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We study both experimentally and numerically the steady zonal flow generated by longi-
tudinal librations of a spherical rotating container. This study follows the recent weakly
nonlinear analysis of Busse (2010), developed in the limit of small libration frequency
- rotation rate ratio, and large libration frequency - spin-up time product. Using PIV
measurements as well as results from axisymmetric numerical simulations, we confirm
quantitatively the main features of Busse’s analytical solution: the zonal flow takes the
form of a retrograde solid body rotation in the fluid interior, which does not depend on
the libration frequency nor on the Ekman number, and which varies as the square of the
amplitude of excitation. We also report the presence of an unpredicted prograde flow at
the equator near the outer wall.

1. Introduction

Longitudinal librations (reported below as librations) are periodic oscillations of a
rotating container about its axis of rotation. Despite the fact that theses oscillations
are time-dependent, it has been recently suggested that they can generate non-linearly
a steady axisymmetric flow in the liquid interior through the Ekman boundary layer
(Busse 2010). A better knowledge of this resulting flow is of great interest in geo- and
astrophysics (see for instance Noir et al. 2009) where libration is driven by gravitational
interactions and is used to investigate the interior structure of planets (e.g. Margot et al.
2007; Van Hoolst et al. 2008).
Despite of the possible applications, flows driven by libration in rotating containers

have not been much studied. Aldridge & Toomre (1969) have observed experimentally
that inertial modes can be excited by libration at particular resonance frequencies, which
has been confirmed numerically by Rieutord (1991). However in the case of Aldridge &
Toomre (1969), the experimental results are measurements of pressure differences be-
tween two points on the axis of rotation, and do not bring information about the result-
ing flow created in the interior. Tilgner (1999) has investigated numerically the linear
response to the forcing in the case of a spherical shell and has shown that the presence
of an inner core only marginally modifies the resonance frequencies. More recently Noir
et al. (2009) have studied experimentally by direct flow visualization the presence of
centrifugal instabilities in the form of Taylor-Görtler vortices near the outer boundary,
by varying the frequency and the amplitude of libration. The same group has also per-
formed LDV measurements of libration-driven zonal flows in a librating cylinder (Noir
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et al. 2010) in the case of high frequency librations and axisymmetric simulations in a
spherical shell (Calkins et al. 2010). Finally, a complete weakly non-linear theory of the
zonal flow driven by low frequency librations in a sphere has been recently developed
by Busse (2010) in the absence of direct resonant forcing of any inertial wave. To the
best of our knowledge, the main features of this analytical solution have not yet been
validated quantitatively. This is the aim of the present work, combining experimental
and numerical approaches. The paper is organized as follows. §2 gives a brief summary
of the governing equations and of the weakly nonlinear analysis of Busse (2010). In §3
we present the experimental setup and the numerical model used in this study. Then
experimental and numerical results are compared to the theory in §4. Discussion and
conclusion are given in §5.

2. Weakly nonlinear theory

Let us consider a spherical cavity of radius R filled with a homogeneous and incom-
pressible fluid of kinematic viscosity ν. In the inertial frame the cavity rotates with an
angular velocity

Ω(t) =

(

Ω0 +
∆Ω

2
cos(ωlib t)

)

k, (2.1)

where Ω0 is the mean rotation rate, ∆Ω is the amplitude of libration, ωlib the libration
frequency and k the unit vector in the direction of the rotation axis. Using respectively
R and Ω0

−1 as lengthscale and timescale, the dimensionless equations of motion written
in the frame rotating at the angular velocity Ω0 and the sidewall boundary conditions
are given by

∂u

∂t
+ u ·∇u+ 2k × u = −∇p+ E∇

2
u (2.2a)

∇ · u = 0 (2.2b)

u = ǫk × r cos(ω t) at |r| = 1, (2.2c)

where r is the spherical radial coordinate, u the velocity measured in the rotating frame,
p the modified pressure taking into account centrifugal forces, E = ν/Ω0R

2 the Ekman
number, ǫ = ∆Ω/2Ω0 the normalized amplitude of libration and ω = ωlib/Ω0 the nor-
malized librational frequency. The librational forcing appears in the problem through the
boundary condition (2.2c). This problem has been recently solved by Busse (2010) in the
limit: √

