between the modes, is not considered. It is also possible to partition the reservoir [14]

and then study entanglement between these partitions using a Weisskopf-Wigner theory

for a decaying two-level atom.

In the present work we study entanglement between the atom and the reservoir by

means of an entanglement density which can apply to non-Markovian systems, too. In

our model, an atom interacts with a continuum of modes at zero temperature [15, 16],

and entanglement properties between the atom and the modes and also between the

modes are considered. Using global entanglement as a measure of entanglement, we

derive a pair of distributions that can be interpreted as densities of entanglement in

terms of all the reservoir modes. Both distributions can be calculated in terms of the

spectrum of reservoir excitation. With these two new measures of entanglement we can

study in detail entanglement between the atom and the modes, and also between the

modes.

In our analysis, we consider a Lorentzian reservoir and cover different dynamic

regimes. For strong coupling we observe the periodic collapses and revivals of

entanglement between the atom and the reservoir, which are associated with Rabi

oscillations of the atom. Eventually, all the population leaves the atom and the reservoir

becomes entangled. More precisely, two bundles of modes are excited, forming a “Bell-

like” state. The method developed here, in terms of entanglement distributions, can also

be used when considering various types of structured reservoirs. For example, reservoirs

with a density of modes characterized by a band gap [9,17,18] can be treated with this

method.

The paper is organized as follows. In section 2 we introduce a measure of



Generation of entanglement density within a reservoir 3

entanglement, the global entanglement, and apply it to our system-reservoir states

when the number of degrees of freedom is finite. In section 3 we introduce the density

of entanglement for the limit of a bath with an infinite number of modes. This

entanglement measure evolves according to our model system as introduced in section 4.

In section 5 we present our key results for the density of entanglement and we conclude

in section 6.

2. Measures of multi-partite entanglement

Identifying and measuring entanglement in multi-partite systems presents various

complications. Apart from the case of a two-qubit system, where entanglement can be

identified both for a pure and a mixed state [19,20], multi-qubit entanglement is an open

problem and to date several measures of entanglement have been proposed [1,2,21–24].

For the analysis that follows we will be using the global entanglement [23] since this

will enable us to deal with many modes (or qubits). The physical problem we consider

is that of entanglement between an atom and a reservoir, and in the context of this

problem we will also consider the entanglement between different reservoir modes. To

quantify this we will take a discrete bath of reservoir modes. Since we will assume only

a single excitation in each bath mode, we can treat the bath states as a set of qubits

for the purpose of computing the entanglement, and then later take a continuum limit.

With just one excitation in total in the system, this excitation may be in the atom, or

in the bath, so that the state vector at all times will have the form

|ψ(t)〉 = c0|0〉 + ca(t)|ψa〉 +
∑

λ

cλ(t)|ψλ〉, (1)

where |0〉 is the vacuum state

|0〉 = |0〉a ⊗ |0000 · · ·000〉. (2)

The other two states |ψa〉 and |ψλ〉, correspond to the atom being excited

|ψa〉 = |1〉a ⊗ |000 · · ·000〉, (3)

or the mode λ of the reservoir being excited

|ψλ〉 = |0〉a ⊗ |000 · · ·01λ0 · · ·000〉. (4)

Recently this kind of approach has been utilized for the study of decoherence and

entanglement decay in systems with one or two excitations (effectively at T = 0) [25–56].

Some of this work examines the decay of a single excitation in a reservoir made from a

continuum of modes [29–31, 42, 52] and other works examine entaglement with two or

more qubits, but most still utilize the decay of a single excitation as considered in the

present paper [25–28, 32–41,43–46,48, 50, 51].

If we started with a system of N qubits in a pure state |ψ〉, the global entanglement

is defined as

Q(|ψ〉) = 2 − 2

N

N∑

i=1

trρ2
i , (5)
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where ρi is the reduced density matrix for the i-th qubit. When |ψ〉 is a pure product

state then Q(|ψ〉) = 0. If we take an entangled state for |ψ〉, such as the GHZ state

|GHZ〉N = (|000 · · ·〉 + |111 · · ·〉)/
√

2, (6)

then Q(|ψ〉) = 1. This example gives a maximum value for the global entanglement

which is normalized such that 0 ≤ Q(|ψ〉) ≤ 1. Another, more relevant example is the

