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Résumé—This paper discusses experience to introduce data-
based continuous-time model identification to engineer-
ing students. Specifically, the paper describes how the
CONtinuous-Time System IDentification (CONTSID) tool-
box and its graphical user interface to be run with Matlab
are used to teach time-domain identification methods for
estimating continuous-time models directly from sampled
data. The educational focus is to mix theoretical aspects
with hands-on experience at numerous computer sessions
dealing with simulated and real data examples.
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I. Introduction

The identification of continuous-time (CT) models is a
problem of considerable importance that has applications
in virtually all disciplines of science. Early research in
system identification focussed on identification of CT
models from CT data. Subsequently, however, rapid
developments in digital data acquisition and computers
have resulted in attention being shifted to the identifi-
cation of discrete-time (DT) models from sampled data,
leading to a complete dominance of these methods over
continuous-time model identification techniques. Much
less attention has been therefore devoted to CT modelling
from DT data and many practitioners appear unaware
that such alternative methods not only exist but may be
better suited to their modelling problems [1].

The relevance of direct continuous-time model identifica-
tion methods has been recently illustrated with extensive
numerical simulation [2], [3]. A toolbox for Matlab is now
available : the CONtinuous-Time System IDentification
(CONTSID) toolbox which supports continuous-time
transfer function or state-space model identification di-
rectly from time-domain sampled data, without requiring
the determination of a discrete-time model [4], [1].

While undergraduate and graduate courses on DT model
model identification (mainly based on Ljung’s book [5] are
taught in many universities, there is a lack of courses in
data-based CT modelling. For some years now, we have
introduced a course at Nancy-University which aims at in-
troducing CT model identification to engineering students.
CT models are very appealing to engineers since they
can be directly and easily interpreted in a physical manner.

Some of the topics that we have been able to introduce
in the curriculum include:

• a presentation of the main time-domain identification
methods for estimating continuous-time models directly
from sampled data;
• an introduction to computer-aided tools, notably graph-
ical tools for CT model identification relying of the CON-
TSID toolbox for Matlab;
• the mix of theoretical aspects with hands-on experience
at numerous computer sessions dealing with simulated and
real data examples.

This paper discusses this experience to introduce data-
based continuous-time model identification to engineering
students.
It is organized as follows. Section 2 outlines the main steps
of the procedure for direct continuous-time model identi-
fication. An overview of the course organisation is given
in Section 3. The main features of the CONTSID toolbox
and its graphical user interface (GUI) are then presented in
Section 4. Finally, typical results obtained by the students
on a complex flexible robot arm are described in Section 5.

II. General procedure for data-based modelling

The procedure to determine a continuous-time model of
a dynamical system directly from observed time-domain
input-output data is close to the one used for discrete-time
model identification and involves three basic ingredients:
• the time-domain sampled input-output data;
• a set of candidate models (the model structure);
• a criterion to select a particular model in the set, based
on the information in the data (the identification method).

The identification procedure consists then in repeatedly se-
lecting a model structure, computing the best model in the
chosen structure, and evaluating the identified model. The
iterative procedure involves the following steps:
1. Design an experiment and collect input-output data
from the process to be identified.
2. Examine the data. Remove trends and outliers, and
select useful portions of the original data.
3. Select and define a model structure (a set of candidate
system descriptions) within which a model is to be esti-
mated.
4. Compute the best model in the model structure accord-
ing to the input-output data and a given criterion of fit.
5. Examine the obtained model properties.

If the model is good enough, then stop; otherwise go back
to step 3 to try another model set. Possibly also try other
estimation methods (step 4) or work further on the input-
output data (steps 1 and 2).



III. The course for engineering students

The course on continuous-time model identification given
at Nancy-University is intended for engineering students
who have already a good background in system identifica-
tion. The course organisation is as follows :

1. Introduction to data-based CT modelling
2. Parameter estimation of linear CT models
3. Model structure estimation and validation
4. Relevance of CT model identification
5. Software aspects - The CONTSID toolbox
6. Simulated and real data application examples

The 18-hour course is typically laid out over 9 weeks, with
one two-hour lecture per week for the first five weeks, fol-
lowed by four two-hour computer sessions. The textbook
used is [1] and the course outline uses Chapters 1, 4 and 9
of this textbook.

