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Direct identification of continuous-time LPV models

V. Laurain∗, M. Gilson∗, R. Tóth∗∗, H. Garnier∗

Abstract— Controllers in the linear parameter-varying (LPV)
framework are commonly designed in continuous-time (CT)
requiring accurate and low-order CT models of the system.
Nonetheless, most of the methods dedicated to the identification
of LPV systems are addressed in discrete-time (DT) settings. In
practice when discretizing models which are naturally expressed
in CT, the dependency on the scheduling variables becomes
non-trivial and over-parameterized. Consequently, direct iden-
tification of CT LPV systems in an input-output setting is
investigated. To provide consistent model parameter estimates
in this setting, a refined instrumental variable (IV) approach
is proposed. The statistical properties of this approach is
illustrated through a relevant Monte Carlo simulation example.

I. I NTRODUCTION

The framework oflinear parameter-varying(LPV) sys-
tems was introduced in the 1990s with the purpose to handle
in a simple but efficient way the often nonlinear or time-
varying nature of systems encountered in practice. The LPV
system class forms an intermediate step betweenlinear time-
invariant (LTI) systems and nonlinear/time-varying plants as
the signal relations in LPV systems are considered to be
linear just as in the LTI case, but the parameters are assumed
to be functions of a measurable time-varying signal, the so-
called scheduling variablep : Z → P. Here the compact
set P ⊂ R

nP denotes thescheduling space. This LPV
modeling concept allows for a wide representation capability
of physical processes, but the real practical significance of the
LPV framework lays in its well worked out and industrially
reputed control synthesis approaches,e.g.[1], [18], [24], that
have led to many successful applications of LPV control in
practice [3], [13], [14], [23].

However a major drawback of the LPV framework today
is that, despite the advances of the LPV control field, identi-
fication of such systems is not well developed as the current
methods are unable to support practical control design.
Commonly LPV controllers are synthesized incontinuous
time (CT) as stability and performance requirements of the
closed loop behavior can be more conveniently expressed in
CT, like in a mixed-sensitivity setting [28].

However, LPV identification methods are almost exclu-
sively developed fordiscrete-time(DT) (for a recent survey
see [20]), as in this setting it is much easier to handle
the estimation of parameter-varying dynamics. Nonetheless,
the absence of CT methods represents a gap between the
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available identification approaches and the needs of LPV
control synthesis.

There is therefore a growing need of the LPV framework
for efficient identification methods that directly deliver reli-
able CT models.

In practice, CT systems can only be identified based
on sampled measured data records. Thus in general, for
delivering a CT model estimate, the available approaches
in system identification can be categorized as follows:

• Indirect approaches: These methods involve the iden-
tification of a DT model in a completely DT setting
which is followed by the transformation of the DT
model estimate into a CT form.

• Direct approaches:The methods formulate the identi-
fication of the CT model directly based on samples of
the measured CT signals.

Unfortunately, transformation of DT-LPV models to CT-
LPV models is more complicated than in the LTI case and
despite recent advances in LPV discretization theory (see
[21], [22]) the theory of CT realization of DT models is still
in an immature state. The discretization of a CT LPV model
results in a system order increase and more importantly
in complicated dynamic dependency onp (dependency of
the model coefficients on time-shifted versions ofp with
non-trivial rational functions) for which the available LPV
identification methods are not well suited.

Even for a very simple CT-LPV model, estimation of a
DT model with the purpose of obtaining afterwards a CT
realization is a tedious task with many underlaying problems
for which there are no general theoretical solutions available.

Unlike an indirect approach, a direct solution offers a way
to efficiently overcome these problems but presents intrinsic
difficulties mostly linked to the inaccessibility to signaltime-
derivatives from the acquired sampled data. The offered
solutions in the LTI case often require the use of signals
prefiltering [4]. These filters depend on hyperparameters
input by the user and their efficiency is strongly linked to
the adequacy with the considered system. In the CT-LTI case,
one of the methods for relaxing the need of prefiltering is the
Refined Instrumental Variable for Continuous-time(RIVC)
method. This method is attractive in the sense that it provides
consistent estimates under the realistic assumption of an
unknown noise model and it achieves similar performance
asprediction-error-minimization(PEM) methods [17].

