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E2GK: Evidential Evolving Gustafsson-Kessel Algorithm For Data Streams Partitioning Using Belief Functions

A new online clustering method, called E2GK (Evidential Evolving Gustafson-Kessel) is introduced in the theoretical framework of belief functions. The algorithm enables an online partitioning of data streams based on two existing and efficient algorithms: Evidantial c-Means (ECM) and Evolving Gustafson-Kessel (EGK). E2GK uses the concept of credal partition of ECM and adapts EGK, offering a better interpretation of the data structure. Experiments with synthetic data sets show good performances of the proposed algorithm compared to the original online procedure.

Introduction

Given a set of N data points, clustering refers to a wide variety of algorithms that aim at discovering c groups (clusters) ω 1 , ..., ω c whose members are similar in some way. The purpose is to summarize the data or to verify an existing structure of the data. In most cases, a cluster is defined as a subset of data for which the similarity between data within this subset is larger than the similarity with the data in other subsets. In many cases, the Euclidean distance between data is used as a dissimilarity measure.

A wide variety of clustering methods has been developed. The most commonly used methods are divided into two main categories: hierarchical and nonhierarchical methods. Among the latter, the K-means algorithm [START_REF] Bishop | Neural networks for pattern recognition[END_REF] is the most commonly used. The idea of K-means algorithm is to randomly create K clusters and to assign each data point to the closest one in an iterative way, reallocating points until a convergence criterion is satisfied.

Using hard partitioning methods, data are grouped in an exclusive way, i.e., data can't belong to two (or more) different clusters. In fuzzy partitioning, each data can belong to more than one cluster with different membership degrees. The most popular fuzzy partitioning method is Bezdek's Fuzzy C-means (FCM) algorithm [START_REF] Bezdek | Pattern Recognition with fuzzy objective function algorithms[END_REF]. One can also mention the Gustafson-Kessel fuzzy clustering algorithm [START_REF] Gustafson | Fuzzy clustering with a fuzzy covariance matrix[END_REF] that is capable of detecting hyper-ellipsoidal clusters of different sizes and orientations by adjusting the covariance matrix of data.

Another concept of partition, introduced in [START_REF] Denoeux | Evclus: Evidential clustering of proximity data[END_REF], is the credal partition based on belief functions theory. A credal partition extends the existing concepts of hard, fuzzy (probabilistic) and possibilistic partition by allocating, for each data, a mass of belief, not only to single clusters, but also to any subset of Ω = {ω 1 , ..., ω c }. This particular representation allows coding all the situations, from certainty to total ignorance of membership to clusters. In the Evidential c-Means (ECM) algorithm [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF], the credal partition is in particular exploited for outliers detection.

Online clustering is an important problem that frequently arises in many fields, such as pattern recognition and machine learning [START_REF] Duda | Pattern Classification[END_REF]. Numerous techniques have been developed for clustering data in a static environment [START_REF] Bishop | Neural networks for pattern recognition[END_REF]. However, in many real-life applications, non-stationary data (i.e., with time-varying parameters) are commonly encountered. The task of online clustering is to group incoming data into clusters in a temporal sequence. Also called incremental clustering in machine learning [START_REF] Janichen | Acquisition of concept description by conceptual clustering[END_REF], online clustering, is generally unsupervised and has to manage recursive training in order to incorporate new information gradually and to take into account model evolutions over time.

In this paper, we propose the Evidential Evolving Gustafson Kessel algorithm (E2GK) which permits to adapt a credal partition matrix as data gradually arrive. This clustering algorithm is introduced in the theoretical framework of belief functions, and more precisely of Smets' Transferable Belief Model (TBM, [START_REF] Smets | The transferable belief model[END_REF]). E2GK is composed of two main steps, both performed online:

1. Determination of clusters' prototypes (also called centers), either by moving existing prototypes or by creating new ones. To do so, we use some results from the Evolving Gustafson-Kessel algorithm (EGK) proposed in [START_REF] Georgieva | Gustafson-kessel algorithm for evolving data stream clustering[END_REF]. 2. Allocation of the belief masses to the different subsets of classes. This step is based on some results of the Evidential c-means algorithm (ECM) [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF].