In the course, we consider two specific parametric esti-
mation methods that exemplify the historical development
of direct CT identification. Initially, most methods were
largely deterministic, in the sense that they did not explic-
itly model the additive noise process nor attempt to quan-
tify the statistical properties of the parameter estimates.
Instead, consistent estimates were obtained by using basic
Instrumental Variable (IV) methods. One deterministic
approach of this type, known as the state-variable filter
(SVF) method is reviewed first, with the aim of highlight-
ing some of the peculiarities that occur in comparison with
DT model identification. Then, a more sophisticated IV
(SRIVC) method for direct CT stochastic model identifi-
cation is introduced in order to demonstrate the advantages
of the stochastic model formulation.

The educational focus is to mix theoretical aspects intro-
duced during the lecture with hands-on experience during
the computer sessions where simulated and real data are
used to apply the identification procedure. Identification
from simulated data is not as challenging as from real-life
data but it allows the students to gain some familiarity
with the parametric model estimation and validation tech-
niques.

The students can easily get confused by the iterative
identification procedure which includes different methods
in every steps. It is therefore important to package the
identification tools in a user-friendly way. An attempt to
do that was carried out with the CONTinuous-time System
IDentification (CONTSID) toolbox for MATLABr. It is
described in the next section with a focus on the graphical
user interface (GUI) which allows the students to perform
easily data analysis, model parameter estimation and vali-
dation by mouse-click operations.

IV. Software aspects - The CONTSID toolbox

A. The CONTSID toolbox

The key features of the CONTSID toolbox are [4], [6]:

• it supports most of the time-domain methods developed
over the last thirty years [7] for identifying linear dy-
namic continuous-time parametric models from measured
input/output DT data;
• it provides transfer function and state-space model
identification methods for single-input single-output and

multiple-input multiple-output systems, including both
traditional and more recent approaches;
• it can handle mild irregularly sampled data in a straight-
forward way;
• it may be seen as an add-on to the system identification
(SID) toolbox. To facilitate its use, it has been indeed
given a similar setup to the SID toolbox;
• it provides a flexible graphical user interface (GUI) that
lets the user analyse the experimental data, identify and
evaluate models in an easy way;
• It can be freely downloaded from
http://www.cran.uhp-nancy.fr/contsid/

B. The GUI for the CONTSID toolbox

The graphical user interface for the CONTSID toolbox
provides a main window, as shown in Figure 1, which is
divided into three basic parts:
• a data panel on the left part where data sets can be
imported, plotted, pre-treated and selected;
• a model estimation panel in the middle where different
model structures and identification methods to directly es-
timate a CT transfer function model can be tested;
• a model validation panel in the right part where basic
properties of the identified model can be examined.
The CONTSID GUI can be started by typing contsidgui

in the Matlab command window.

C. The data panel

As shown in Figure 1, the GUI lets the user to define
two data sets: one for identifying the model and one for
cross-validation purpose.

C.1 Importing measured data.

By clicking on the Load data button, you can import
time-domain sampled data from a .mat file for systems
with multiple input and output channels. From this win-
dow, you can select the input and output variables, spec-
ify the type of sampling scheme (regular or irregular), the
sampling time (Ts) and the assumption on the input inter-
sample behavior (piecewise constant (ZOH) or continuous).

C.2 Preprocessing and selecting observed data.

After the data has been imported, you can apply basic
operations for data analysis and preprocessing. An exam-
ple of the window obtained after a click on the button Plot

and select data is displayed in Figure 2. It shows the plot of
the input/output data. This window also allows the pre-
processing of data including offset and drift removal and
the display of the results after the operation.

It is often the case that the whole data record is not
suitable for identification. This is mainly for two reasons:
• these vectors include erroneous values which it is essential
to eliminate;
• if only one data set is available, it is advisable to divide
the data set in two parts, the first for model estimation
purpose and the second reserved for cross-validation pur-
pose.
The Cursor selection button allows the insertion of two
vertical axes on the output plot which can be used to define
the portion of the measured data that you want to select.



Fig. 1. The main window of the CONTSID GUI

 

Fig. 2. Data plot and pretreatment window

D. Model estimation panel

While the CONTSID toolbox supports transfer function
and state-space model identification methods, the GUI lets
you estimate continuous-time polynomial (transfer func-
tion) models only, using the following two predefined model
structures:

A(p)y(tk) = B(p)u(tk) + e(tk) (1)

y(tk) =
B(p)

F (p)
u(tk) + e(tk) (2)

where p denotes the differential operator, i.e. p := d

dt
;

u(tk) and y(tk) represent the input and output signals at

time-instant t = kTs respectively; e(tk) is a DT white
Gaussian sequence; A(p), B(p) and F (p) are polynomi-
als in p. Equation (1) defines what is called a CT-ARX
model structure while equation (2) defines a so-called CT-
OE model structure. The user is thus invited to choose the
type and the structure of his model in the two unrolling
menus at the top of the model estimation panel, as shown
in Figure 1.

