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ABSTRACT From electrodeless time-resolved microwave conductivity measurements, 

the efficiency of charge carrier generation, their mobility, and decay kinetics on photo-

excitation were studied in arrays of Si nanowires grown by the vapor-liquid-solid 

mechanism. A large enhancement in the magnitude of the photoconductance and charge 

carrier lifetime are found depending on the incorporation of impurities during the growth. 

They are explained by the internal electric field that builds up, due to a higher doped 

sidewalls, as revealed by detailed analysis of the nanowire morphology and chemical 

composition.  
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Thin films consisting of arrays of semiconductor nanostructures exhibit electronic, optical and 

thermal properties that derive to a large extent from the periodic arrangement of their 

nanometer scale constituents. For example, arrays of Si wires have been shown to 

successfully increase light-trapping compared to planar semiconductor thin films [i,ii], while 

providing a better geometry to collect photoexcited carriers [iii,iv]. Periodic nanoholes etched 

in thin films of silicon modify the mean free paths of phonons and greatly reduce the thermal 

conductivity of the film [v]. As a result, arrays of semiconductor nanostructures offer the 

prospect to improve the energy conversion efficiency in devices such as solar cells or Peltier 

elements.  

 Whatever the foreseen application is, the conversion efficiency partly depends on the 

transport properties of the array. Although these properties have been investigated for single 

semiconductor nanowires (NWs) [vi] their electrical conductivity may vary from one 

nanowire to another in the same array depending on slight variations in the NW morphology 

such as its diameter or its surface roughness. Key transport parameters, like the carrier 

lifetime and mobility, are still not well known and are usually assumed to be similar to their 

bulk counterparts in order to determine the conversion efficiency of the NWs [vii]. In 

addition, difficulties in establishing Ohmic electrical contacts often complicate interpretation 

of the measurements [viii,ix,x]. Therefore, new experimental tools are required to investigate 

the transport properties of semiconductor nanostructure ensembles. 

As an answer to this challenge, we show that the time-resolved microwave 

conductivity (TRMC) technique is a promising method to measure, without any electrode, the 

transient photoconductance of Si NW arrays of semiconductor nanostructures [xi]. As a 

prototypical example, we investigated the photoconductive properties of arrays of Si NWs 

grown by the vapor-liquid-solid (VLS) technique using gold as catalyst. Depending on the 

incorporation of impurities, the TRMC technique allows to measure strong differences in the 

efficiency of the charge carrier photogeneration, their mobility, and decay over time on 

photoexcitation. Such differences are rationalized from the detailed knowledge of the NW 

structural and chemical composition, obtained using transmission electron microscopy (TEM) 

and atom probe tomography (APT). They show how formation of an internal electric field due 

to differences in radial doping can be advantageously used to separate photoexcited electron 

hole pairs. 
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Si NWs were prepared by the VLS method from silane on quartz substrates using the 

chemical vapor deposition (CVD) technique. Gold nanoparticles were used as catalysts.  They 

were formed at 700°C in the CVD chamber from the deposition of a gold film with a 

thickness of 2 nm. The  growth was performed with a silane partial pressure of 1 mbar, a total 

pressure in the chamber of 10 mbar and a temperature of 430°C. N-type doped Si NWs were 

also grown with a silane flow rate of 300 sccm (standard cubic centimeters per minute), 

whereas the flow rate of phosphine diluted in H2 was 1 or 5 sccm. The morphology of the Si 

NWs was characterized by scanning (SEM) and transmission (TEM) electron microscopies. 

Their chemical composition was obtained with the atom probe tomography (APT) 

measurements, that was conducted with a laser-assisted atom probe tomography (CAMECA 

LAWATAP). In contrast to the previous method that we developed for specimen preparation 

[xii], Si NWs were directly manipulated on their substrate and welded from the top of the NW 

onto a pre-prepared W supported tip in a Cross Beam (Focused Ion Beam - Gas Injection 

System- SEM) workstation. Typically, when NWs are taken from the substrate, they break up 

in a part of the shaft that is far from both ends. The analysis of the chemical composition that 

takes place in this region over several hundreds of nm along the growth axis is thus 

representative of the chemical composition of the rest of the NWs, with the exception of the 

extremities, where the growth conditions are different. The orientation of the NWs on the tip 

can be controlled by changing the W tip vertex angle and the welding position. As The 

specimen analyzed by APT should have good mechanical properties, (Me3)MeCpPt and Pt are 

chosen as the deposition precursor and the solder for reinforcement. The APT characterization 

was performed using a UV laser as the pulse source (wavelength of 343 nm, power of 4 mW). 

The chamber pressure and specimen temperature were maintained at 2×10
-10

 mbar and 80 K 

respectively. The detection limit of the phosphorus atom is 1.2x10
18

 at.cm
-3

. 

A detailed description of the TRMC technique can be found elsewhere [xiii,xiv] . In 

brief, Si NWs grown on quartz substrates were placed in an X-band (8.4 GHz) microwave cell 

and photoexcited with a linearly polarized laser pulse from an Optical Parametric Oscillator 

pumped at 355 nm with the third harmonic of a Q-switched Nd:YAG laser (Vibrant, Opotek). 