W-state

|W 〉N =

N∑

j=1

|0 · · ·01j0 · · ·0〉/
√
N, (7)

for which the global entanglement goes to zero as 1/N for large N

Q(|ψ〉) = 4(N − 1)/N2. (8)

An important property of the global entanglement is that it is equal to a sum over

two-qubit concurrences [2]. More specifically, for pure states |ψ(t)〉 [Equation (1)] we

find from Equation (5), see the appendix for details, that

Q(|ψ〉) =
2

N + 1
C2(t), (9)

where C2(t) reads

C2(t) =

N∑

λ=1

c2(ρaλ) +
∑

1≤λ<µ≤N

c2(ρλµ). (10)

The concurrence c2(ρaλ) is that for the two-qubit (reduced) density matrix ρaλ [19, 20]

ρaλ = trµ 6=λ {|ψ(t)〉〈ψ(t)|} (11)

between the atom and the λ-mode. The quantity ρµλ is the corresponding density matrix

for the modes µ and λ:

ρµλ = tra,κ 6=λ,µ {|ψ(t)〉〈ψ(t)|} . (12)

The two-qubit concurrence c(ρ) is equal to [19, 20]

c(ρ) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}, (13)

where λj are the eigenvalues of the matrix

R = ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy), (14)

in decreasing order, i.e. λ1 > λ2 > λ3 > λ4, and σy is the relevant Pauli matrix.

Is is important to note here that C2(t) is exactly equal to the square of the norm of

the concurrence vector [24], which is one of the many proposed measures for multi-partite

entanglement. Because of the connection between C2(t) and the two-qubit concurrence

Equation (10), we shall refer to C2(t) simply as the concurrence.

For the remainder of this work we will focus only on C2(t) and its properties since,

with the exception of the normalization factor 2/(N+1) in Equation (9), it is equivalent

to the global entanglement. Furthermore, we will be considering a continuum of reservoir

modes, i.e. N � 1. In this limit, as we see in the following section, one can define a

density of entanglement for continuous systems.
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3. Density of entanglement

In the limit of continuous distribution for the reservoir modes, the summations in

Equation (10) can be converted into integrals over the density of modes ρλ, i.e.
∑

λ

→
∫

dωλρλ. (15)

If we take this limit, the concurrence C2(t) can be expressed as the sum of two separate

parts which ultimately involve either atomic population or reservoir mode populations:

C2(t) =

∫ ∞

−∞
dωλEA(ωλ, t) +

∫ ∞

−∞
dωλ

∫ ∞

−∞
dωµER(ωλ, ωµ, t). (16)

The two distributions EA and ER will form the entanglement densities and are defined

in terms of the two qubit concurrences to be

EA(ωλ, t) = c2(ρaλ)ρ(ωλ), (17)

and

ER(ωλ, ωµ, t) =
1

2
c2(ρλµ)ρ(ωλ)ρ(ωµ), (18)

where ρ(ω) is the reservoir density of modes. The interpretation for these two functions

is now very simple.

The distribution EA(ωλ, t) is the density of entanglement between the atom and all

reservoir modes in the vicinity of mode ωλ i.e. EA(ωλ, t)dωλ is the total entanglement

between the atom and all modes in the frequency interval ωλ and ωλ +dωλ. In the same

way ER(ωλ, ωµ, t)dωµ gives the entanglement between the mode ωλ and modes in the

frequency range ωµ to ωµ + dωµ.

For the remainder of this work, EA will be referred as the atom-mode density

of entanglement and to ER as the mode-mode density of entanglement. The global

entanglement Q(|ψ〉), Equation (9), can be calculated from these two densities of

entanglement, and thus a number of entanglement properties can be studied in terms of

these two distributions. To this end it is important to note an interesting property for

the two distributions EA and ER. One can show that both entanglement distributions

can be written in terms of the spectrum of reservoir excitation [57]

S(ωλ, t) = ρ(ωλ)|cλ(t)|2, (19)

as

EA(ωλ, t) = 4|ca(t)|2S(ωλ, t), (20)

and

ER(ωλ, ωµ, t) = 2S(ωλ, t)S(ωµ, t) . (21)

Thus, both entanglement distributions can be derived from the reservoir excitation

spectrum. Having the definition for the entanglement density we can now introduce a

Hamiltonian and dynamics to consider the time-dependent properties of entanglement

for an atom coupled to a Lorentzian reservoir.
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4. Dynamical model

