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A sensor-based controller able to treat total image loss and to

guarantee non-collision during a vision-based navigation task

David FOLIO and Viviane CADENAT

Abstract— This paper deal with the problem of executing a
vision-based task in an unknown environment. During such a
task, two unexpected events may occur: the image data loss due
to a camera occlusion and the robot collision with obstacles. We
first propose a method allowing to compute the visual data when
they are totally lost, before addressing the obstacle avoidance
problem. Then, we design a sensor-based control strategy to
perform safely vision-based tasks despite complete loss of the
image. Simulation and experimental results validate our work.

I. INTRODUCTION

Visual servoing techniques aim at controlling the robot

motion using visual features provided by a camera [1].

Therefore, these techniques cannot be used anymore if these

features are lost during the robotic task. A first way to

deal with this kind of problem is to use methods allowing

to preserve the visual data visibility [2][3][4][5]. However,

these works are mostly applied to manipulators. The problem

is slightly different in mobile robotics. Indeed, when a robot

navigates in an unknown environment using a camera, it is

necessary to guarantee both image features visibility and

robot safety. Some works in this area propose to fulfill

simultaneously these two objectives [6][7]. However, these

methods appear to be limited because they do not allow to

perform robotic tasks whose success depends on the ability

of tolerating the visual data loss.

In this paper, we consider the problem of executing a

vision-based task in an unknown environment. During such

a task, obstacles may occlude totally the camera or induce a

risk of collision. Our first goal is to build a method allowing

to compute the image data when they are entirely unavail-

able. Then, we address the obstacle avoidance problem using

potential field techniques. Finally, thanks to these results, we

design a multi-sensor-based control law able to tolerate the

image total loss and guarantee non collision.

The article is organized as follows. Section II is dedicated

to the problem statement and to our estimation method.

Section III addresses the avoidance problem and describes

the chosen control strategy. Finally, last section presents our

robotic system and some successful experimental results.

II. VISUAL DATA ESTIMATION

In this section, we focus on the visual data estimation

problem. Obstacle avoidance will be treated in next section.
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A. Modelling and Preliminaries

1) System modelling: Let us consider figure 1(a). We de-

fine the successive frames: FM (M,−→xM ,
−→
yM ,

−→
zM ) linked

to the robot, FP (P,−→xP ,
−→
yP ,

−→
zP ) attached to the pan-

platform, and FC (C,−→x c,
−→
y c,

−→
z c) linked to the camera.

Let ϑ be the direction of the pan-platform wrt. −→xM , P the

pan-platform center of rotation and Dx the distance between

the robot reference point M and P . The control input is

defined by: q̇ = (v, ω,̟)T , where v and ω are the cart linear

and angular velocities, and ̟ is the pan-platform angular

velocity wrt. FM . For this specific mechanical system, the

kinematic screw vc is related to the control input by the

robot jacobian J: vc = Jq̇. As the camera is constrained

to move horizontally, it is sufficient to consider a reduced

kinematic screw vcr = (V−→
yC
, V−→

zC
, Ω−→

xC
)T , and a reduced

jacobian matrix Jr as follows:

v
c
r =



− sin(ϑ) Dx cos(ϑ) + Cx Cx

cos(ϑ) Dx sin(ϑ) − Cy −Cy

0 −1 −1






v
ω
̟


 = Jr q̇ (1)

where Cx and Cy are the coordinates of C along axes −→
xP

and −→
yP (see figure 1(a)).

(a) The robot model. (b) The pinhole camera model.

Fig. 1. The systems modelling.

2) Preliminaries: Our goal is to realize a vision-based

navigation task with respect to a given static landmark de-

spite possible total occlusions. We assume that this landmark

can be characterized by n interest points which can be

extracted by our image processing. Therefore, the visual data

are represented by a 2n-dimensional vector s made of the

coordinates (X,Y ) of each projected point P in the image

plane as shown on figure 1(b). For a fixed landmark, the

variation of the visual signals ṡ is related to the reduced

camera kinematic screw vcr thanks to the interaction matrix

L(s) as shown below [8]:

ṡ = L(s) v
c
r = L(s) Jr q̇ (2)



In the case of n points, L(s)= [L(P1)
T , . . . ,L(Pn)

T ]T where

L(P ) is classically given by [8]:

L(P ) =

(
L(X,z)

L(Y,z)

)
=

(
0 X

z
XY
f

−
f
z

Y
z
f + Y 2

f

)
(3)

where z represents the depth of each projected point P in

the image plane, and f is the camera focal (see figure 1(b)).