Another problem related to CT identification based on
sampled data is the mathematical complexity of the CT
random process used to describe the noise added to the
system. An efficient way to overcome this problem is to
consider a discrete-time Box-Jenkins noise model leading to



hybrid models (see [15], [7]). In order to avoid the different
issues linked to the simultaneous use of CT and DT filters,
this paper focuses on the case where the noise added onto
the output is a white gaussian noise: the Output Error (OE)
case.

Recently, an LPV identification approach has been intro-
duced, which uniquely among other approaches, addresses
the minimization of the prediction error for LPV-OE mod-
els by using aMultiple Input Single Ouput(MISO)-LTI
reformulation of the data-generating LPV system [9]. This
paper aims at providing the very first step towards bridging
the existing gap between LPV control and identification
via the introduction of a direct CT identification approach
that benefits from the properties of RIV methods in the
continuous-time case and uses the recent advances of the
prediction error minimization framework [9], [20].

The paper is organized as follows: in Section II, the
general class of CT-LPV systems in an IO representation
form is introduced. In Section III, the proposed CT LPV-IV
method is described and analyzed, while its performance is
illustrated in Section IV through a representative simulation
example.

II. PROBLEM DESCRIPTION

A. System description

Consider the data generating CT LPV system described
by the following equations

So

{

Ao(pt, d )χo(t) = Bo(pt, d )u(t)

y(t) = χo(t) + eo(t),
(1)

whered denotes the differentiation operator w.r.t. time, i.e.
d = d

dt
, p : R → P is the scheduling variable withpt = p(t),

χo is the noise-free output andeo is a white gaussian noise
process with varianceσ2

eo
. Ao, Bo are polynomials ind with

coefficientsao
i andbo

i that are meromorphic functions1 of p

with no singularity onP:

Ao(pt, d ) = d na +

na∑

i=1

ao
i (pt)d

na−i, (2)

Bo(pt, d ) =

nb∑

j=0

bo
j (pt)d

nb−j . (3)

Note thatao
i and bo

j are functions ofp at time t, which
is calledstatic dependence. In LPV system theory, a more
generalp-dependence of coefficients than static is required
to establish equivalence of representations. In particular, it
can be required that the coefficientsao

i and bo
j depend also

on time derivatives ofp, which is called dynamic depen-
dence [20]. In order to simplify the upcoming discussion,
we restrict our attention to static dependence. Nevertheless,
the established results hold also in the case ofdynamic
dependenceof (1) and of the proposed model structure.

In terms of identification we can assume that sampled
measurements of(y, p, u) are available with a sampling

1A function f is called meromorphic iff =
g

h
where g, h are

holomorphic (analytic) functions andh is not the zero function.

period Ts > 0. Hence, we will denote the discrete-time
samples of these signals asu(tk) = u(kTs), wherek ∈ Z.

B. Model structure considered
The process model is denoted byGρ and defined in a

form of an LPV-IO representation with a static scheduling
dependence:

Gρ : (A(pt, d , ρ), B(pt, d , ρ)) (4)

where thep-dependent polynomialsA andB given as

A(pt, d , ρ) = d
na +

na∑

i=1

ai(pt)d
na−i,

B(pt, d , ρ) =

nb∑

j=0

bj(pt)d
nb−j ,

are parameterized as

ai(pt) = ai,0 +

nα∑

l=1

ai,lfl(pt) i = 1, . . . , na

bj(pt) = bj,0 +

nβ∑

l=1

bj,lgl(pt) j = 0, . . . , nb

In this parametrization,{fl}
nα

l=1 and {gl}
nβ

l=1 are mero-
morphic functions ofp, with static dependence, allowing the
identifiability of the model (they can be chosen for example
as linearly independent functions onP). The associated
model parameters are stacked columnwise:

ρ = [ a1 . . . ana
b0 . . . bnb ]⊤ ∈ R

nρ , (5)

where

ai = [ ai,0 ai,1 . . . ai,nα
] ∈ R

nα+1

bj = [ bj,0 bj,1 . . . bj,nβ
] ∈ R

nβ+1

and nρ = na(nα + 1) + (nb + 1)(nβ + 1). Introduce also
G = {Gρ | ρ ∈ R

nρ}, as the collection of all process models
in the form of (4).

With respect to the considered OE structure, the signal
relations of the LPV-BJ model, denoted in the sequel asMρ,
are defined as:

Mρ

{

A(pk, d , ρ)χ(t)=B(pk, d , ρ)u(t)

y(tk)=χ(tk) + e(tk)
(6)

Based on this model structure, the model set, denoted as
M = {Mρ | ρ ∈ R

nρ} = G, corresponds to the set of
candidate models in which we seek the model that explains
data gathered fromSo the best, under a given identification
criterion (cost function).

C. Predictors and prediction error
Similar to the LTI case, in the LPV prediction error

framework, one is concerned about finding a model in a given
LPV model structureM, which minimizes the statistical
mean of the squared prediction error based on past samples
of (y, u, p). However in the LPV case, no transfer function
representation of systems is available.



Furthermore, multiplication withd is not commuta-
tive over thep-dependent coefficients [20], meaning that
d (B(p, d )u(t)) = B(dp, d )du(t) which is not equal to
B(p, d )du(t).

1) System reformulation and prediction error:Following
the same idea developed in [9] and if the system belongs
to the model set defined with a deterministicp signal, it is
possible to express the CT LPV system as a CT MISO LTI
system by rewriting the signal relations of (1) as

χ(na)
o (t) +

na∑

i=1

ao
i,0χ

(na−i)
o (t)

︸ ︷︷ ︸

Fo(d )χo(t)

+

na∑

i=1

nα∑

l=1

ao
i,lfl(p(t))χ(na−i)

o (t)
︸ ︷︷ ︸

χo
i,l

(t)

=

nb∑

j=0

nβ∑

l=0

bo
j,lgl(p(t))u(nb−j)(t)

︸ ︷︷ ︸

uj,l(t)

(7)

where g0(t) = 1 and the superscript(n) for a signal,
like u(n), denotes thenth time-derivative of the signal,
e.g. u(n)(t) = d nu(t). Furthermore,Fo(d ) = d na +
∑na

i=1 ai,0d
na−i while u(n)(tk) represents the value of the

signalu(n)(t) sampled at time instancetk.
Note that in this way, the time variation of the coefficients

is transposed onto the signalsχo
i,l(t) anduj,l(t):

χo
i,l(t) = fl(p(t))χ(na−i)

o (t) {i, l} ∈ {1 . . . na, 1 . . . nα},

uj,l(t) = gl(p(t))u(nb−j)(t) {j, l} ∈ {1 . . . nb, 1 . . . nα}.

Therefore, the process part of the LPV-BJ model is rewritten
as aMultiple-Input Single-Output(MISO) system with(nb+
1)(nβ + 1) + nanα inputs {χo

i,l}
na,nα

i=1,l=1 and {uj,l}
nb,nβ

j=0,l=0.
By using (7), (6) can be rewritten in terms of the sampled
output signaly(tk) as

y(tk) = −

(
na∑

i=1

nα∑

l=1

ao
i,l

Fo(d )
χo

i,l

)

(tk)