The model system consists of a two-level atom coupled to a reservoir of harmonic

oscillators with annihilation and creation operators aλ and a†λ respectively. Within

the rotating wave approximation the Hamiltonian reads (~ = 1)

H =
∑

λ

ωλa
†
λaλ + ω0|1〉aa〈1| +

∑

λ

gλ

(
a†λ|0〉aa〈1| + aλ|1〉aa〈0|

)
, (22)

where gλ is the coupling between the mode λ and the atomic transition |1〉a → |0〉a.
The atomic transition frequency is ω0 whereas the λ-mode frequency is ωλ. This model

will preserve the assumption of a single excitation which is built into the system states

in Equation (1).

For the purposes of the analysis that follows, it is very useful to introduce the

reservoir structure function D(ωλ) which reflects the properties of the density of modes

[17]. This is defined through

ρλ(gλ)
2 =

Ω2
0

2π
D(ωλ), (23)

and is normalized such that∫ ∞

−∞
dωD(ω) = 2π. (24)

With this normalization a measure of the overall coupling strength is Ω0 which is given

by

Ω2
0 =

∑

λ

(gλ)
2. (25)

Utilizing these assumptions, and a state vector of the form given by Equation (1), the

Schrödinger equation in an interaction picture yields

i
d

dt
c̃a =

∑

λ

gλe
−iδλtc̃λ, (26)

i
d

dt
c̃λ = gλe

iδλtc̃a, (27)

with the detuning between the atomic transition and the mode λ being given by

δλ = ωλ − ω0. (28)

The interaction picture amplitudes c̃a and c̃λ are connected to ca and cλ via a time-

dependent transformation

c̃a(t) = eiω0tca(t), c̃λ(t) = eiωλtcλ(t). (29)

Apart from numerical integration of equations (26) and (27), one could use

analytical methods to derive the dynamics. Examples of these are: the resolvent

method [9], the Laplace transform [58, 59] and that of the pseudomodes [17, 18, 42, 60].

This latter method applies when the spectral function is analytic with poles in the lower

complex plane. Then equations (26) and (27) can be replaced, in the continuum limit,
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by a set of equivalent equations where the atom now couples to a finite set of fictitious

modes. Each of these modes has a one–to–one correspondence to the poles of D(ω).

For concreteness we consider Lorentzian reservoir structure functions of width Γ

and peak frequency ωc, i.e.

D(ω) =
Γ

(ω − ωc)2 + (Γ/2)2
. (30)

This reservoir function has a simple pole at

z = ωc − iΓ/2, (31)

and for this D(ω) equations (26) and (27) are equivalent to two new equations

i
d

dt
c̃a(t) = Ω0b̃(t), (32)

i
d

dt
b̃(t) = (∆ − iΓ/2)b̃(t) + Ω0c̃a(t), (33)

where the atom-cavity detuning ∆ = ωc − ω0, and b(t) = e−iω0tb̃(t) is the pseudomode

amplitude. This set of equations can be associated with a master equation, where the

physical interpretation for the pseudomode is that of a leaking cavity mode coupled to

the atomic transition [17].

These coupled ODEs are straightforward to solve, and in particular, for the case of

resonance, ωc = ω0, one finds for the atomic amplitude ca(t):

c̃a(t) = c̃a(0)e−
Γt
4

(
cosh (αt/4) +

Γ

α
sinh (αt/4)

)
. (34)

The modified decay rate α is given by

α =
√

Γ2 − (4Ω0)2 (35)

in terms of Γ and Ω0. For strong couplings, 4Ω0/Γ � 1, the atomic population oscillates

between the atom and the reservoir with a slowly decaying amplitude. In the long time

limit all the energy is lost to the reservoir. If we decrease the coupling Ω0, the atom

dissipates its energy faster, and for 4Ω0/Γ � 1 the atom exponentially decays into the

reservoir. These two types of behavior are illustrated in Figure 1 which is given as a

reference point for the entanglement discussion in the next section. The figures show

the atomic population for Ω0 = 10Γ and Ω0 = 0.1Γ plotted against time t.