B. Motivations and hypotheses

Now, we focus on the problem of estimating image

data whenever they are lost during the vision-based task.

Thus, the key-assumption of this work is that the whole

image is considered to be momentarily totally unavailable.

Therefore, methods dedicated to partial occlusions such as

[9][10] cannot be used here. It is also possible to consider

other approaches based on signal processing techniques or

tracking methods such as [11][12]. . . However, most of

this kind of techniques rely on measures from the image

which is considered to be totally unavailable in our case.

Moreover, recalling that our estimation method will be used

in the control law design, it must provide the estimated

visual signals sufficiently rapidly with respect to the control

sampling period. Therefore, we need a simple and fast

method. We have then thought of using a 3D model of

the landmark together with projective geometry. However,

this method requires to determine accurately the calibration

parameters to reconstruct successfully the lacking data. Thus,

we propose another approach consisting in solving (2) using

the previous visual measurements and the control inputs q̇.

Therefore, we have made the two following hypotheses: first,

we assume that the image features can be measured at the

beginning of the robotic task. Second, we suppose that few

errors occur on the model and on the measures (we will see

in section IV that this hypothesis is reliable).

C. Problem Statement

Our idea is to solve the dynamic system (2) to determine

the image data s. However, this last system depends on

depth z which must then be determined. As our robot is

not equipped with any sensor able to measure this data (see

section IV), we have to reconstruct it. To this aim, different

approaches may be used [13][14][15][16]. However, most of

these techniques rely on measures from the image and cannot

be applied here. In this paper, we propose another solution

consisting in simultaneously estimating depth z and image

data s. It is then necessary to express the analytical relation

between the variation of z and the camera motion. As the

considered landmark is made of n points, it can be easily

shown that, for one 3D point p projected into a point P (X, Y )

in the image plane as shown in figure 1(b), the depth variation

ż is related to the camera motion according to: ż = L(z)Jrq̇,

where L(z) = (0, −1, z
f
Y ). Thus, the dynamic system to be

solved for one point P (X, Y ) expresses as follows:




Ẋ= X
z
V−→

zC
+ XY

f
Ω−→

xC

Ẏ =−
f
z
V−→
yC

+ Y
z
V−→

zC
+
(
f + Y 2

f

)
Ω−→

xC

ż =−V−→
zC

−
z
f
Y Ω−→

xC

(4)

Now, we address the resolution problem. A first idea is to

integrate the above system for any t ∈ [t0, tf ] where t0 and

tf are respectively the initial and final instants of the task.

However, the computations are quite difficult to carry out.

Therefore, in this work, we propose to discretize the problem

and to solve system (4) during a time control interval

[tk, tk+1]. Defining ψ= [X1, Y1, . . . , Xn, Yn, z1, . . . , zn]T and

L(ψ)=
[
L(s)

T , L(z)
T
]T

, the differential system to be solved

for n points is given by:
{
ψ̇(t) = L(ψk) Jr(ϑ(t)) q̇(tk)

ψ(tk) = ψk =
[
s
T
k , z

T
k

]T , ∀t ∈ [tk, tk+1] (5)

where q̇(tk)= (vk, ωk, ̟k)T is the control input at tk. Note

that, on our robot, the control input is hold during the control

law sampling period Ts. We will then consider in the sequel

that q̇(tk) remains constant during this time interval.

D. Our estimation method

A first idea is to solve differential system (5) using

numerical schemes as done in [17][18]. The main advantage

of such approaches lies in their generality. Indeed, they

can be applied to any set of visual features and to any

kind of robots, provided that the estimation problem can

be expressed as system (5). However, with such methods,

the accuracy of the obtained solution depends on the chosen

algorithm and on the integration step size. This is the reason

why we propose in this work to solve analytically system (5).