After selecting the model structure, the user has to spec-
ify the polynomial orders and the time-delay of the model
to be estimated.

A first option is to deduce an estimate of the number
of samples for the time-delay from an estimation of the
impulse response by correlation analysis.

Then, if the TF model order is not known a priori, the
Order search button allows the user to automatically search
over a whole range of different model orders, as illustrated
in Figure 3. The user can choose several available criteria
to sort and display the estimation results in the Matlab
workspace. From these results, the user can select the best
model orders and then set the order of the final model to
be estimated by clicking on the Order set button from the
main window

Once we have set the number of samples for the time-
delay and the number of coefficients for the polynomial
model, the model parameters can then be estimated by
using one of the available parametric methods chosen from
an unrolling menu:
• in the case of a CT-OE model structure, the user can
choose to use the continuous-time output error (COE)
method or the simplified refined instrumental variable
(SRIVC) method ;
• in the case of a CT-ARX model structure, the user can
select one of the six linear transform-based methods which
have proven successful. These linear transforms are cou-
pled with simple least squares or auxiliary model-based in-
strumental variable methods. They require all, a design



Fig. 3. Model order estimation window

Fig. 4. Parameter estimation results

parameter to be specified by the user [7]. The design pa-
rameter should be chosen in order to emphasize the fre-
quency band of interest.

At the end, the students are invited to use, at a first choice,
the SRIVC method since it can be automatically initiated
and has been proven to be powerful in practice. Once cho-
sen the parameter estimation method, the identified model
is displayed in the Matlab command window, as illustrated
in Figure 4, after a click on the Parameter estimation but-
ton.

E. Model validation panel

Once a model is estimated, it will appear in the drop-
down menu located at the top part of the Model validation

panel. Several basic model properties can then be evalu-
ated from an unrolling menu by using first the data that
were used for model identification:

• model output comparison: plots and compares the sim-
ulated model output with the measured output, as illus-
trated in Figure 5. This indicates how well the system
dynamics are captured;
• residual plot : displays the residuals, i.e. the output sim-
ulation error;
• transient response: displays the model response to an
impulse or step excitation signal;

 

Fig. 5. Measured and simulated model outputs

 

Fig. 6. Residual plot

• frequency response: displays the Nyquist or Bode plots
to show damping levels and resonance frequencies;
• zeros and poles : plots the poles and zeros of the identified
models and tests for zero-pole cancelation indicating over-
parameterized modelling;
• correlation test : displays the sample auto-covariance
function of the residuals and the sample cross-covariance
function between the excitation signal and the residuals, as
illustrated in Figure 7.

If a cross-validation data set is available, then traditional
cross-validation tests consist in comparing the measured
and simulated model outputs and analyzing the residuals.



 
 
 
 

 

Fig. 7. Correlation test

V. Complex Flexible Robot Arm

Real-life data analysis provide students with an appreci-
ation for the diversity of tasks and difficulties that must be
dealt with by engineers when building a continuous-time
model from measured data.

At the end of the course, the students are asked to form
teams to deal with real data sets coming from different ap-
plication areas: mechanical, robotics, environment. They
are asked to apply the whole data-based CT modelling pro-
cedure and write a report summarizing their identification
results. Typical results obtained by the students on a com-
plex flexible robot arm are described in this section.

Process Description and Modelling Purpose

The robot arm is installed on an electrical motor. The
modelling aim is here to design a control law based on a
model between the measured reaction torque of the struc-
ture on the ground to the acceleration of the flexible arm.
The robot arm is described in more detail in [8].

Experiment Design

The excitation signal is a multi-sine. The sampling pe-
riod is set to 2 ms. Measurements are made with anti-
aliasing filters. K = 10 periods each of length M = 4096
are exactly measured and a record of N = KM = 40, 960
data points is collected.

Model Order Determination

The empirical transfer function estimate (ETFE) ob-
tained from the 3rd period data set is displayed in Figure 8.
From this figure, we can have a good indication about the
model orders of the system. Indeed, we can see from the
ETFE that the system has at least 3 resonant modes and
4 zeros in the frequency band ω ∈ [0; 350] rad/s.

