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Direct identification of continuous-time LPV models

V. Laurain®, M. Gilson®, R. Toth**, H. Garnief

Abstract— Controllers in the linear parameter-varying (LPV)  available identification approaches and the needs of LPV
framework are commonly designed in continuous-time (CT) control synthesis.

requiring accurate and low-order CT models of the system. There is therefore a growing need of the LPV framework

Nonetheless, most of the methods dedicated to the identification - : e . N
of LPV systems are addressed in discrete-time (DT) settings. In for efficient identification methods that directly delivesti

practice when discretizing models which are naturally expressed able CT mlodels. . -

in CT, the dependency on the scheduling variables becomes In practice, CT systems can only be identified based
non-trivial and over-parameterized. Consequently, direct iden  on sampled measured data records. Thus in general, for
tification of CT LPV systems in an input-output setting is  delivering a CT model estimate, the available approaches
investigated. To provide consistent model parameter estimates in system identification can be categorized as follows:

in this setting, a refined instrumental variable (IV) approach . ) i
is proposed. The statistical properties of this approach is e Indirect approaches: These methods involve the iden-

illustrated through a relevant Monte Carlo simulation example. tification of a DT model in a completely DT setting
which is followed by the transformation of the DT
l. INTRODUCTION model estimate into a CT form.

« Direct approaches: The methods formulate the identi-

tems was introduced in the 1990s with the purpose to handle fication of the CT model directly based on samples of
in a simple but efficient way the often nonlinear or time-  the measured CT signals.
varying nature of systems encountered in practice. The LP\ynfortunately, transformation of DT-LPV models to CT-
system class forms an intermediate step betwieear time- LPV models is more complicated than in the LTI case and
invariant (LTI) systems and nonlinear/time-varying plants aglespite recent advances in LPV discretization theory (see
the signal relations in LPV systems are considered to &1l [22]) the theory of CT realization of DT models is still
linear just as in the LTI case, but the parameters are assuniBdn immature state. The discretization of a CT LPV model
to be functions of a measurable time-varying signal, the s§€Sults in a system order increase and more importantly
called scheduling variablep : Z — P. Here the compact In complicated dynamic dependency pn(dependency of
set P ¢ R™ denotes thescheduling spaceThis LPV the model coefficients on time-shifted versions yofwith
modeling concept allows for a wide representation captgbili "On-trivial rational functions) for which the available YP
of physical processes, but the real practical significafiteeo identification methods are not well suited.
LPV framework lays in its well worked out and industrially EVven for a very simple CT-LPV model, estimation of a
reputed control synthesis approaches, [1], [18], [24], that = DT model with the purpose of obtaining afterwards a CT
have led to many successful applications of LPV control if€@lization is a tedious task with many underlaying proislem
practice [3], [13], [14], [23]. for which there are no general theoretical solutions alikla
However a major drawback of the LPV framework today Un_Iik_e an indirect approach, a direct solution offers_ away
is that, despite the advances of the LPV control field, identf© €fficiently overcome these problems but presents intrins
fication of such systems is not well developed as the curref|tfficulties mostly linked to the inaccessibility to sigrtahe-
methods are unable to support practical control desigh€rvatives from the acquired sampled data. The offered
Commonly LPV controllers are synthesized ¢ontinuous solu.tlon_s in the LTI case often require the use of signals
time (CT) as stability and performance requirements of thBrefiltéring [4]. These filters depend on hyperparameters

closed loop behavior can be more conveniently expressed'nLP'“It by the user and thei_r efficiency is strongly linked to
CT, like in a mixed-sensitivity setting [28]. the adequacy with the considered system. In the CT-LTI case,

However. LPV identification methods are almost exclu®n€ of the methods for relaxing the need of prefiltering is the

sively developed fodiscrete-timg(DT) (for a recent survey Refined Ingtrumental _Vanable_ for_ Contmuous—ﬂ@VC) .
see [20]), as in this setting it is much easier to handlg]ethOd' This method is attractive in the sense that it pesvid

the estimation of parameter-varying dynamics. Nonetlsu,alesConSIStent estimates under_ the Fea“s“c_ assumption of an
nown noise model and it achieves similar performance

the absence of CT methods represents a gap between o R
P gap as prediction-error-minimization(PEM) methods [17].