+





nb∑

j=0

nβ∑

l=0

bo
j,l

Fo(d )
uk,j



(tk) + eo(tk), (9)

which is a sampled LTI representation of the system (1).
2) Prediction Error Model: Similarly to the LTI case,

the one-step-ahead prediction errorcan be expressed and
defined as [10]:

ερ(tk) = y(tk) − ŷρ(tk), (10)

where ŷρ(tk) is the one step ahead predictorbased on the
model (6) written as a MISO LTI form (9) and defined as:

ŷρ(tk) = −

(
na∑

i=1

nα∑

l=1

ai,l

F (d , ρ)
χi,l

)

(tk)

+





nb∑

j=0

nβ∑

l=0

bj,l

F (d , ρ)
uk,j



(tk). (11)

3) Prediction error minimization: Denote DN =
{y(tk), u(tk), p(tk)}N

k=1 a data sequence ofSo. Then to
provide an estimate ofρ based on the minimization ofερ,
an identification criterionW (DN , ρ) can be introduced, like
the least squarecriterion

W (DN , ρ) =
1

N

N∑

k=1

ε2
ρ(tk), (12)

such that the parameter estimate is

ρ̂N = arg min
ρ∈R

nρ+nη

W (DN , ρ). (13)

4) CT filtering and sampled data:The CT representation
of the model (6) consists in a CT filtering operation. In this
paper, we considered the practically feasible situation such
that only sampled measurements of the CT signals(y, p, u)
are available. In order to apply a CT filter on sampled data
one can either interpolate the samples to obtain a continuous-
time signal and apply the CT filter on this reconstructed
signal or use a numerical approximation,i.e. DT approxi-
mation of the considered system. This is a common problem
for simulation of CT systems. For simulation purposes, DT
approximation of the system can efficiently be dealt with, by
using powerful numerical algorithms available [2].

Note that to derive an accurate DT approximation of
the system, it is often sufficient in terms of the classical
discretization theory to assume that the sampled free CT
signals of the system are restricted to be constant in the
sampling period [5]. This has been also shown in case of
LPV systems with static dependence [20]. This provides
the hypothesis, also used in [15], [7], that if CT(p, u) are
piecewise constant between two samples, then the trajectory
of y is completely determined by its observations at the
sample periodTsk. Therefore, under these inter-sampling
conditions, DT filtering and numerical approximation of CT
filtering operations commute [6]. Nevertheless, it is important
to notice that the numerical approximation method used for
the evaluation of a CT filter does not have any impact on the
coefficients to be estimated which remain, in terms of (11),
the coefficients of the parsimonious CT model.

D. Identification problem statement
Based on the previous considerations, the identification

problem addressed in the sequel can now be defined.
Problem 1: Given a CT-LPV data generating systemSo

defined as in (1) and a data setDN collected fromSo.
Based on the CT LPV model structureMρ defined by
(6), estimate the parameter vectorρ using DN under the
following assumptions:

A1 So ∈ M.
A2 In the parametrizationAρ and Bρ, {fl}

nα

l=1 and
{gl}

nβ

l=1 are chosen such that(Go) is identifiable
for any trajectory ofp.

A3 u(tk) is not correlated toeo(tk).
A4 DN is informative with respect toM.
A5 So is globally BIBO stable, i.e. for any trajectory

of p : R → P and any bounded input signalu, the
output ofSo is bounded [20].



III. R EFINED INSTRUMENTAL VARIABLE FOR LPV
SYSTEMS

Based on the MISO-LTI formulation (11), it becomes
possible in theory to achieve optimal PEM using linear
regression [9]. This allows to extend theRefined Instrumental
Variable (RIV) approach of the LTI identification framework
to provide an efficient way of identifying CT LPV models.

A. Linear Regression for CT LPV-BJ models
Using the LTI model (6) reformulated as in (11),y(tk)

can be written in the regression form:

y(na)(tk) = ϕ⊤(tk)ρ + ṽ(tk) (14)
where,

ϕ(tk) = [−y(na−1)(tk) . . . − y(tk) − χ1,1(tk) . . .