E ≪ ω ≪ ǫ ≪ 1. (2.3)

The limit of small Ekman number allows splitting of the velocity field into two parts: a
component U describing the inviscid flow in the interior and a boundary layer component
u. Following the weakly non-linear method previously used in the case of precession
(Busse 1968) and tidal forcing (Suess 1971), Busse (2010) finds an expression for the
steady zonal flow in the inviscid interior Ū in the limit of low libration frequencies

Ū = ǫ2 k × r f(|k × r|2) (2.4a)

where f(x2) =
259 x2 − 360

2400(1− x2)
. (2.4b)

The function f(x2) represents the average difference in angular velocities between the
container and the fluid divided by ǫ2. For 0 6 r 6 1, f(x2) is negative, i.e. the fluid
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Figure 1. (a) Photo and (b) sketch of the experimental setup.

is expected to rotate in the retrograde direction. Moreover this differential rotation is
nearly constant up to r ∼ 0.6 with a mean value of −0.154. The zonal flow can thus be
assimilated in the bulk to a retrograde solid body rotation superimposed on the mean
rotation, whose amplitude is independent of the libration frequency and Ekman number
and changes as −0.154 ǫ2. In the present paper, we verify experimentally and numerically
these main features. Note that (2.4.b) diverges for x = 1, i.e. near the outer boundary at
the equator. Here, the analytical approach requires the introduction of a specific scaling
due to the singularity of the Ekman boundary layer (Busse 2010).

3. Methods

3.1. Experimental setup

Figure 1 shows a photo and a schematic view of the experimental setup used in this
study, which is the same as the one used by Morize et al. (2010) to study zonal flows
driven by tides. It consists in a hollow sphere, of radius R = 10 cm, which was molded
in a transparent silicone gel to allow flow visualization. The sphere is filled with water
and seeded with Optimage particles of 100 µm in diameter and of density 1 g.cm−3±2%.
The sphere is set in rotation about its vertical axis (Oz) with a mean angular velocity
Ω0 up to 85 r.p.m with a precision of ±0.3%. Once a solid body rotation is reached
(typically in ∼ 10 minutes), a librational motion is set using sinusoidal oscillations of the
angular velocity of the sphere of the form ǫ cos(ωlib t) where ωlib can be chosen between
0.6 and 120 r.p.m with a precision of ±0.3%. In terms of dimensionless numbers, we have
explored the following ranges: the Ekman number E = ν/Ω0R

2 ∈ [10−5; 10−4], the ratio
between the libration and spin frequency ω = ωlib/Ω0 ∈[0.04; 0.1] and the amplitude of
libration ǫ ∈[0.02; 0.15] with a precision of ±0.6%.
In order to measure the velocity field in the equatorial plane induced by librational

forcing, we used a rotating particle image velocimetry (PIV) system. A miniature wireless
camera 1/4′ Sharp HighQ CCD 29.4 × 22 mm of resolution 576 × 768 pixels rotates at
a constant angular velocity Ω0 and measurements are made from above through the
transparent top surface. The PIV particles are illuminated by a laser sheet, of thickness
3 mm, produced by a continuous laser (4 W) in the equatorial plane. We wait for about 20
oscillations after turning on the libration forcing to ensure that the response of the fluid
is well established, then we start acquiring pictures for PIV measurements using a video
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transmitter-receptor system. Velocity fields are computed using DPIVSoft (Meunier &
Leweke 2003) on a 60 × 80 grid with a spatial resolution of 3 mm, close to the laser
sheet thickness. We look for the time independent axisymmetric zonal flow induced by
the libration whereas the forcing of the sphere is of the form ǫ cos(ωt). Velocity fields
are thus time-averaged over several periods of libration in order to eliminate the time
dependent term. This also significantly enhances the signal to noise ratio. However, our
experimental setup only allows collection of PIV data for a limited time. Hence, we
cannot set the libration frequency at too low a value because we would not be able to
average out the resulting data over enough periods to have a correct velocity profile. In
the experiments we have considered frequencies in the range 0.04 6 ω 6 0.1. Higher and
lower libration frequencies have been studied using numerical methods, that we describe
in the following section.