*Centre de Recherche en Automatique de Nancy (CRAN), Nancy- Another prob_lem related to CT |dent|f|cat|_0n based on
universie, CNRS, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, Francéampled data is the mathematical complexity of the CT
vincent.|aurain@ran. uhp-nancy. fr ~random process used to describe the noise added to the

**Delft Center for Systems and Control (DCSC), Delft Univer- A ffici hi bl .
sity of Technology, Mekelweg 2, 2628 CD Delft, The Nethedan system. An efficient way to overcome this problem Is to

r.toth@udel ft.nl consider a discrete-time Box-Jenkins noise model leading t

The framework oflinear parameter-varying(LPV) sys-



hybrid models (see [15], [7]). In order to avoid the differen period Ts > 0. Hence, we will denote the discrete-time
issues linked to the simultaneous use of CT and DT filtersamples of these signals a&,) = u(kTs), wherek € Z.
this paper focuses on the case where the noise added onto )
the output is a white gaussian noise: the Output Error (OB: Model structure considered
case. The process model is denoted By and defined in a
Recently, an LPV identification approach has been intrdorm of an LPV-IO representation with a static scheduling
duced, which uniquely among other approaches, addressi&pendence:
the minimization of _the predictiqn error for LPV-OE mod- G, (A(pi, ¢, p), B(pi,d,p)) (4)
els by using aMultiple Input Single Ouput(MISO)-LTI
reformulation of the data-generating LPV system [9]. Thigvhere thep-dependent polynomiald and B given as
paper aims at providing the very first step towards bridging na ‘
the existing gap between LPV control and identification A(pt,d,p) = 4™ +Zai(pt)zf”a*l,
via the introduction of a direct CT identification approach i=1
that benefits from the properties of RIV methods in the »
continuous-time case and uses the recent advances of the ~ BPn4:p) = > bi(p)a™ ™,
prediction error minimization framework [9], [20]. 3=0
The paper is organized as follows: in Section Il, theare parameterized as
general class of CT-LPV systems in an IO representation
form is introduced. In Section lll, the proposed CT LPV-IV ai(pt)

b

na
= ai,O‘f‘Zai,lfl(pt) i1=1,...,Mn,

method is described and analyzed, while its performance is =
illustrated in Section IV through a representative simatat ng
example. bi(pe) = bjo+ Y bjg(p) j=0,....m
[I. PROBLEM DESCRIPTION =1
A. System description In this parametrization{ f,;};'=, and {g;}%, are mero-

orphic functions of, with static dependence, allowing the
identifiability of the model (they can be chosen for example
as linearly independent functions dP). The associated
{ Ao(pt, d)Xo(t) = Bo(pe, d Ju(t) ) model parameters are stacked columnwise:

Consider the data generating CT LPV system describ
by the following equations

y(t) = Xo(t) + eo(t)a

where # denotes the differentiation operator w.r.t. time, i.eWh ;
¢ =& p:R— Pis the scheduling variable with, = p(t), ere

Xo IS the noise-free output ang, is a white gaussian noise a; = [aio @1 ... Gin, | €RMH
process with variancego. A,, B, are polynomials in with

p=[a ... a, by ... by | €R™, (5)

coefficientsa? and b that are meromorphic functiohsf p bj = [bio bia - bim, |ER™Y
with no singularity onP: andn, = n,(no + 1) + (n, + 1)(ng + 1). Introduce also
Na S={G, | p e R™}, as the collection of all process models
Aolpe,d) =d" + Y af(p)a™ ", (2) in the form of (4).
i=1 With respect to the considered OE structure, the signal

b , relations of the LPV-BJ model, denoted in the sequebs,
Bo(prd) =Y b3(pi)a ™. ()  are defined as:
=0

A(pr, &, p)x(t)=B(pr, 4, p)u(t)
Note thata? and b are functions ofp at time ¢, which P (t) = x(tx) + e(t)
is calledstatic dependencedn LPV system theory, a more Yk = XAtk) T €Lk
generalp-dependence of coefficients than static is requireBased on this model structure, the model set, denoted as
to establish equivalence of representations. In particita M = {Mp | p € R*™} = G, corresponds to the set of
can be required that the coefficienty andb? depend also candidate models in which we seek the model that explains
on time derivatives ofp, which is called dynamic depen- data gathered fron$, the best, under a given identification
dence [20]. In order to simplify the upcoming discussiongriterion (cost function).