In this way, we obtain its exact solution on [tk, tk+1] and the

accuracy of the result is significantly improved. After some

computations (see [19] for a detailed proof), it can be shown

that, for any t ∈ [tk, tk+1], the evolution of abscissa X and

ordinate Y of one point P in the image expresses as:




X(t)= zkXk

z(t)

Y (t) =f
ż+vk cos(ϑ(t))+Dxωk sin(ϑ(t))−Cy(ωk+̟k)

(ωk+̟k)z(t)

z(t) =c1 sin (A1 (t− tk)) + c2 cos (A1 (t− tk))
−Dx cos (ϑ(t)) + vk

ωk
sin (ϑ(t)) − Cx

(6)

where:



A1 = (ωk + ̟k)

c1 =−Ykzk

f
+ Dx sin (ϑk) + vk

ωk
cos (ϑk) − Cy

c2 = zk + Dx cos (ϑk) − vk

ωk
sin (ϑk) + Cx

As one can see, the solution (6) require the determination

of ϑ(t). This angle can simply be computed by integrating

ϑ̇ = ̟ between tk and t. Some straightforward calculus

leads to ϑ(t) = ̟k (t− tk) + ϑk, where ϑk is the pan-

platform angular value at tk, which is usually provided by

the embedded encoder.

The solution for the set of the n points of the landmark is

then easily obtained by applying the above solution (6) on

each component of the vector ψ.

III. CONTROL STRATEGY

Let us recall that our goal is to perform vision-based

navigation tasks in environments cluttered with occluding ob-

stacles, which requires to deal with occlusions and collisions.

The first problem will be treated thanks to our estimation



method, and the second one using a potential field technique.

So, first of all, we will briefly describe how to detect the risks

of occlusion and collision. Then, we will detail our control

strategy, considering two cases when the occlusion occur in

the free space or in the obstacle neighborhood. Finally, we

will end this part by some simulation results.

A. Collision and Occlusion Detection

(a) Obstacle detection
(from ultrasonic sensors).

(b) Occlusion detection
(provided by image processing).

Fig. 2. Avoidance modeling.

In this part, our goal is to detect the risks of collision

and occlusion. To this aim, we design two parameters µcoll

and µocc which smoothly increase between 0 (no risk) and

1 (high risk). From the embedded ultrasonic sensors we can

compute the shortest distance dcoll and the relative orienta-

tion α between the robot and the obstacle (see figure 2(a)).

Defining by ξ+, ξ0, ξ− three envelopes surrounding each

obstacle at distance d+ > d0 > d−, it is possible to choose

µcoll(dcoll) so that it smoothly increases from 0 when the

robot is far from the obstacle (dcoll > d0) to 1 when it is close

to it (dcoll < d−). Assuming that the image processing is able

to identify any occluding object O, µocc can be determined

by detecting their left and right borders. Indeed, from these

data, we can deduce the shortest distance docc between s and

O (see figure 2(b)). Introducing three envelopes Ξ+, Ξ0, Ξ−

around the occluding object located at D+ > D0 > D−

from it, µocc(docc) can be chosen to smoothly increase from

0 when O is far from the visual features (docc > D0) to 1

when it is close to them (docc < D−). Further details about

these modelling, and different µcoll and µocc expression can

be found in [6] and [7].

B. Control in the free space

Our goal is to position the embedded camera with respect

to a landmark made of n points despite possible occlusions.

To this aim, we have applied the visual servoing technique

given in [8] to mobile robots as in [20]. The proposed ap-

proach relies on the task function formalism [21] and consists

in expressing the visual servoing task by the following task

function to be regulated to zero:

eVS = L(s⋆)
+(s − s

⋆) (7)

where s
⋆ represents the desired value of the image data.

Classically, a controller making eVS vanish can be designed

by imposing an exponential decrease, that is: ėVS = −λVSeVS,

where λVS is a positive scalar or a positive definite matrix.