3.2. Numerical approach

In addition to the experiments, we have performed axisymmetric numerical simulations
of the flow within a sphere of radius R in rotation with an angular velocity Ω(t) =
Ω0(1 + ǫ cos(ωt))ez. We use a commercial software, Comsol Multyphisics c©, based on
the finite elements method to solve this problem. The numerical grid consists of two
domains: (i) a boundary layer domain of thickness 0.035R all along the outer boundary
and the axisymmetric axis, which is discretised in the direction normal to the boundary
into 25 quadrilateral elements with initial thickness of 5.10−5R and a stretching factor
of 1.2; (ii) a bulk zone with triangular elements. All elements are of standard Lagrange
P1−P2 type (i.e. linear for the pressure field and quadratic for the velocity field). Note
that the finite element method does not induce any particular problem around r = 0
and that no stabilization technique has been used in this work. The temporal solver is
IDA (Hindmarsh et al. 2005.), based on backward differencing formulas. At each time
step the system is solved with the sparse direct linear solver PARDISO†. The number
of degrees of freedom (DoF) used in the simulations is constant and equal to 157 869
DoF. Our numerical model solves the Navier-Stokes equations in the frame rotating at
the velocity Ω0 ez, with no-slip boundary conditions and a fluid initially at rest in this
frame (i.e. a solid body rotation at Ω0 in the inertial frame). At time t = 0, libration of
the outer boundary is turned on and computations are pursued until a stationary state
is obtained, which is reached typically in less than 10 libration periods. The velocity is
then averaged in time over 5 libration periods to obtain the steady zonal flow. Results
are non-dimensionalised as in the experiment and in the theory. The numerical model
has been validated in reproducing the experimental results of Aldridge & Toomre (1969).
In their paper they define a fixed libration Reynolds number Reω = ωlibR

2/ν = 6.2 ·104
and their applied angular velocity is given by

Ω(t) = Ω0 + ǫ̃ ωlib cos(ωlibt) where ǫ̃ = 8.0 π/180 rad. (3.1)

Pressure measurements from our numerical simulation when systematically changing
the libration frequency ω are presented in figure 2.a and show an excellent agreement
with the experimental results of Aldridge & Toomre (1969) and the numerical results
of Rieutord (1991), which validates the numerical model. In figure 2.a, each peak cor-
responds to the resonant forcing of a given inertial mode of the rotating sphere and is
labeled by two integers (n,m)(see Aldridge & Toomre 1969). There is no inertial mode
for |ω| > 2 and the modes are progressively damped when 1/ω increases due to the re-
duced coupling between the container’s oscillation and the fluid interior as well as to the

† www.pardiso-project.org
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Figure 2. (a) Time-averaged crest-to-trough amplitude of pressure difference Cp between the
center and the pole of the sphere for various frequency ratios ω = ωlib/Ω0 and for a libration
forcing Ω0+ ǫ̃ ωlib cos(ωlibt) with ǫ̃ = 8.0π/180rad and Reω = ωlibR

2/ν = 6.2 ·104 . The squares
stand for our numerical values, the circles for experimental values of Aldridge & Toomre (1969)
and the line for the theoretical plot. (b) Velocity in the z-direction (i.e. in the direction of the
rotation axis) at time ωt = 3π/2 [2π] for the mode (2, 1) in the notation of Aldridge & Toomre
(1969), corresponding to 1/ω = 1.066.

Figure 3. (a) Time-averaged velocity field obtained by PIV measurement in the equatorial
plane for E = 1.15× 10−5, ǫ = 0.08 and ω = 0.1. The background is colored as the norm of the
horizontal velocity. The center of the sphere is at (0, 0). (b) Mean experimental dimensionless
azimuthal velocity (symbols) corresponding to the velocity field of Fig. 3.a and comparison with
the theoretical results of Busse (2010) (dashed-dotted line).

increased viscous damping as the structure of the forced modes becomes more complex.
The velocity in the z-direction for the mode (2, 1) in the notation of Aldridge & Toomre
(1969) is presented in figure 2.b and shows the inertial wave excited by libration forcing
as well as the structure of the outer boundary layer. In the next section, following Busse
(2010), we investigate the limit ω ≪ 1 where the forcing of inertial modes is negligible,
but where a global zonal flow is excited.