. . . − χna,nα
(tk) u0,0(tk) . . . unb,nβ

(tk)]⊤

ρ = [a1,0 . . . ana,0 a1,1 . . . ana,nα
b0,0 . . . bnb,nβ

]⊤

ṽ(tk) = F (d , ρ)e(tk).

The extended regressor in (14) contains the noise-free output
terms {χi,k}. Therefore, by momentary assuming that
{χi,l(tk)}na,nα

i=1,l=0 are knowna priori, the prediction error
ερ(tk) for (14) is given in terms of (10) as:

ερ(tk) = (F (d , ρ)yf) (tk) −

na∑

i=1

nα∑

l=1

ai,lχ
f
i,l(tk)

+

nb∑

j=0

nβ∑

l=0

bj,lu
f
k,j(tk) (15)

whereyf(tk), uf
j,l(tk) andχf

i,l(tk) represent the outputs of an
hybrid prefiltering operation, involving the continuous-time
filter (see [27]):

Qc(d , ρ) =
1

F (d , ρ)
, (16)

Based on (15), the associated linear-in-the-parameters model
takes the form [27]:

y
(na)
f (tk) = ϕ⊤

f (tk)ρ + ṽf(tk), (17)

where
ϕf(tk) = [−y

(na−1)
f (tk) . . . − yf(tk) − χf

1,1(tk) . . .

. . . − χf
na,nα

(tk) uf
0,0(tk) . . . uf

nb,nβ
(tk)]⊤

ṽf(tk) = Qc(d , ρ)ṽ(tk) = e(tk).

B. The refined instrumental variable approach

Under the assumption that the CT filterQc(d , ρ) and
{χi,l(tk)}na,nα

i=1,l=0 are knowna priori, traditional parametric
estimation methods from the LTI framework could provide
efficient estimates ofρ. However, in a practical situation,
Qc(d , ρ) is unknown and only some estimates will be
available.

Furthermore, it is important to notice here that the re-
gressors in (17) and (14) contain some time-derivatives ofy

andu which, in the assumed framework considering sampled
data, can only be approximated. It is well-known that the

approximation of derivatives requires a low pass filtering on
the input and output. The most commonly used filters for
this purpose are Poisson’s filters, or state-variable filters [4].
The drawback of these filters is that they require the choice
of a design variable. Therefore, it is a particular strengthof
the presented method that the estimated filterF (d , ρ) is not
only used for the minimisation of the prediction error but it
also provides the filtering for the approximation of the time
derivatives. In other words, the regressorϕf in (17) can be
well-approximated numerically whereas the regressorϕ from
(14) cannot as it requires prefiltering of the data which must
be chosen by the user. In order to estimate the parameter
vector in (17) without the prior knowledge ofQc(d , ρ), the
RIV method is chosen for the following reasons:

• RIV methods lead to optimal estimates in the LTI case
if So ∈ M (see [19], [26], [27]).

• In a practical situation of identification,Go ∈ G might
be fulfilled due to first principle or expert’s knowledge.
However, it is commonly fair to assume that the model
is not OE. In such case, RIV methods have the advan-
tage of providing consistent estimates whereas methods
such as extended LS are biased and more advanced
PEM methods need robust initialisation [12].

• The RIV algorithm has been successfully used for LTI
model with similar CT structure, in the case of linear
models [16], [26] and nonlinear ones [8].

Aiming at the extension of the RIV approach for the estima-
tion of CT LPV models, consider the relationship between
the process input and output signals as in (14). Based on this
form, the extended-IV estimate is given as [26]:

ρ̂XIV(N) = arg min
ρ∈R

nρ

∥
∥
∥
∥
∥

[

1

N

N∑

k=1

ζf(tk)ϕ⊤
f (tk)

]

ρ

−

[

1

N

N∑

t=1

ζf(tk)y
(na)
f (tk)

]∥
∥
∥
∥
∥

2

W

, (18)

whereζ(tk) is the instrument,‖x‖2
W = xT Wx, with W a

positive definite weighting matrix and the filtered variables
ζf , ϕf andyf are filtered using a stable prefilter. IfGo ∈ G,
the extended-IV estimate is consistent under the following
two conditions2:

C1 Ē{ζf(tk)ϕ⊤
f (tk)} is full column rank.