5. Evolution of reservoir entanglement

5.1. Entanglement generation by decay

The interaction between the atom and the reservoir results in entanglement creation

between the atom and the reservoir modes, and also between the reservoir modes. This

latter entanglement is indirect and is due to the effective coupling between the modes

as a result of their interaction with the atom. When considering our measure of the

total entanglement, the concurrence C2(t) as a function of time (Figure 2), we see that

for both strong and weak coupling the concurrence builds up to a maximum value equal
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Figure 1. The atomic population |ca(t)|2 as a function of time for strong coupling
Ω0 = 10Γ (solid line), and weak coupling Ω0 = 0.1Γ (dashed line). Both results were
obtained from Equation (34). The initial system state in this and the following figures
is defined by ca(0) = 1, c0 = 0 and all cλ(0) = 0. The detuning ∆ = 0.

to C2(t) = 2. In the case of strong coupling, Figure 2(a), the concurrence reaches the

maximum value very quickly, and then oscillates in a way which is closely connected

to the Rabi oscillations seen in Figure 1. The oscillations return to the maximum

value of two, with a minimum value that also approaches two as time increases. If

we compare the concurrence to the population in Figure 1 we see that every minimum

in concurrence is matched by a peak in population of the atomic state. Likewise the

maxima in concurrence are matched by minima in the atomic population: it seems

that the decaying atom is very efficient at generating entanglement in the reservoir. At

this point we note that at long times the energy has left the atom (see the population

Figure 1) and the system is in an approximate product state of unexcited atom and

bath states. The large value of the concurrence at these times indicates the presence

of entanglement in the bath. In the long time limit the concurrence reaches a steady

value C2(∞) = 2, a result that can be derived analytically if one uses Eqs. (16) (20)

and (21) and the spectrum for t → ∞. This limit for the concurrence is the same

in the weak coupling case, see Figure 2(b); the atom decays exponentially and the

entanglement reaches a steady state monotonically. In the long time limit the atom

again disentangles from the reservoir and entanglement is distributed only between the

reservoir modes.

By examining the entanglement densities [Eqs. (17,18)] we can gain further insight

into where the entanglement resides in this system and how it evolves over time. In

Figure 3 we show the atom-bath density of entanglement EA(ωλ, t) for both strong and

weak couplings. The strong coupling case shows a complex behavior. First a central

peak of entanglement appears in the vicinity of ωλ ≈ ω0; note the peak at δλ ≈ 0 for

short times in Figure 3(a). The entanglement is then transferred to Rabi sidebands

at δλ = δ± ≈ ±Ω0. The sideband entanglement oscillations seen take place at half the
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(a)

(b)

Figure 2. The concurrence C2(t) as a function of time for different couplings Ω0 = 10Γ
(a) and Ω0 = 0.1Γ (b). The result was obtained from Eqs. (16), (20) and (21).

frequency of the central peak entanglement oscillations. Ultimately all the entanglement

decays at long times, EA(ωλ, t) → 0, as there can be no entanglement between bath and

atom when the atomic population approaches zero. At that point the entanglement

indicated by the concurrence in Figure 2(a) must reside in reservoir mode entanglement

which is examined in the next section, Sec. 5.2. Figure 3(a) shows that as Rabi sidebands

develop in the reservoir excitation, the atom-bath entanglement moves from central

frequencies to the sidebands at δλ = δ±. The period doubling of the central peak is

due to the oscillations of the excitation there, combined with the oscillations of atomic

population. The population of the sideband modes is more stable, but oscillations of

the atomic population result in oscillations of entanglement there, too.

For weak coupling, Figure 3(b), the entanglement briefly resides across the whole

reservoir structure. This is essentially because the coupling of the atom is over this same

range. In weak coupling, however, Rabi sidebands do not develop. Instead the final
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(a)

(b)

Figure 3. The density of entanglement EA(ωλ, t) between atom and bath is plotted
for different times t and reservoir mode frequencies ωλ. The coupling strength is: (a)
Ω0 = 10Γ; and (b) Ω0 = 0.1Γ.

population of bath modes will be over a relatively narrow frequency range well within

the model Lorentzian profile, Equation (30). Since both atomic, and mode population

is needed for atom-bath entanglement, the narrow central frequency region is entangled

only for a short while and then decays.