4. Results

Figure 3.a shows an example of the velocity field obtained by PIV measurement in
the equatorial plane. The stationary flow is azimuthal and axisymmetric. Besides, as the
system rotation is clockwise, the zonal flow corresponds here to a retrograde circulation
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Figure 4. Dimensionless time-averaged velocity profiles obtained by numerical simulation in
the equatorial plane with E = 5× 10−5, ǫ = 0.2 and ω = 0.03 (dashed line), ω = 0.06 (dotted
line) and ω = 0.1 (dashed-dotted line), compared with the inviscid analytical solution of Busse
(2010)(continuous line).

opposed to the rotation of the sphere. From this velocity field we can plot an averaged
azimuthal velocity profile at the equator for given parameters in term of dimensionless
quantities as a function of the radial distance (Fig. 3.b). Experimentally, due to optical
deformation induced by the planar air-silicone and spheroidal silicone-water interfaces,
it is not possible to measure the profile for r > 0.85. We observe the steady zonal flow
already visible in figure 3.a. Moreover we can directly compare this dimensionless quantity
with the analytical solution given by Busse (2010) and we observe an excellent agreement
up to r ∼ 0.6 with no adjustment parameter. An example of the velocity field obtained
numerically is shown in figure 4, which also exhibits good agreement with the analytical
solution in the bulk. For r > 0.6 a deviation in the prograde direction with respect to the
theoritical profile due to the librating outer boundary is observed and will be discussed
below. But for now, we concentrate on the mean zonal flow induced in the bulk.
We have performed series of experiments and numerical calculations to systematically

check the effect of the three control parameters E, ǫ and ω on this bulk zonal flow. To
do so, we define a reproducible method to synthetise the experimental and numerical
data. Since the function f(x2) (2.4.b) may be considered as constant up to r ∼ 0.6,
which means that the predicted zonal flow is almost a solid body rotation up to r ∼ 0.6,
we take the average value of the measured |Ū |/r between r = 0.1 and r = 0.6, i.e. the
non-dimensionnalized mean angular velocity, and compare it with the theoretical value
0.154ǫ2. Note that experimental results are represented by bars (see for example figure
5) which represent both the uncertainties of the PIV measurements and the deviation of
the measured velocity profile from a pure solid body rotation.

In figure 5 we investigate the influence of the amplitude of libration ǫ on the zonal
flow. Experimentally we set E = 2.3 × 10−5, ω = 0.07 and we systematically change ǫ
between 0.02 and 0.15. To explore a larger range of amplitude we have also performed
numerical simulations with E = 4× 10−5, ω = 0.04 and ǫ ∈[0.01; 0.2]. Both experimental
and numerical results are quantitatively compatible with the theory with no adjustment
parameter. The steady azimuthal velocity scales as ǫ2 for a large range of ǫ. When ǫ
becomes larger than 0.2 the weakly nonlinear hypothesis cannot be used anymore because
terms of higher order cannot be neglected. We also notice that even in a range of values
where the condition ω ≪ ǫ in (2.3) is not fully satisfied, the zonal wind intensity still
scales as ǫ2. In fact, rather than the more restrictive condition (2.3), we only require that
(i) E ≪ 1 to decouple the bulk and boundary layer flows, (ii)

√
E ≪ ω ≪ 1 in order to
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Figure 5. Dimensionless average amplitude of |Ū |/r between r = 0.1 and r = 0.6 as a function
of the amplitude ǫ. Experimental results (bars) for E = 2.3 × 10−5, ω = 0.07, and numerical
results (squares) for E = 4 × 10−5, ω = 0.04 are compared with the theoretical value of Busse
(2010) (dashed-dotted line).