Photogeneration of mobile charge carriers in the sample leads to an increase of the 

conductance, ΔG(t), and consequently to the enhanced absorption of microwave power by the 

sample. The time-dependent change of the conductance is obtained from the normalized 

change in reflected microwave power (ΔP(t)/P) from the cell, according to [Ref. Erreur ! 

Signet non défini.,Erreur ! Signet non défini.,xv,xvi]: 
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The dimensions of the microwave cell and the geometrical and properties of the media 

in the microwave cell determine the sensitivity factor, K (see supporting information). For 

equation 1 to be applicable P/P is kept below 510
-3 

since higher values might change the 

microwave field pattern in the cell. The absolute value of the conductance is related to the 

number of negative (electrons) and positive (holes) charge carriers and their mobilities. 

Combining the maximum change in conductance (Gmax) with the incident light leads to the 

following equation:   

0
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eJ

G





       (2) 

in which the parameter ηΣμ denotes the product of the charge carrier generation yield (η) per 

incident photon and the sum of the electron and hole mobilities (Σμ). β is the ratio between the 

broad and narrow inner dimensions of the waveguide used, e is the elementary charge, J0 is 

the laser fluence i.e. the number of incident photons per unit area per pulse. 

Figure 1 shows typical images of the Si NWs grown on quartz substrates obtained with 

SEM and TEM. A high density of Si NWs is observed. Their sidewalls are straight and 

parallel to the growth axis, as it is seen in the high resolution TEM (HRTEM)  image of Fig. 

1(b). When the growth takes place with the addition of phosphine, the overall morphology of 

the NWs does not change. For both types of NWs, the histograms of the NW diameter 

distribution reveals, in Fig. 1(d), that doping the NWs do not modify their diameter, the mean 

diameter being 65 nm for doped NWs and 66 nm for non doped NWs (the diameter is 

measured just below the Au seed particle). Finally, we note that the NWs are slightly tapered. 

From the high-angle annular dark field (HAADF) scanning transmission electron microscopy 

(STEM) image of the n-type Si NW shown in Fig. 1(c), we measured a variation of 21 nm 

between the base and the top of the NW, indicating that the lateral growth rate is about 140 

times slower than the axial growth rate. Despite this lateral deposition, the sidewalls do not 

appear defective. Indeed, HRTEM images of the Si NWs, such as the one presented in Fig. 

1(c), show that the cristallographic structure of the core is still preserved at the surface of the 

NW.  
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First, TRMC experiments were performed on non-doped and n-doped Si NWS. While 

the amplitude of the photoconductance signal was weak on photoexciting the samples through 

the quartz substrate, more than 10 times higher signals could be measured when the the NWs 

were directly photoexcited, as shown in Figure 2(a). This difference is explained as follows. 

The growth of Si NWs leads to the formation of a very thin layer of amorphous Si between 

the Si NWs, on the top of the quartz substrate. This layer contains a lot of Au impurities that 

can act as traps for the charge carriers, leading to the formation of a disordered layer with 

numerous point defects in contrast to the top part of the sample, where the Si NWs are 

crystalline, as demonstrated by the TEM images. Such variation in the structural quality 

between the top and the bottom parts of the structure grown on the quartz substrate accounts 

for the significant change in the measured amplitude of the photoconductance.  

Focussing on the photoconductance traces obtained for the top part of the samples 

only, a constant mean diameter of the Si NWs between the doped and non-doped wires (see 

Fig. 1(d)) ensures similar optical absorptions for both types of arrays [xvii]. As a result, the 

magnitude and lifetimes measured on the photoconductance traces can be compared between 

the different samples. On formation of mobile charges due to the nanosecond laser pulse, the 

TRMC signal increases during the first few nanoseconds, as shown in Fig. 2(b). Note that, 

since no electrodes are applied, the decay of the TRMC signal is solely due to recombination 

and/or trapping of charges. Clearly, n-doping leads to a substantial enhancement of Gmax. In 

addition, a longer half-lifetime of the charges (1/2 = 42 ± 2 ns) as compared to the charges 

generated in the non-doped wires (1/2 = 6.5 ± 2 ns) is found. 

Si NWs are prone to have many intraband gap surface states and dangling bonds 

[xviii,xix]. N-type doping of Si NWs is therefore expected to lead to the population of these 

surface states with electrons [xx]. Hence the outer surface of n-type doped Si NWs carries 

excess negative charge that is expected to influence the band bending at the sidewalls of the 

NW [xxi,xxii]. In order to unravel if the beneficial effects of doping on the photoconductance 

are not due to this charge trapping effect, an additional etching treatment was applied. Etching 

with HF removes the oxide layer on the surface that ultimately minimizes the defect density 

and/or dangling bonds by a factor of 50 as reported earlier [Erreur ! Signet non défini.]. As a 

consequence, the charge trapping effect at the surface of the NW is largely reduced. Note that 

the TRMC experiments were performed immediately after etching in the absence of oxygen to 

avoid re-oxidation of these wires. As shown in Figure 2(c) the magnitude of 
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photoconductance is increased by a factor of less than two after etching as compared to the 

value before etching. For the 5 sccm doped NWs a similar observation was made. Most 

strikingly, the photoconductance decays are hardly affected by the etching process, indicating 

that charge trapping by intra band-gap surface states on the Si NW sidewall has a negligible 

effect on the lifetime of the photoexcited carriers. 