C2 Ē{ζf(tk)ṽf(tk)} = 0.

Moreover it has been shown in [19], [25] and [26] that the
minimum variance estimator can be achieved if:

C3 W = I.
C4 ζ is chosen as the noise-free version of the extended

regressor in (14) and is therefore defined in the
present LPV case as:

ζ(tk)=
[

−χ(na−1)(tk) . . . − χ(tk) − χ1,1(tk) . . .

. . . χna,nα
(tk) u0,0(tk) . . . unb,nβ

(tk)
]⊤

2The notationĒ{.} = limN→∞

1

N

PN
t=1

E{.} is adopted from the
prediction error framework of [10].



C5 Go ∈ G and nρ is equal to the minimal number
of parameters required to representGo with the
considered model structure.

C6 The CT filter used is chosen as the filter (16).

While conditions C1, C2, C3 and C5 are quite straight-
forward to fulfill (see [19], [25]), the obtention of the suitable
instrument that fulfills C4 and of the optimal filter fulfilling
C6 is not trivial in practical case. The RIV algorithm involves
an iterative (or relaxation) algorithm in which, at each itera-
tion, an ‘auxiliary model’ is used to generate the instrumental
variables (which guarantees C2), as well as the associated
prefilters. This auxiliary model is based on the parameter
estimates obtained at the previous iteration. Consequently, if
convergence occurs, C4 and C6 are fulfilled. Thus, the RIV
is the most suitable method to simultaneously i) efficiently
estimate the parameter vectorρ in (17) in the caseSo ∈ M

and ii) consistently estimateρ in the practical assumption
where the noise model is misspecified.
C. TheLPV-RIVC Algorithm

Step 1 The usual initialisation forCT-RIV algorithm is
a DT model estimate issued from anLS method
or a DT-RIV algorithm. In the LPV case how-
ever, the transformation of a DT model into a
CT model is not trivial. Consequently, the initial
estimate proposed for theLPV-RIVC algorithm is
an LTI-RIVC estimate ofMρ, i.e. ρ̂(0) is given.
Setτ = 0.

Step 2 Compute an estimate ofχ(tk) via numerical ap-
proximation of

A(pt, d , ρ̂
(τ))χ̂(t) = B(pt, d , ρ̂

(τ))u(t),

where ρ̂(τ) is estimated in the previous iteration.
Based onMρ̂(τ) , deduceχ̂(tk) which is bounded
according to Assumption A5.

Step 3 Compute the estimated continuous-time filter
Q̂c(d , ρ̂

(τ)) = 1
F (d ,ρ̂(τ))

, where F (d , ρ̂(τ)) is as
given in (7).

Step 4 Use the CT filter̂Qc(d , ρ̂
(τ)) as well asχ̂(tk) in

order to generate the estimates of the derivatives
which are needed:

Step 5 Build the filtered estimated regressorϕ̂f(tk) and,
in terms of C4, the filtered instrument̂ζf(tk).

Step 6 The solution of the IV optimization problem is then

ρ̂(τ+1)(N)=
[

N∑

k=1

ζ̂f(tk)ϕ̂⊤
f (tk)

]−1
N∑

k=1

ζ̂f(tk)y
(na)
f (tk) (19)

Step 7 If ρ(τ+1) has converged or the maximum number
of iterations is reached, then stop, else increaseτ

by 1 and go to Step 2.