5.2. Entanglement between reservoir modes

As already mentioned, coupling the atom and the reservoir modes will induce an indirect

coupling between the reservoir modes. Because of this, the modes will entangle and

it is important to consider the properties of the mode-mode density of entanglement

ER. In the long time limit one can easily obtain analytic expressions for the spectrum

of excitation in the reservoir and from that calculate the density of entanglement for

t → ∞. Using the definition for the spectrum of reservoir excitation Equation (19))
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with the solution 34 and Equation (27), we find that for t = ∞

S(ωλ,∞) =
Ω2

0D(ωλ)

2π
· δ2

λ + (Γ/2)2

(δ2
λ − Ω2

0)
2 + (Γ/2)2δ2

λ

,

(36)

=
Ω2

0Γ/2

π[(δ2
λ − Ω2

0)
2 + (Γ/2)2δ2

λ]
,

where, as before, δλ = ωλ − ω0 [Equation (28)]. Taking Equation (36) together with

Equation (21) it is straightforward to calculate the mode-mode density of entanglement

for t→ ∞

ER(ωλ, ωµ,∞) =
Ω4

0Γ
2

2π2 [(δ2
λ − Ω2

0)
2 + (Γ/2)2δ2

λ]
[
(δ2

µ − Ω2
0)

2 + (Γ/2)2δ2
µ

] . (37)

Figure 4 shows the mode-mode density of entanglement for several couplings and

in the limit t → ∞. In the strong coupling case, Figure 4(a), we see the formation of

four sharp peaks which signify the existence of strong entanglement between the two

symmetric modes δ± as a result of the Rabi splitting. This picture has a simple and

rather intuitive interpretation: the final state for the reservoir has the form of a Bell-like

state between the two symmetric modes δ± ≈ ±Ω0. First we note that the final state

takes the approximate form

|ψ(∞)〉 = |0〉a ⊗
N∑

λ=1

(P+(ωλ) + P−(ωλ)) |ψλ〉. (38)

where the two probability distributions |P±(ωλ)|2 are centered at δλ = δ+ and δ−
respectively. For Ω0 � Γ, i.e. in the strong coupling regime, their width is very small

which practically means that only the two modes δ± are excited and, for this, the

reservoir state can be approximately described by a Bell state of the form

|ψ(∞)〉 ≈ |0〉a ⊗ |0ω 6=ω0+δ±〉 ⊗
(
|1+0−〉 + eiφ|0+1−〉

)
/
√

2, (39)

where φ is an arbitrary phase factor. This picture applies only at long times. For short

times the mode-mode density of entanglement will initially have a distribution that

peaks in the vicinity of ωλ ≈ ωµ ≈ ω0. As time evolves this distribution breaks into four

symmetrical peaks seen in Figure 4(a), as a result of the Rabi splitting.

For moderate and weaker couplings, Ω0 = Γ and Ω0 � Γ, the simple patterns

observed in Figure 4(a) for the mode-mode density of entanglement due to the Rabi

splitting disappear. For example in Figure 4(b) the density of entanglement for t→ ∞
and Ω0 = Γ is plotted. From this we can see that, for moderate couplings, although the

distribution peaks around δµ = δλ = δ±, the entanglement spreads over a wider range of

reservoir frequencies. For even weaker couplings, Figure 4(c), only modes in the vicinity

of ωλ ≈ ω0 are excited and thus the entanglement is created only between modes in this

frequency range. This is the reason for having a peaked entanglement distribution with

a centre at ωµ = ωλ = ω0.
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(a)

(b)

(c)

Figure 4. The density of entanglement ER(ωλ, ωµ, t) between bath modes for t → ∞.
The coupling strength is: (a) Ω0 = 10Γ; (b) Ω0 = Γ; and (c) Ω0 = 0.1Γ.
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6. Conclusion

In this work we have presented a method for studying entanglement between a two-

level atom and a large reservoir of modes such as may be found in, for example, a lossy

cavity field. Our aim was to study entanglement between the atom and the reservoir, and

within the reservoir itself. To do this we restricted our interest to a simple case where

the reservoir modes can be treated as qubits. Using global entanglement, we derived

the entanglement densities EA and ER for the reservoir modes. These distributions have

been given in terms of the well known two-qubit concurrences, and can be calculated

from the reservoir excitation spectrum. The entanglement densities are then used both

for studying entanglement between the atom and the reservoir modes, and also between

the modes.

In considering different dynamical regimes defined in terms of the coupling strength,

we noticed that when strong interactions occur, the reservoir modes are entangled in

a “Bell-like” state in the long time limit. This long time limit is a regime where no

excitation remains in the atom and all the entanglement is amongst the reservoir modes.