E2GK benefits from two efficient algorithms: EGK and ECM, by dealing with -in an online manner -doubt between clusters and outliers. Doubt is generally encountered in data transition and can be useful to limit the number of clusters in the final partition. Moreover, outliers are well managed using the conflict degree explicitly emphasized in the TBM framework.

In Section 2, we present GK and ECM algorithms as well as some tools of the theory of belief functions giving the necessary background for Section 3 in which we introduce E2GK. Some results are finally presented in Section 4.

Background

Let the data be in the form of a collection {x 1 , . . . , x k , . . . , x N } of feature vectors x k ∈ q , and c the number of clusters, each of them characterized by a prototype (or a center) v i ∈ q .

Gustafson-Kessel Algorithm

Clustering algorithms based on an optimization process aim at minimizing a suitable fuction J that represents the fitting error of the clusters regarding the data:

J(V, U ) = c i=1 N k=1 (u ik ) β d 2 ik , (1) 
where u ik is the membership degree of point k to the i-th prototype (cluster center),

-U = [u ij ] is the resulting partition matrix with dimension c × N , -V = [v i ]
is the c × q matrix of prototypes, -d ik is the distance between the k-th data point x k and the i-th prototype, -Paramater β > 1 is a weighting exponent that controls the fuzziness of the partition (it determines how much clusters may overlap).

The distance d ik used in the GK algorithm is a squared inner-product distance norm (Mahalanobis) that depends on a positive definite symmetric matrix A i defined by:

d 2 ik = x k -v i 2 Ai = (x k -v i )A i (x k -v i ) T . (2) 
This adaptive distance norm is unique for each cluster as the norm inducing matrix A i , i = 1...c, is calculated by estimates of the data covariance

A i = [ρ i det(F i )] 1/q F -1 i , (3) 
where ρ i is the cluster volume of the i-th cluster and F i is the fuzzy covariance matrix calculated as follows:

F i = N k=1 (u ik ) β (x k -v i ) T (x k -v i ) N k=1 (u ik ) β . ( 4 
)
The objective function is minimized using an iterative algorithm, which alternatively optimizes the cluster centers and the membership degrees:

v i = N k=1 (u ik ) β x k N k=1 (u ik ) β , i = 1 • • • c, k = 1 • • • N , (5) 
and

u ik = 1 c j=1 (d ik /d jk ) 2/β-1 , i = 1 • • • c, k = 1 • • • N . (6) 
The GK algorithm has the great advantage to adapt the clusters according to their real shape.

Belief Functions and Credal partition

Dempster-Shafer theory of evidence, also called belief functions theory, is a theoretical framework for reasoning with partial and unreliable information. It was first introduced by A. P. Dempster (1968), then developed by G. Shafer (1976). Later, Ph. Smets proposed a general framework, the Transferable Belief Model (TBM) [START_REF] Smets | The transferable belief model[END_REF], for uncertainty representation and combination of various pieces of information without additional priors. Considering a variable ω taking values in a finite set called the frame of discernment Ω, the belief of an agent in subsets of Ω can be represented by a basic belief assignment (BBA), also called belief mass assignment:

m : 2 Ω → [0, 1] A → m(A) , (7) 
with A⊆Ω m(A) = 1. A belief mass can not only be assigned to a singleton (|A| = 1), but also to a subset (|A| > 1) of variables without any assumption concerning additivity. This property permits the explicit modeling of doubt and conflict, and constitutes a fundamental difference with probability theory. The subsets A of Ω such that m(A) > 0, are called the focal elements of m. Each focal element A is a set of possible values of ω. The quantity m(A) represents a fraction of a unit mass of belief allocated to A. Complete ignorance corresponds to m(Ω) = 1, whereas perfect knowledge of the value of ω is represented by the allocation of the whole mass of belief to a unique singleton of Ω, and m is then said to be certain. In the case of all focal elements being singletons, m boils down to a probability function and is said to be bayesian.