IV. SIMULATION EXAMPLE

In order to show the relevance of the presented algorithm,
the following data-generating system is considered:

So

{

Ao(d , p) = d 2 + ao
1(p)d + ao

2(p)

Bo(d , p) = bo
0(p)d + bo

1(p)

where

ao
1(p) = 1 − 0.5p, (20a)

ao
2(p) = 5 + 3p (20b)

bo
0(p) = 2 + p, (20c)

bo
1(p) = 5 − p. (20d)

3000 samples are collected from a15sec simulation (Ts =
0, 005sec). The input signalu is chosen as a uniformly
distributed sequenceU(−1, 1) while the scheduling variable
is chosen asp(t) = sin(2

3πt).
The following model structure in terms of (4) is considered

to capture the dynamics ofSo:

M

{

A(d , p) = d 2 + a1(p)d + a2(p)

B(d , p) = b0(p)d + b1(p)

where

a1(p) = a1,0 + a1,1p, (21a)

a2(p) = a2,0 + a2,1p, (21b)

b0(p) = b0,0 + b0,1p, (21c)

b1(p) = b1,0 + b1,1p. (21d)

As previously pointed out, the efficiency of the
LPV-RIVC estimator can not be yet proven. Nonetheless,
in order to analyse its statistical properties on this example
the model is estimated using both theLPV-RIVC algorithm
and the MATLAB LSQNONLIN method. TheLSQNONLIN
method is a nonlinear statistically optimal optimization
method but such nonlinear method is also sensitive to ini-
tialisation [11]. Therefore, in order to put this latter method
at its best, it is initialized on the true parameters.

Monte Carlo simulation results obtained using the dif-
ferent methods are presented in Table I. The statistical
properties of each method is evaluated using the estimated
parameters mean and standard deviation. These results are
based onNrun = 100 random realizations under aSignal-
to-Noise Ratio(SNR) of 10dB with:

SNR = 10 log
Pχo

Peo

, (22)

wherePx is the power of signalx.
It can be seen from Table I that according to the theory,

the estimated parameters using theLPV-RIVC algorithm
are unbiased. Moreover, in case of correct parametrization
and on this example, theLPV-RIVC method performs
equivalently to the optimalLSQNONLIN method which is
theoretically optimal but is also known to be sensitive to
initialisation in comparison toRIV based algorithms [11].

Consequently, the presented algorithm constitutes the first
direct continuous-time method aiming at minimizing the er-
ror prediction. It looks from this example that the empirically
accepted properties of RIV based method might apply to the
LPV case even though this cannot be yet proven. Moreover,
this method does not requires any hyperparameters from the
user for the signals time-derivative approximation.



TABLE I

MONTE CARLO SIMULATION FOR SNR = 10 DB

Method LSQNONLIN LPV-RIVC
Name True Value mean st. dev. mean st. dev.
a1,0 1 1.0026 0.0408 1.0040 0.0421
a1,1 -0.5 -0.5054 0.0707 -0.5089 0.0745
a2,0 5 5.0017 0.0698 5.0016 0.0731
a2,1 3 2.9996 0.1278 2.9973 0.1308
b0,0 2 2.0004 0.0298 1.9999 0.0311
b0,1 1 0.9988 0.0550 0.9981 0.0578
b1,0 5 5.0008 0.1469 5.0021 0.1559
b1,1 -1 -1.0274 0.2670 -1.0355 0.2732

V. CONCLUSION

The proposed approach provides on of the very first
direct global LPV identification method that is able to give
consistent estimates of LPV-IO models in continuous-time
and has a low computational load. The proposed algorithm
has been tested on a representative numerical simulation
example and it has been shown that the proposed procedure
is robust to noise and can compete with the optimal nonlinear
optimization method even in the case where the latter is
initialized knowing the true parameters. Furthermore, based
on previous work on CT-LTI systems operating in closed
loop, this methods opens the possibility for closed-loop CT-
LPV identification.
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