we restrict our attention to static dependence. Neverbele

the established results hold also in the casedgfiamic Similar to the LTI case, in the LPV prediction error

dependencef (1) and of the proposed model structure. framework, one is concerned about finding a model in a given
In terms of identification we can assume that sample ' : - inding 1ag
: . . PV model structureM, which minimizes the statistical
measurements ofy,p,u) are available with a sampling -
mean of the squared prediction error based on past samples
1A function f is called meromorphic iff = ¢ where g,h are Of (¥,u,p). However in the LPV case, no transfer function

holomorphic (analytic) functions anid is not the zero function. representation of systems is available.

(6)

C. Predictors and prediction error



Furthermore, multiplication withs is not commuta- 3) Prediction error minimization: Denote Dy =
tive over thep-dependent coefficients [20], meaning that{y(t), u(tx), p(tx)}i-, a data sequence af,. Then to
4(B(p,4)u(t)) = B(dp,d)du(t) which is not equal to provide an estimate ob based on the minimization af,,
B(p, 4 )du(t). an identification criterio’?V(Dy, p) can be introduced, like

1) System reformulation and prediction erroFollowing  the least squarecriterion

the same idea developed in [9] and if the system belongs 1N
to the model set defined with a deterministicsignal, it is W(Dn,p) = — Zsi(tk), 12)
possible to express the CT LPV system as a CT MISO LTI N k=1
system by rewriting the signal relations of (1) as such that the parameter estimate is
X0 43 a0+ 33 a0 1) PN =218 b,V (DN-P) 3
=1 i=11=1 X2 (6) 4) CT filtering and sampled dataThe CT representation
Fo(d)xo(t) of the model (6) consists in a CT filtering operation. In this
n, ng ‘ paper, we considered the practically feasible situatiazhsu
= Z Zb;lgz (p(t))u'™=9) () (7) that only sampled measurements of the CT sigiglp, u)
J=01=0 T are available. In order to apply a CT filter on sampled data
B one can either interpolate the samples to obtain a contgiuou
where go(t) = 1 and the superscripfn) for a signal, time signal and apply the CT filter on this reconstructed
like «(, denotes then'™ time-derivative of the signal, signal or use a numerical approximatidre. DT approxi-
e.g. u™(t) = 4"u(t). Furthermore,F,(¢) = 4"« + mation of the considered system. This is a common problem
S a;0d ™% while u(™ (tx) represents the value of the for simulation of CT systems. For simulation purposes, DT
signalu(™ (t) sampled at time instanag. approximation of the system can efficiently be dealt with, by
Note that in this way, the time variation of the coefficientsusing powerful numerical algorithms available [2].
is transposed onto the signal$, (t) andu; ;(t): Note that to derive an accurate DT approximation of

the system, it is often sufficient in terms of the classical

X5, = filp))x(t) {i, 1} € {1...na,1...n4}, discretization theory to assume that the sampled free CT
4 _ (ny—3) . 1 1 . signals of the system are restricted to be constant in the
wia(t) = g (p(t))u ® {1 ed b na} sampling period [5]. This has been also shown in case of

Therefore, the process part of the LPV-BJ model is rewrittehPV Systems with static dependence [20]. This provides

as aMultiple-Input Single-OutpufMISO) system with(n,+ € hypothesis, also used in [15], [7], that if GF, u) are
Na,Ma nb,ng piecewise constant between two samples, then the trajector

)(ng + 1) + nang inputs {x7, 1277, and {u;;}. 20, X ) \ X

By using (7). (6) can be rewritten in terms of tﬁeoéar(‘)nple@f y is completely determined by its observations at the

output signaly(ty,) as sample periodTsk. Therefore, under these inter-sampling
conditions, DT filtering and numerical approximation of CT

e Mol go filtering operations commute [6]. Nevertheless, it is impot
y(te) == D> A7) (’L{)X?,z (tr) to notice that the numerical approximation method used for
i=11=1"©° the evaluation of a CT filter does not have any impact on the
np ng b, coefficients to be estimated which remain, in terms of (11),
—L i | (t ot 9 ici i i
+ ;; o)k (te) + eo(tr),  (9) the coefficients of the parsimonious CT model.