A positive value of m(∅) is considered if one accepts the open-world assumption stating that the set Ω might not be complete, and thus ω might take its values outside Ω. This value represents the degree of conflict and is then interpreted as a mass of belief given to the hypothesis that ω might not lie in Ω. This interpretation is useful in clustering for outliers detection [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF].

Belief functions theory is largely used in clustering and classification problems [START_REF] Denoeux | A k-nearest neighbor classification rule based on dempster-shafer theory[END_REF][START_REF] Kim | Evidential reasoning approach to multisource-data classification in remote sensing[END_REF]. Recently (2003) was proposed the use of belief functions for cluster analysis. Similar to the concept of fuzzy partition but more general, the concept of Credal Partition was introduced. It particularly permits a better interpretation of the data structure. A credal partition is constructed by assigning a BBA to each possible subset of clusters. Partial knowledge regarding the membership of a datum i to a class j is represented by a BBA m ij on the set Ω = {ω 1 , . . . , ω c }. This particular representation makes it possible to code all situations, from certainty to total ignorance. 

A ∅ ω1 ω2 {ω1, ω2} ω3 {ω1, ω3} {ω2, ω3} {ω1, ω2, ω3} m1(A) 0 1 0 0 0 0 0 0 m2(A) 0 0 0 0 0 0 0 1 m3(A) 0 0 0 0 0.2 0.5 0 0.3 m4(A) 1 0 0 0 0 0 0 0 2.3 ECM: Evidential C-Means algorithm
Our approach for developing E2GK (Evidential Evolving GK algorithm) is based on the concept of credal partition as described in ECM [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF] where the objective function was defined as:

J ECM (M, V ) = N k=1 {i/Ai =∅,Ai⊆Ω} |A i | α m β ki d 2 ki + N k=1 δ 2 m k (∅) β , (8) 
subject to {i/Ai =∅,Ai⊆Ω}

m ki + m k (∅) = 1 ∀k = 1, . . . , N , (9) 
where:

α is used to penalize the subsets of Ω with high cardinality, -β > 1 is a weighting exponent that controls the fuzziness of the partition, -d ki denotes the Euclidean distance between datum k and prototype v i , -δ controls the amount of data considered as outliers.

The N × 2 c partition matrix M is derived by determining, for each datum k, the BBAs m ki = m k (A i ) , A i ⊆ Ω such that m ki is low (resp. high) when the distance d ki between datum k and focal element A i is high (resp. low). The matrix M is computed by the minimization of criterion [START_REF] Duda | Pattern Classification[END_REF] and was shown to be [START_REF] Masson | ECM: An evidential version of the fuzzy c-means algorithm[END_REF], ∀k = 1 . . . N , ∀i/A i ⊆ Ω, A i = ∅:

m ki = |A i | -α/(β-1) d -2/(β-1) ki A l =∅ |A l | -α/(β-1) d -2/(β-1) kl + δ -2/(β-1) , (10) 
and

m k (∅) = 1 -Ai =∅ m ki .
The distance between a datum and any non empty subset A i ⊆ Ω is then defined by computing the center of each subset A i . The latter is the barycenter v i of the clusters' centers (obtained by minimizing criterion (8)) composing A i .

Deriving E2GK

GK algorithm [START_REF] Gustafson | Fuzzy clustering with a fuzzy covariance matrix[END_REF] has the great advantage to adapt the clusters according to their real shape. The resulting clusters are hyper-ellipsoids with arbitrary orientation and are well suited for a variety of practical problems. However, GK is not able to deal with streams of data (relies on an iterative optimization scheme). Moreover, it assumes that the number of clusters is known in advance.