Then, the visual servoing controller can be written as follows:

q̇(s) = J−1
r (−λVS)L(s⋆)

+(s − s
⋆) (8)

Now, we suppose that an obstacle enters the camera field

of view without inducing a danger of occlusion. In such a

case, this controller cannot be computed anymore, leading

to a task failure. Here, our idea is to embed our estimation

technique in control law (8) to treat successfully this unex-

pected event. We simply propose to replace in expression (8)

the real visual features s by their values s̃ computed by our

method. In case of occlusions, the visual servoing controller

is then given by: q̇(s̃) = J−1
r (−λVS)L(s⋆)

+(s̃−s
⋆). Now, it

remains to switch between q̇(s) and q̇(s̃) depending on the

landmark visibility. We propose the following final visual

servoing controller:

q̇VS = (1 − µocc)q̇(s) + µoccq̇(s̃) (9)

Remark 1: There is no need to smooth controller (9) when the
image features are lost. Indeed, when the occlusion occurs, as the
last provided data are used to feed our reconstruction algorithm, the
values of s and s̃ are close and so are q̇(s) and q̇(s̃). Usually, the
same reasoning holds when the occluding object leaves the image.
However, some smoothing may be useful if the camera motion has
been unexpectedly perturbed during the estimation phase or if the
algorithm has been given too inaccurate initial conditions.

C. Control in the obstacle neighborhood

Now, we address the problem of controlling the robot in

the obstacle neighborhood. This is the most complex part of

our work because, during this phase, both risks of collision

and occlusion may occur simultaneously (or not!). Then,

we propose to design a multi-sensor-based controller able

to guarantee the robot safety and to treat total image loss

if needed. To this aim, we propose to extend the controller

elaborated in [22] which only allows to avoid obstacles while

tracking the landmark. We first recall the chosen control

strategy and then explain how to embed our estimation

technique to deal with the occlusions.

1) Obstacle avoidance strategy: The chosen strategy con-

sists in defining around each obstacle a rotative potential field

so that the repulsive force is orthogonal to the obstacle when

the robot is close to it (dcoll < d−), parallel to the obstacle

when the vehicle is at a distance d0 from it, and progres-

sively directed towards the obstacle between d0 and d+ (see

figure 2(a)). The interest of such a potential is that it can

make the robot move around the obstacle without requiring

any attractive force, reducing local minima problems. We

propose the following potential function U(dcoll) [22]:{
U(dcoll)

= 1
2
k1

(
1

dcoll
− 1

d+

)2
+ 1

2
k2 (dcoll − d+)2 if dcoll ≤ d+

U(dcoll)
=0 otherwise

where k1 and k2 are positive gains to be chosen. The virtual

repulsive force is defined to generate the desired rotative

potential field around the obstacle by the couple (F, β),
where F = −

∂U
∂dcoll

is the modulus of the virtual repulsive

force and β = α −
π

2d0
dcoll + π

2 its direction wrt. FM . The

mobile base velocities vcoll and ωcoll are then given by [22]:

q̇mb =
(
vcoll ωcoll

)T
=
(

kvF cos β kω

Dx
F sin β

)T

(10)

where kv and kω are positive gains to be chosen. q̇mb

drives only the mobile base in the obstacle neighborhood.

However, if the pan-platform remains uncontrolled, it will be



impossible to switch back to the vision-based task at the end

of the avoidance phase. Therefore, our idea is to control the

pan-platform to keep the landmark in the camera line of sight

during the avoidance motion. To this aim, as the camera is

constrained to move within an horizontal plane, it is sufficient

to regulate to zero the error egc = Ygc − Y ⋆gc where Ygc and

Y ⋆gc are the current and desired ordinates of the target gravity

center. Rewriting equation (1) as: vcr = Jmbq̇mb +J̟̟coll,

and imposing an exponential decrease to regulate egc to zero

(ėgc = −λgcegc, λgc > 0), we finally obtain [22]:

̟coll =
−1

L(Ygc)J̟

(λgcegc + L(Ygc)Jmbq̇mb) (11)

where L(Ygc) is the 2nd row of L(P ) evaluated for Ygc.

2) Extension to deal with occlusions during avoidance:

In the obstacle vicinity, the visual data may enter and leave

the image plane depending on the relative robot-obstacle

configuration and on the obstacle height. We may even

imagine that the camera could be occluded by another

obstacle than the one which is currently avoided. We need

then to design a control law able to deal with these sudden

and unexpected modifications. Our idea is then to use our

estimation method to provide the necessary visual data to the

pan-platform control law whenever needed. Thus, when an

occlusion occurs, our algorithm is fed with the last available

measures and computes an estimation s̃ of the “real” visual

features s from which we can deduce Ỹgc. The pan-platform

controller during an occlusion phase will then be determined

by replacing Ygc by its estimate Ỹgc in (11). We get:

˜̟ coll =
−1

L(Ỹgc)
J̟

(λgcẽgc + L(Ỹgc)
Jmbq̇mb), (12)

where ẽgc = Ỹgc−Y
⋆
gc, and L

(Ỹgc)
is deduced from (3). Now,

it remains to select the suitable controller depending on the

availability of the image. Recalling that µocc allows to detect

occlusions, we propose the following avoidance controller:

q̇coll =
(
vcoll, ωcoll, (1 − µocc)̟coll + µocc ˜̟ coll

)T
(13)

Thanks to this controller, it is possible to avoid the obstacle

while treating the image total loss (if needed).

D. Global control strategy

So, we have previously designed two controllers given by

(9) and (13). The first one allows to execute a vision-based

task despite occlusions; the second one guarantees obstacle

avoidance while treating image loss if necessary. To execute

our vision-based navigation task, we have to apply to the

robot the right controller depending on the risks of occlusions

and collisions. Several approaches allow to sequence tasks

[20][23][24]. Here, we have chosen a method relying on

convex combinations between the successive controllers [22],

as it allows to carry out applications more easily. We propose

the following global control law:

q̇ = (1 − µcoll) q̇VS + µcollq̇coll (14)

where q̇VS and q̇coll= (vcoll, ωcoll, ̟coll)
T are respectively

given by equations (9) and (13).

Remark 2: µcoll and µocc are defined to be maintained to 1 once
they have reached this value [6]. Moreover, the different envelops
are chosen close enough to reduce the transition phase duration.
Thus the control strategy is built to insure that the robot will be
rapidly controlled by the most relevant controller. In this way, the
risks of instability, target loss or collisions during the switch are
significantly reduced and the task feasibility can be considered to
be guaranteed.

E. Simulation results

To validate our work, we have simulated a mission whose

objective is to position the camera relatively to a landmark

made of n = 9 points. Moreover, the environment has been

cluttered with two obstacles which may occlude the camera

or represent a danger for the mobile base. Let us notice that

the sampling period has been defined to be close to our real

robot one, that is Ts = 50ms.

Fig. 3. Simulation results.

As shown on figure 3, the vision-based navigation task

is correctly performed despite the presence of occluding

obstacles. At the beginning of the task, there is no risk

of collision. The robot is only controlled by q̇VS = q̇(s)

and starts converging towards the target. After 50 steps,

we simulate an image processing failure (for example due

to a sudden illumination change). Our estimation procedure

is then enabled and the robot is driven using q̇VS = q̇(s̃)

during 200 steps. Meanwhile, the vehicle enters the vicinity

of the wall. Then, the global controller progressively switches

to q̇coll and the robot is constrained to follow the security

envelope ξ0 while tracking a virtual target until the image

data is available anew. This event occurs when the circular

obstacle leaves the camera field of view, allowing the pan-

platform control to smoothly switches from ˜̟ coll to ̟coll.

When there is no more danger, the control switches back to

q̇VS = q̇(s) and the robot perfectly realizes the desired task.

Figure 3 shows also the values of the estimation errors norms

‖s − s̃‖ and ‖z − z̃‖ which both remain close to zero. This

result appears to be consistent, as our estimation method is

based on a model which reflects precisely the behaviour of

the system.



IV. EXPERIMENTAL ASPECTS

A. The robotic platform

Fig. 4. The Nomadic Super Scout II.

We have implemented the above control law on the mobile

robot Super Scout II1 (see figure 4). This is a cylindric cart-

like vehicle dedicated to indoor navigation. Incremental

encoders provide the approximate velocity of the robotic

system. The robot is equipped with 16 ultrasonic sensors

from which we compute the shortest distance dcoll and the

relative orientation α between the robot and the obstacle.

A DFW-VL500 Sony color digital IEEE1394 camera captures

pictures in YUV4 : 2 : 2 format with 640 × 480 resolution.

The robot is controlled by an on-board laptop computer

running under Linux on which is installed a specific control

architecture called GenoM (Generator of Module) [25].

Fig. 5. Visual features and occluding object extraction algorithm pipeline.