D. Identification problem statement
which is a sampled LTI representation of the system (1). Based on the previous considerations, the identification
2) Prediction Error Model: Similarly to the LTI case, Problem addressed in the sequel can now be defined.

the one-step-ahead prediction errocan be expressed and Froblem 1:Given a CT-LPV data generating systesp
defined as [10]: defined as in (1) and a data s&ty collected fromS,.

Based on the CT LPV model structut#t, defined by
ep(tr) = y(tr) — ,(tr), (10) (6), estimate the parameter vectorusing Dy under the
following assumptions:
whereg,(t;) is the one step ahead predictdvased on the Al S, € M.
model (6) written as a MISO LTI form (9) and defined as: A2 In the parametrization4, and B,, {f;};>, and
{g:}%, are chosen such thdt,) is identifiable

Na_ Mo , for any trajectory ofp.
~ a1
Up(t) = — (ZZ Xi,l)(tk) A3 wu(ty) is not correlated te, (k).

i=1 =1 F(t{7p) . . . .
v A4 Dy is informative with respect tov.
", "6 ) A5 S, is globally BIBO stable, i.e. for any trajector
bj. o 1S g y , y tra) y
+ (> F(; oy Ukd (t). (11) of p: R — P and any bounded input signal the
§=01=0 ’ output of S, is bounded [20].



IIl. REFINED INSTRUMENTAL VARIABLE FOR LPV

SYSTEMS

approximation of derivatives requires a low pass filterimg o
the input and output. The most commonly used filters for

Based on the MISO-LTI formulation (11), it becomesthis purpose are Poisson’s filters, or state-variable dilfé}.
possible in theory to achieve optimal PEM using lineaf he drawback of these filters is that they require the choice

regression [9]. This allows to extend tRefined Instrumental
Variable (RIV) approach of the LTI identification framework
to provide an efficient way of identifying CT LPV models.

A. Linear Regression for CT LPV-BJ models
Using the LTI model (6) reformulated as in (1L)(¢x)
can be written in the regression form:
y " (tk) = " (te)p + B(tk) (14)
where,
o(te) = [y D(tg) ...

oo = Xnane (tk) wo0(tk) -

—y(te) —x11(te) ..

g g (£)]

T
anama b0,0 e

P = [CLLO e bnb,ng}

O(tk) = F(d, p)e(te).

Gn,,0 G1,1 ---

The extended regressor in (14) contains the noise-freaibutp
Therefore, by momentary assuming that

terms {x:x}
{xia(te) 12y, are knowna priori, the prediction error
ep(tx) for (14) is given in terms of (10) as:
ep(ti) = (F(d,p)ye) (te) = D > aaxt(te)
i=1 =1
np, Ng

+ Z Z bj,lu;j (tx)

7=01=0

(15)

wherey (tx), u’ ,(tx) andx} ,(tx) represent the outputs of an
hybrid prefiltering operation, involving the continuouisi
filter (see [27]):

Qeldt,p) = —

F(d,p)’

(16)

Based on (15), the associated linear-in-the-parametedeimo

takes the form [27]:

" (t) = of (tn)p + B (), (17)

where
pe(te) = [~y V) ..
C = Xnyma () ugo(tr) -
U (tr) = Qe(d, p)0(t) = e(tr)-
B. The refined instrumental variable approach

Under the assumption that the CT filt€.(«,p) and
{xa,0(tr)} 123", are knowna priori, traditional parametric

—ye(tr) —xii(tk) -

uf’Lb,nﬁ (tk)]—r

estimation methods from the LTI framework could provide

efficient estimates ofp. However, in a practical situation,

Q.(4,p) is unknown and only some estimates will be

available.