In [START_REF] Georgieva | Gustafson-kessel algorithm for evolving data stream clustering[END_REF], an online version of GK clustering algorithm (EGK) was developed to enable online partitioning of data streams based on a similar principle to the one used in the initial GK algorithm [START_REF] Gustafson | Fuzzy clustering with a fuzzy covariance matrix[END_REF]. In particular, online updating of the fuzzy partition matrix relies on the same formula [START_REF] Denoeux | A k-nearest neighbor classification rule based on dempster-shafer theory[END_REF]. Rules were then proposed to decide whether a new cluster has to be created or existing prototypes should evolve.

E2GK: Evidential Evolving Gustafsson-Kessel algorithm

The adaptation of the EGK algorithm to belief functions is introduced in this section. The E2GK algorithm is presented in Tab. 2. It relies on some parts developed in [START_REF] Georgieva | Gustafson-kessel algorithm for evolving data stream clustering[END_REF] and the proposed adaptations are emphasized in bold characters.

Step 1 -Initialization: At least one cluster's center should be provided. Otherwise, the first point is chosen as the first prototype. If more than one prototype is assumed in the initial data, GK or ECM algorithm can be applied to identify an initial partition matrix. The result of the initialization phase is a set of c prototypes v i and a covariance matrix1 F i .

Step 2 -Decision making: The boundary of each cluster is defined by the cluster radius r i , defined as the medium distance between the cluster center v i and the points belonging to this cluster with membership degrees larger or equal to a given threshold u h :

r i = median ∀xj ∈ i-th cluster and Pji>u h v i -x j Ai . ( 11 
)
where P ij is the confidence degree that point j belongs to ω i ∈ Ω and can be obtained by three main processes: either by using the belief mass m j (ω i ), or the pignistic transformation [START_REF] Smets | The transferable belief model[END_REF] that converts a BBA into a probability distribution, or by using the plausibility transform [START_REF] Cobb | On the plausibility transformation method for translating belief function models to probability models[END_REF]. We propose here to choose the pignistic transformation. The median value is used (instead of the maximum rule in EGK) to reduce the sensitivity to extreme values. Moreover, the minimum membership degree u h -initially introduced in [START_REF] Georgieva | Gustafson-kessel algorithm for evolving data stream clustering[END_REF] and requiring to decide whether a data point belongs or not to a cluster -can be difficult to assess. It may depend on the density of the data as well as on the level of cluster overlapping. We rather set u h automatically to 1/c in order to reduce the number of parameters while ensuring a natural choice for its value.

Step 3 -Computing the partition matrix: Starting from the resulting set of clusters at a given iteration, we build the partition matrix M (10) using the Mahalanobis distance (2)(3). We assumed that each cluster volume ρ i = 1 as in standard GK algorithm.

Step 4 -Adapting the structure: Given a new data point x k , two cases are considered: Case 1: x k belongs to an existing cluster, thus a clusters' update has to be performed. Data point x k is assigned to the closest cluster p if d pk ≤ r p . Then, the p-th cluster is updated:

v p,new = v p,old + θ • (x k -v p,old ) , (12) 
and

F p,new = F p,old + θ • (x k -v p,old ) T (x k -v p,old ) -F p,old , (13) 
where θ is a learning rate, v p,new and v p,old denote respectively the new and old values of the center, and F p,new and F p,old denote respectively the new and old values of the covariance matrix. Case 2: x k is not within the boundary of any existing cluster (i.e. d pk > r p ), thus a new cluster may be defined and a clusters' update has to be performed. The number of clusters is thus incremented: c = c + 1. Then, the incoming data x k is accepted as the center v new of the new cluster and its covariance matrix F new is initialized with the covariance matrix of the closest cluster F p,old .

In the initial EGK algorithm [START_REF] Georgieva | Gustafson-kessel algorithm for evolving data stream clustering[END_REF], a parameter P i was introduced to assess the number of points belonging to the i-th cluster. The authors suggested a threshold parameter P tol to guarantee the validity of the covariance matrices and to improve the robustness. This (context-determined) parameter corresponds to the desired minimal amount of points falling within the boundary of each cluster. The new created cluster is then rejected if it contains less than P tol data points.