The implementation of our control strategy requires differ-

ent basic services. They are provided by two already existing

modules respectively dedicated to the robotic system control

and to data sensory processing. First, we have designed a

specific module to manage the camera features. It allows

to initialize and configure the camera, acquire pictures and

process them to extract the visual data s and the occluding

object position from which we compute docc. The image

processing pipeline is shown on figure 5. It relies on the

following hypotheses to reduce the computation time: all

the occluding objects share the same color, the occluding

object and the target colors are different, and finally, an

1The Super Scout II is provided by the AIP-PRIMECA.

occluding object detected in the image can never be po-

sitioned behind the target in the 3D scene. We have then

embedded our control strategy in a second module which

offers the required services to realize vision-based navigation

tasks amidst obstacles: robotic system initialization, software

emergency stop, parameters settings (choice of the different

control gains, of the desired visual features s∗. . . ), execution

of a vision-based task with or without taking into account

the occlusion and/or collision phenomena. We present below

the obtained experimentation results.

B. Experimental Results

We consider a vision-based navigation task which consists

in positioning the embedded camera in front of a given

landmark made of n = 4 points. The environment is

cluttered with one obstacle, and envelopes ξ−, ξ0 and ξ+ are

respectively located at d−=40cm, d0 =56cm and d+ =70cm

from the obstacle. The obtained results are presented on

figure 6.

(a) Robot trajectory.

(b) Robot velocities. (c) Collision risk µcoll.

(d) Image data estimation errors:
||s − s̃|| (pixel).

(e) z-depth estimation errors:
||z − z̃|| (m).

Fig. 6. Visual servoing with obstacle avoidance, experimental results.

Figure 6(a) shows the trajectory performed by the robot.

At the beginning of the task, there is no risk of collision,

and the image data are available. The robot is controlled

using q̇VS and starts converging towards the landmark. It



enters the vicinity of the obstacle, inducing a danger of

collision. µcoll increases to reach 1 (see figure 6(c)) and

the control law applied to the vehicle smoothly switches

to controller q̇coll (13). Thus, the linear velocity decreases

while the angular velocities ωcoll and ̟coll vary to make

the robot avoid the obstacle and track the target (see figure

6(b)). When the obstacle is overcome, µcoll vanishes, and the

control progressively switches back to q̇VS = q̇(s). However,

at the same time, the landmark is manually occluded and the

robot is driven using controller q̇(s̃) instead of q̇(s), keeping

on converging towards the target until s reaches s
∗. Thus,

thanks to our method, it is possible to complete a task which

would have been aborted otherwise.

Finally, we compare the obtained simulated and experi-

mental results. To this aim, we analyse the quality of the

image features reconstruction which appears to be better

in simulation as one could have expected. To exhibit the

parameters which influence the estimation error, we first

recall that our algorithm is initialized using the last visual

data available before their lost and on the base of the robot

velocities. Therefore, the estimation errors depends mainly

on the feature extraction noise (here about 1 pixel) and on

the accuracy of the real robot velocities measurement. As the

velocities executed by the robot are provided by the embed-

ded encoders with a small delay and drift, we can observe

an increase of the estimation error when the control input q̇

switches between the successive controllers (see figures 6(b)

and 6(d)). Furthermore, as our platform runs under Linux

which is not a real-time operating system, the sampling

period Ts is not known accurately. These two aspects reduces

the efficiency of reconstruction when validating on our real

robot. However, despite these problems, figures 6(d) and 6(e)

show that the estimation errors remain small, demonstrating

the validity of our approach in an experimental context.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have elaborated a multi-sensor-based

control law allowing a robot to perform safely a vision-

based task in an unknown environment despite occlusions.

We have first proposed a technique able to reconstruct the

visual features when they are suddenly lost. Then, we have

integrated it our control law to realize the desired mission.

The method relies on the switch between different controllers

depending on the risks of collision and occlusion. We have

finally validated our work by experimental results.

However, the developed analytical solutions are restricted

to landmarks which can be characterized by points and dedi-

cated to a particular robotic system. Thus a natural extension

of these works would be to solve this problem for other kinds

of visual features and more complex robotic platform. We

have also considered a perfect modelling. Therefore, it would

be also interesting to evaluate signal processing approaches

such as Kalman filtering to take into account the effects of

noise on the reconstruction. Finally, a dynamical sequence

of the controllers could also be interesting to provide better

theoretic feasibility conditions.
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