Furthermore, it is important to notice here that the re-
gressors in (17) and (14) contain some time-derivativeg of

of a design variable. Therefore, it is a particular strergjth

the presented method that the estimated filt¢r , p) is not

only used for the minimisation of the prediction error but it
also provides the filtering for the approximation of the time
derivatives. In other words, the regressgrin (17) can be
well-approximated numerically whereas the regregsfiom

(14) cannot as it requires prefiltering of the data which must
be chosen by the user. In order to estimate the parameter
vector in (17) without the prior knowledge @f.(«, p), the

RIV method is chosen for the following reasons:

« RIV methods lead to optimal estimates in the LTI case
if S, € M (see [19], [26], [27]).

In a practical situation of identificatiorfj, € G might

be fulfilled due to first principle or expert's knowledge.
However, it is commonly fair to assume that the model
is not OE. In such case, RIV methods have the advan-
tage of providing consistent estimates whereas methods
such as extended LS are biased and more advanced
PEM methods need robust initialisation [12].

The RIV algorithm has been successfully used for LTI
model with similar CT structure, in the case of linear
models [16], [26] and nonlinear ones [8].

Aiming at the extension of the RIV approach for the estima-
tion of CT LPV models, consider the relationship between
the process input and output signals as in (14). Based on this
form, the extended-IV estimate is given as [26]:

pxv(N) = arg min

| X
pER™» [NZCf(tk)@?(tk)l p
k=1

1 N
- [Nchuk)y?"’(tw]

where((tx) is the instrument||z||3, = 27 Wz, with W a
positive definite weighting matrix and the filtered variable
(e, wr andy; are filtered using a stable prefilter. @, € G,
the extended-IV estimate is consistent under the following
two condition$:
Cl  E{¢(tr)g{ (tx)} is full column rank.
C2 E{Cf(tk)f)f(tk)} =0.
Moreover it has been shown in [19], [25] and [26] that the
minimum variance estimator can be achieved if:
C3 WwW=1I.
C4 (s chosen as the noise-free version of the extended
regressor in (14) and is therefore defined in the
present LPV case as:

Cltr)=|—x""V(ty) ...

< Xna,ne (tk> uO;o(tk> e

2

, (18)
w

—x(tr) —x11(tk) ..

T
Uny,,ng (tk)]

andu which, in the assumed framework considering sampled pe notation{.} = limy_.o0 L3N E{} is adopted from the
data, can only be approximated. It is well-known that therediction error framework of [10].



C5 G, € G andn, is equal to the minimal number S {Ao(:i,p) 4?2 +a$(p)d + a3(p)
of parameters required to represafy with the 1 Bo(d,p) =18 S(p)d + b3 (p)
considered model structure.

C6  The CT filter used is chosen as the filter (16). af(p) =1—0.5p, (20a)

While conditions C1, C2, C3 and C5 are quite stralghtWhere aS(p) =5+ 3p (20b)

forward to fulfill (see [19], [25]), the obtention of the salitle Bp) =2+p (20c)
instrument that fulfills C4 and of the optimal filter fulfillin 2 ’
C6 is not trivial in practical case. The RIV algorithm invels 1) =5-p (20d)

an iterative (or relaxation) algorithm in which, at eachrate 3000 samples are collected from I&sec simulation s =
tion, an ‘auxiliary model’ is used to generate the instrutabn 0,005sec). The input signat is chosen as a uniformly
variables (which guarantees C2), as well as the associatg@dtributed sequendd#(—1,1) while the scheduling variable
prefilters. This auxiliary model is based on the parametds chosen ag(t) = sin(2t).

estimates obtained at the previous iteration. Consequéitl  The following model structure in terms of (4) is considered
convergence occurs, C4 and C6 are fulfilled. Thus, the RI capture the dynamics o,:

is the most suitable method to simultaneously i) efficiently

estimate the parameter vectotin (17) in the cases, € M
and ii) consistently estimatg in the practical assumption
where the noise model is misspecified.

C. TheLPV- Rl VC Algorithm

Step 1 The usual initialisation fo€T- Rl V algorithm is
a DT model estimate issued from &8 method
or a DT- Rl V algorithm. In the LPV case how-

ever, the transformation of a DT model into a

CT model is not trivial. Consequently, the initial
estimate proposed for tHePV- Rl VC algorithm is
anLTI - Rl VC estimate ofM,, i.e. 59 is given.
Setr =0.

Compute an estimate ft;) via numerical ap-
proximation of

Alpe, d, p7)x(t) =

Step 2

B(pe, &, p 7 )ult),

where (") is estimated in the previous iteration.