After creating a new cluster, the data structure evolves. However, the new cluster may contain data points previously assigned to another cluster. Thus, the number of data points in previous clusters could change. We propose an additional step to verify, after the creation of a new cluster, that all clusters have at least the required minimum amount of data points (P tol or more). If not, the cluster with the lowest number of points is deleted. Therefore, compared to the initial EGK algorithm, in which the number of clusters only increases, E2GK is more flexible because the structure can change either by increasing or decreasing the number of clusters.

The overall algorithm is presented in Tab. 2 where the proposed adaptation appears in bold.

Application of E2GK

To illustrate the ability of the proposed algorithm, let consider the following synthetic data randomly generated from five different bivariate gaussian distributions with parameters as given in Tab. 3.

Initial clusters (Fig. 1) of N = 15 data points each, of type G 1 and G 2 , were identified by batch GK procedure with u h = 0.5, P tol = 20 and θ = 0.1. To test the updating procedure, we gradually (one point at a time) added the following data points (in this given order): 1) 15 data points of type G 1 , 2) 15 data points Each new incoming data point leads to a new credal partition. Figure 2 shows the final resulting partition. The center of gravity of each cluster is marked by a big star (the notation ω ij stands for {ω i , ω j }). A data point falling in a subset ω ij means that this point could either belong to ω 1 or ω 2 . The points represented in circles are those with the highest mass given to the empty set and considered as outliers. It can be seen that a meaningful partition is recovered and that outliers are correctly detected.

The online adaptation of the clusters is illustrated in Figure 3. One can see how E2GK assigns each new data point to the desired cluster or subset. The figure depicts the evolution of the partition regarding the order of arrival of the data (like mentionned before). The first 30 points are used to initialize clusters ω 1 and ω 2 . Then, from t = 31 to 45 points are assigned by E2GK to cluster ω 2 . The next 15 points are assigned to ω 1 then to ω 4 , ω 3 (30 points) and to ω 4 . The next points correspond to noise and are mainly assigned to subsets, for example point 160 to ω 134 . Figure 4 also depicts the structure evolution, that is the number of clusters at each instant. The scenario given at the begining of this section is recovered: at t = 76 data from group G 3 arrive but still, not enough data are available to create clustrs while a cluster is created at t = 93 and t = 110 for group G 4 and G 3 respectively. "Noise" and atypical points arriving from t = 181 to t = 211 do not affect the structure. This figure does not illustrate clusters' removing because this operation is made within the algorithm. Figure 5 describes the dataset partitioning after decision making by applying the pignistic transformation [START_REF] Smets | The transferable belief model[END_REF] on the final credal partition matrix. Datatips provide the center coordinates, which are close to the real parameters (Tab 3). In comparison, we also provide in Figure 6 the centers obtained by EGK algorithm with parameters P tol = 20, u h =1/c and θ = 0.1 (the same as in E2GK).

Conclusion

To our knowledge, only one incremental approach to clustering using belief functions has been proposed [START_REF] Ben-Hariz | IK-BKM: An incremental clustering approach based on intra-cluster distance[END_REF]. However, in this approach the number of clusters is known in advance so this is not adapted for online applications. Moreover, data are described by a given number of attributes, each labeled by a mass of belief provided by an expert. This prior information is generally not available in pattern recognition problems. E2GK algorithm, described in this paper, is an evolving clustering algorithm using belief functions theory, which relies on the credal partition concept. This type of partition allows a finer representation of datasets by emphasizing doubt between clusters as well as outliers. Doubt is important for data streams analysis from real systems because it offers a suitable representation of gradual changes in the stream. E2GK relies on some parts of EGK algorithm [START_REF] Georgieva | Gustafson-kessel algorithm for evolving data stream clustering[END_REF], initially based on a fuzzy partition, to which we bring some modifications:

using the median operator to calculate cluster radius (vs. max. for EGK), using the credal partitioning (vs. fuzzy for EGK), changing the partitionning structure by adding or removing clusters (vs.

adding only in EGK).