Figure 6. Dimensionless average amplitude of |Ū |/rǫ2 between r = 0.1 and r = 0.6 as a function
of the Ekman number. Bars are experimental results for ǫ = 0.08 and ω = 0.1 and squares are
numerical results for ǫ = 0.2 and ω = 0.06. The dashed-dotted line shows the theoretical result
of Busse (2010). The velocity profiles have been rescaled by ǫ2 following the results presented
in figure 5. Experimentally, errorbars increase with the Ekman number mainly due to the fact
that our experimental setup does not allow us to average the velocity on a sufficient number of
periods when increasing E.

neglect the excitation of inertial waves (Aldridge & Toomre 1969) and to ensure that the
spin-up effect of the libration is confined inside the outer boundary layer, and (iii) ǫ ≪ 1
to remain in the weakly nonlinear regime.
In figure 6 we report the systematic study of the influence of the Ekman number on the

zonal flow. Experimental results are compatible with the no-Ekman dependence predicted
by Busse (2010) in a large range of Ekman number with no adjustment parameter. This
is confirmed numerically up to E ∼ 10−3. For larger values of the Ekman number,
the condition (2.3) is not fulfilled and we cannot assume that the effect of spin-up is
negligible in the bulk. We have also noticed numerically that further decreasing E for a
given ω = 0.1 (which is not so small) leads to a deviation from the theory. Indeed, forced
inertial modes are not expected to be negligible anymore and can perturb the zonal flow.
In particular, nonlinear self-interaction of these forced mode can drive localised zonal
winds (e.g. Morize et al. 2010). These peculiar behavior appears out of the asymptotic
limit (2.3) under consideration here and will be the subject of a future study.
Figure 7.a shows that the amplitude of the zonal wind in the bulk does not depend on
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Figure 7. (a) Dimensionless average amplitude of |Ū |/rǫ2 between r = 0.1 and r = 0.6 as a
function of the frequency of libration ω; squares are numerical values (E = 5 × 10−5, ǫ = 0.2)
and bars are experimental data (E = 1.5 × 10−5, ǫ = 0.1). The dashed-dotted line shows the
theoretical result of Busse (2010). The velocity profiles have been rescaled by ǫ2 following the
results presented in figure 5. (b) Distance of the minimum of the velocity profile from the outer
boundary as a function of ω obtained by numerical simulation for E = 5 × 10−5, ǫ = 0.2. The
dotted line scales as 1/

√
ω, representative of a skin effect.

ω, as suggested by Busse. Nevertheless, as can be seen in figure 4, the flow near the outer
wall changes with ω. We expect this prograde flow to be related to the same mechanism
of boundary layer ejection near the critical latitude as the prograde jets described in Noir
et al. (2009). To quantify the distance at which the real flow deviates from the analytical
solution, we identify the value rmin where the velocity has a minimum. The thickness of
the layer where the prograde flow develops is plotted in Fig.7.b and is found to scales
as 1/

√
ω, which is representative of a skin effect. So if ω becomes too small at a fixed

E, the layer where the effects of external walls are important is visible in the bulk and
perturbs the zonal flow.

5. Conclusion

In this paper, combining numerical and experimental studies, we report the first quan-
titative measurements of the steady flow driven by longitudinal librations in a rotating
sphere. This approach confirms the main features of the weakly nonlinear theory of Busse
(2010): a retrograde differential rotation induced by the libration of the sphere takes place,
which may be assimilated to a solid body rotation for r < 0.6. It is also shown that the
amplitude of this steady zonal flow is independent of ω and E and scales as ǫ2. Note that
the same features have been observed experimentally in a librating cylinder (Noir et al.
2010) and numerically in a librating spherical shell (Calkins et al. 2010) and thus appear
to be generic of librating flows.
The main differences between our results and the theoretical profile of Busse (2010)

arise close to the outer boundary at the equator. There, we observe a prograde flow
in a layer of thickness proportional to 1/

√
ω. The analytical resolution of this peculiar

feature would necessitate a special treatment since it appears at the critical latitude of
the outer boundary layer (Busse 2010). This, as well as the experimental study of a
librating spherical shell, will be the subject of forthcoming studies.
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