Based onM ;-), deducey(t;) which is bounded
according to Assumption A5.

A(d,p) = a2 + a1(p)d + az(p)
B(d,p) =bo(p)d + b1(p)

“\

ai(p) = a0 +ai1p, (21a)

where az(p) = azp +az1p,  (21b)
bo(p) = bo,o + bo,1p, (21c)

bi(p) = b1,o + b1,1p. (21d)

As previously pointed out, the efficiency of the
LPV- Rl VC estimator can not be yet proven. Nonetheless,
in order to analyse its statistical properties on this eXamp
the model is estimated using both thEV- Rl VC algorithm
and the MATLAB LSQNONLI N method. TheL SQNONLI N
method is a nonlinear statistically optimal optimization
method but such nonlinear method is also sensitive to ini-
tialisation [11]. Therefore, in order to put this latter imed
at its best, it is initialized on the true parameters.

Monte Carlo simulation results obtained using the dif-
ferent methods are presented in Table I. The statistical

Step 3 Compute the estimated continuous-time filtgproperties of each method is evaluated using the estimated

Qc(,p\7)) =
given in (7).
Step 4 Use the CT f||teQC(

W, where F(«,p(7) is as

£,p7) as well asx(t) in

parameters mean and standard deviation. These results are
based onN,,, = 100 random realizations under ignal-
to-Noise Ratio(SNR) of 10dB with:

order to generate the estimates of the derivatives

which are needed:

Step 5 Build the filtered estimated regressoft;) and,
in terms of C4, the filtered instrumegi(ty).

Step 6 The solution of the IV optimization problem is then

PN =
lz Ge(tr)d

Zcf te)y" (1) (19)

]

SNR = 10log i, (22)
P,

where P, is the power of signak.

It can be seen from Table | that according to the theory,
the estimated parameters using thBV- Rl VC algorithm
are unbiased. Moreover, in case of correct parametrization
and on this example, théPV- Rl VC method performs
equivalently to the optimal SQNONLI N method which is
theoretically optimal but is also known to be sensitive to

Step 7 Ifp™+1 has converged or the maximum numbefhitialisation in comparison t&l V based algorithms [11].

of iterations is reached, then stop, else increase
by 1 and go to Step 2.

IV. SIMULATION EXAMPLE

Consequently, the presented algorithm constitutes the firs
direct continuous-time method aiming at minimizing the er-
ror prediction. It looks from this example that the empiliiga
accepted properties of RIV based method might apply to the

In order to show the relevance of the presented algorithrhPV case even though this cannot be yet proven. Moreover,

the following data-generating system is considered:

this method does not requires any hyperparameters from the
user for the signals time-derivative approximation.



TABLE |

MONTE CARLO SIMULATION FOR SNR = 10 DB

Method LSONONLI N LPV-RI VC
Name || True Value mean | st. dev. mean | st. dev.
a1,0 1 1.0026 | 0.0408 || 1.0040 | 0.0421
a1 -05 -0.5054 | 0.0707 || -0.5089 | 0.0745
a2,0 5 5.0017 | 0.0698 || 5.0016 | 0.0731
a2,1 3 2.9996 | 0.1278 || 2.9973 | 0.1308
bo,0 2 2.0004 | 0.0298 1.9999 | 0.0311
bo,1 1 0.9988 | 0.0550 || 0.9981 | 0.0578
b1,0 5 5.0008 | 0.1469 || 5.0021 | 0.1559
b1,1 -1 -1.0274 | 0.2670 || -1.0355| 0.2732
V. CONCLUSION [14] K. Z. @stergaard, J. Stousturp, and P. Barth. Rate bedirighear

The proposed approach provides on of the very first

direct global LPV identification method that is able to give[

consistent estimates of LPV-IO models in continuous-timgse;
and has a low computational load. The proposed algorithm
has been tested on a representative numerical simulati G
example and it has been shown that the proposed procedure
is robust to noise and can compete with the optimal nonline&g]
optimization method even in the case where the latter is
initialized knowing the true parameters. Furthermore gblas [19]
on previous work on CT-LTI systems operating in closed
loop, this methods opens the possibility for closed-loop ct?
LPV identification.
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