Simulation results show that E2GK discovers relatively well the changes in the data structure. A thorough analysis of parameters' sensitivity (P tol and θ) is now required to properly and automatically set them.

Example 1 .

 1 Considering N = 4 data and c = 3 classes, Tab. 1 gives an example of a credal partition. BBAs for each datum in Tab. 1 illustrate various situations: datum 1 certainly belongs to class 1, whereas the class of datum 2 is completely unknown. Partial knowledge is represented for datum 3. As m 4 (∅) = 1, datum 4 is considered as an outlier, i.e., its class does not lie in Ω.

  5 2.5] 2 of type G 2 , 3) 15 data points of type G 3 , 4) 30 data points of type G 4 , 5) 15 data points of type G 3 , 6) 90 data points of type "noise", 7) 6 data points at the following positions: [10.1 3.2], [10.1 -3.2], [-4.1 -3.1], [-2.3 8.3], [8.6 -3.1] and [6.2 9.2]. E2GK parameters were set to: P tol = 20, θ = 0.1, δ = 10, α = 1 and β = 2.

1 Fig. 1 .

 11 Fig. 1. Initialization of E2GK algorithm using some data from two clusters. Centers are represented by stars.

Fig. 2 .

 2 Fig.2. Credal partition with δ = 10, α = 1, β = 2, θ = 0.1, P tol = 20. Big stars represent centers. We also displayed the centers corresponding to subsets, e.g. ω123, and atypical data (dots) are well detected.

Fig. 3 .

 3 Fig.3. Structure adaptation: a datum arrives at each instant (x-axis) and is assigned to one of all possible subsets (y-axis). The set of possible subsets also evolves with the number of clusters.

Fig. 4 .

 4 Fig. 4. Structure evolution: the number of clusters at each instant varies as data arrive.

Fig. 5 .

 5 Fig.5. Decision on clusters for each point based on the pignistic probabilities obtained from the credal partition (Fig.2) using E2GK algorithm. Also are displayed the coordinates of the centers found by E2GK.

5 Fig. 6 .

 56 Fig.6. Decision on clusters for each point based on the maximum degree of membership from the fuzzy partition using GK algorithm. Also are displayed the coordinates of the centers found by EGK. The parameter u h was set to 1/c and the other parameters are the same as in E2GK (θ = 0.1 and P tol = 20).

Table 1 .

 1 Example of a credal partition.

Table 2 .

 2 E2GK algorithmInitialization1. Take the first point as a center or apply the off-line GK or ECM algorithm to get the initial number of clusters c and the corresponding centers V and covariances Fi, i = 1 • • • c 2. Calculate vj, the barycenter of the clusters' centers composing Aj ⊆ Ω 3. Calculate the credal partition M , using (10) Updating Repeat for each new data point x k 4. Find the closest cluster p 5. Decision-making: Calculate the radius rp of the closest cluster using (11) with the median value If d pk ≤ rp 6. Update the center vp (12) 7. Update the covariance matrix Fp (13) else 8. Create a new cluster: vc+1 := x k ; Fc+1 := Fp end 9. Recalculate the credal partition M using (10) 10. Check the new structure: remove the cluster with the minimum number of data points if less than P tol

Table 3 .

 3 Parameters of the synthetic data

	type	µ	σ
	G1	[0 5] 0.3
	G2	[0 0] 0.3
	G3	[6 6] 0.6
	G4	[6 0] 0.6
	noise [2.	

To obtain a covariance matrix from ECM, one can also use the Mahalanobis distance as proposed in[START_REF] Antoine | Cecm -adding pairwise constraints to evidential clustering[END_REF].