Since there is no direct interaction between the bath-modes, see the Hamiltonian 22,

the final entanglement arises through indirect interaction. Another way of viewing this

is that in the strong coupling regime we have a non-Markovian system. In such a case,

as the atom decays, some information resides in part of the reservoir in a way that it

can be returned to the atom later [34]. This allows the indirect coupling between the

reservoir modes which creates the entanglement. In the weak coupling (Markovian) case,

the information does not return to the atomic system and the reservoir entanglement

cannot be created.

In the transition from strong to weak coupling, the “Bell-like” state of Figure 4(a)

coalesces into a single peaked structure as was seen in Figure 4(c). Based on the

interpretation given above we would expect that the transition to a single peak takes

place as the system becomes Markovian rather than non-Markovian. In principle this

could be tested with a measure of non-Markovianity [61].

In conclusion, when considering entanglement between an atom and a large

reservoir, the analysis can be formulated in terms of entanglement density functions.

These distributions can be associated with the spectrum of reservoir excitation, a

quantity that can be measured, for example, in cavity QED experiments. Although

the model considered here, an atom coupled to a Lorentzian reservoir, is rather simple,

it can be extended to consider more complicated reservoir structures such as model

photonic band gaps. Potentially, one could consider generalizations for the density of

entanglement, and also extend the model beyond the assumption of a single excitation

in the system.
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Appendix A. Global entanglement

For the completeness of our analysis, we show here how the global entanglement for the

pure state |ψ(t)〉, Equation (1), can be derived. First, the state |ψ(t)〉 can be written

as a pure state of N + 1 qubits, i.e.

|ψ(t)〉 = c0|0〉 +
∑

j

cj(t)|ψj〉, (A.1)

where j = a for the atom, or j = λ = 1, · · · , N for the reservoir modes. The vacuum

state |0〉 is given in Equation (2), while |ψj〉 = |ψa〉 [Equation (3)] for j = a, or is given

by Equation (4) if j = λ, i.e. refers to a reservoir mode.

Next we calculate the reduced two-qubit density matrix ρji

ρji = trk 6=j,i{ρ} = 〈χ0|ρ|χ0〉 +
∑

k 6=j,i

〈χk|ρ|χk〉, (A.2)

where |χ0〉 is the N − 2-qubit vacuum state

|χ0〉 =
∏

k 6=i,j

|0k〉, (A.3)

and |χk〉 is the N − 2-qubit state with a single excitation, i.e.

|χk〉 = |0 · · ·01k0 · · ·0〉. (A.4)

With these definitions for |χ0〉 and |χk〉, the reduced density matrix takes the form

ρji =




1 − |cj|2 − |ci|2 c∗0ci c∗0cj 0

c0c
∗
i |ci|2 cjc

∗
i 0

c0c
∗
j c∗jci |cj|2 0

0 0 0 0


 , (A.5)

where the basis states, starting from top and moving to bottom, are

|0j0i〉, |0j1i〉, |1j0i〉, |1j1i〉. (A.6)

The concurrence c(ρji), Equation (13), for this density matrix reads

c2(ρji) = 4|cj|2|ci|2. (A.7)

In order to calculate the global entanglement, we derive the single qubit density

matrix from Equation (A.5) by tracing out the i-qubit

ρj =

(
1 − |cj|2 c0c

∗
j

c∗0cj |cj|2

)
, (A.8)



Generation of entanglement density within a reservoir 15

where the basis states are |0j〉 and |1j〉. Using this we first calculate ρ2
j and then its

trace

trρ2
j = 1 + 2|cj|2

(
|cj|2 + |c0|2 − 1

)
, (A.9)

which after using probability conservation becomes

trρ2
j = 1 − 2|cj|2

∑

i 6=j

|ci|2. (A.10)

Substituting in Equation (5) for the global entanglement we have

Q(|ψ〉) =
2

N + 1

∑

j

∑

i 6=j

2|cj|2|ci|2. (A.11)

Separating the atom-mode terms and the mode-mode terms, and taking into account

the symmetry of the two-qubit concurrence

c2(ρji) = c2(ρij), (A.12)

it takes the form

Q(|ψ〉) =
2

N + 1

(
N∑

λ=1

c2(ρaλ) +
∑

1≤λ<µ≤N

c2(ρλµ)

)
, (A.13)

which leads to the result of Eqs. (9) and (10).
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