Different model structures in the range [nb nf nk] =
[4 4 0] to [7 6 0] have been computed for the 3rd period
data set. The other data set periods were kept for model
validation purposes.
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Fig. 8. Empirical transfer function estimate for the robot arm

The 7 best models sorted according to Young’s informa-
tion criterion (YIC) (see e.g. [1]) are given in Table I. From
this table, the first model with [nb nf nk]= [6 6 0] seems
to be quite clear cut (it has the most negative YIC=−9.19,
with the highest associated coefficient of determination
R2

T
= 0.977).

TABLE I

Best SRIVC model orders for the robot arm data set

nb nf nk YIC R2

T

6 6 0 –9.19 0.977**

4 4 0 –8.56 0.940

7 6 0 –8.03 0.977

5 6 0 –7.41 0.976

5 4 0 –7.01 0.940

6 5 0 –5.56 0.966

4 5 0 –4.86 0.959

4 6 0 –3.49 0.950

Identification Results

The model parameter estimation is performed with the
SRIVC algorithm on the third-period data set. The identi-
fication result is given as the [6 6 0] Laplace transfer func-
tion model

Ĝ(s) =
20.87(s − 618.5)(s2

− 1.698s + 710.6)(s2 + 8.435s + 2.012e4)

(s2 + 1.033s + 2094)(s2 + 0.9808s + 9905)(s2 + 2.693s + 7.042e4)
(3)

This estimated model is characterised by three, lightly
damped dynamic modes, as defined in Table II.

Model Validation

Figure 9 compares the simulated SRIVC model output
with the measured output series, over a short section of 0.4
s in the 8th-period data set. It can be noticed that the sim-
ulated output matches the measured data quite well, with
R2

T
> 0.95. There is also a very good agreement between

the ETFE and the frequency response of the estimated
SRIVC model, as shown in Figure 10.



TABLE II

Eigenvalues and dynamic modes for the robot arm SRIVC

model

Real Imag. Damping Nat. Freq. (rad/s)

–0.52 + 45.76 0.0113 45.76

–0.52 – 45.76 0.0113 45.76

–0.49 + 99.52 0.0049 99.52

–0.49 – 99.52 0.0049 99.52

–1.35 + 265.37 0.0051 265.37

–1.35 – 265.37 0.0051 265.37
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Fig. 9. Cross-validation results on a short section of the 8th-period
data set
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Fig. 10. Comparison of ETFE (‘×’) and SRIVC model (solid line)
frequency responses for the flexible robot arm

VI. Conclusion

This paper has outlined the main features of the data-
based continuous-time modelling course that is taught for
engineering students at Nancy-University. In particular the
Graphical User Interface (GUI) of the CONTSID toolbox
which is so useful to perform the general identification pro-
cedure has been described and illustrated. Future devel-
opments for the course would be to introduce nonlinear
system identification aspects to the students.

Références

[1] H. Garnier and L. Wang (Eds.), Ed., Identification of continuous-
time models from sampled data. London: Springer-Verlag, 2008.

[2] L. Ljung, “Initialisation aspects for subspace and output-
error identification methods,” in European Control Conference
(ECC’2003), Cambridge (U.K.), September 2003.

[3] G. Rao and H. Garnier, “Identification of continuous-time sys-
tems: direct or indirect ?” Systems Science, vol. 30, no. 3, pp.
25–50, 2004.

[4] H. Garnier, M. Gilson, and O. Cervellin, “Latest developments
for the Matlab CONTSID toolbox,” in 14th IFAC Symposium
on System Identification (SYSID’2006), Newcastle (Australia),
March 2006, pp. 714–719.

[5] L. Ljung, System identification. Theory for the user, 2nd ed. Up-
per Saddle River: Prentice Hall, 1999.

[6] H. Garnier, M. Gilson, and V. Laurain, “The CONTSID toolbox
for Matlab: extensions and latest developments,” in 15th IFAC
Symposium on System Identification (SYSID’2009), Saint-Malo
(France), July 2009.

[7] H. Garnier, M. Mensler, and A. Richard, “Continuous-time model
identification from sampled data. Implementation issues and per-
formance evaluation,” International Journal of Control, vol. 76,
no. 13, pp. 1337–1357, 2003.

[8] I. Kollar, Frequency Domain System Identification Toolbox
Users’s Guide. Mass.: The Mathworks, Inc., 1994.