In order to explain the measured recombination lifetimes between non-doped and n-

type doped Si NWs, an analysis of the NW chemical composition was performed. The 

chemical composition of the n-type doped Si NWs was investigated with the APT and 

secondary ion mass spectrometry (SIMS) techniques. Figure 3(a) shows a selected volume 

reconstruction of the core of a doped Si NW, where phosphorus impurities are clearly 

detected. The concentration of phosphorus impurities establishes at 2x10
18

 at.cm
-3

 in the 

center of the Si NWs and gradually increases towards the surface, in agreement with previous 

reports [xxiii,xxiv]. At the surface of the Si NWs, the doping level may be different since the 

incorporation rate of impurities on the NW sidewall has been previously found to be different 

when lateral growth occurs [xxv]. A comparison with the SIMS experiments performed on a 

film grown simultaneously with the NWs reveals that the film thickness is similar to the 

overgrown layer on the sidewall and that the phosphorus impurity concentration in the film 

amounts to 5x10
19

 at.cm
-3

. Therefore we expect the shell of the n-type doped Si NWs to have 

a similar concentration of phosphorus impurities, which is an order of magnitude higher than 

the one found in the core of the NWs. Such an inhomogeneous radial distribution of the 

dopants suggests a variation of the position of the Fermi level with respect to the edge of the 

bands in the radial direction.  

SEM and TEM images also show bright protrusions at the top part of the Si NWs. The 

protrusions are attributed to Au-rich clusters, because Au is known to diffuse from the seed 

particle at the end of the growth due to the reduction of the silane partial pressure, while the 

temperature is still high in the CVD chamber [xxvi,xxvii,xxviii]. As this region only extends 

over 200-300 nm below the seed particles as pointed out by the brackets in Fig. 1(a), it is 

quite small in comparison with the rest of the shaft (see Fig. 1(c)) and its contribution in the 

photoconductance can thus be neglected. From the knowledge of the chemical composition of 

the NWs, the following model arises: the radial variation of the phosphorus impurities in the 

Si NWs leads to the formation of a n-n+ core-shell junction. Therefore, the bands are not flat 

across the NW diameter and an internal electric field is built up. 
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The profile of the radial phosphorus distribution in the doped Si NWs was used to 

obtain the internal electric field in the NWs by solving the 2D Poisson equation (DESSIS -  

Release  Z.2007.03, Synopsys Co., Ltd). We consider that they are covered with a thin oxide 

layer, with the Fermi level pinned midgap at the surface of the NWs. We also presume that all 

the impurities are electrically active. Figure 4 shows the variation of the electric field across 

the diameter of a n-type doped Si NW. For comparison, the dopant concentration is also 

drawn in the inset of Fig. 4. An abrupt variation of the electrical field is found at the interface 

between the n
+
 doped shell and the n doped core. Then, there is almost no electrical field in 

the rest part of the shell, due to the high doping level in this region, whereas the electric field 

varies smoothly in the core to reach zero at the center of the NW. The existence of an internal 

electric field allows separating the photoexcited carriers. The electrons get preferentially 

trapped in the highly doped shell, whereas the holes drift towards the core. The recombination 

lifetime thus becomes longer in comparison with the non doped Si NWs, because 

recombination is hindered by the spatial separation of the carriers.  

The presence of the electric field also accounts for the negligible effect of the chemical 

composition of the NW sidewall on the charge carrier lifetime as demonstrated in the inset of 

Figure 2(c). Indeed, holes are repelled from the surface avoiding recombination with electrons 

through surface states. Such a result is confirmed by studying the product of the quantum 

yield (η) and the total mobility (Σμ) as a function of the laser fluence. Figure 5 depicts the 

variation of this product before and after etching the sidewalls of the Si NWs. While the 

maximum photoconductance increases with laser pump fluence, J0, according to Gmax  J0

, 

the product ηΣμ is proportional to J0
-1

. For the doped Si NWs the value of α amounts to 0.82 

and 0.80 before and after etching, respectively. The fact that the slopes do not change 

substantially on etching (α values are very similar) implies that recombination on fast time 

scales (< 1 ns) is not mediated by the intraband-gap surface states. This observation renders 

support to our previous conclusion that recombination takes place in the core of the NWs.  

Interestingly, for all fluences studied the n-doped Si NWs show an order of magnitude 

higher  values as compared to non-doped Si NWs. If only first order decay processes 

occur,  is constant and α = 1 [Erreur ! Signet non défini.,xxix]. If also higher order 

decay processes take place such as bimoleculer recombination, α < 1. For the non-doped Si 

NWs the slope α amounts to 0.90 and 0.91 before and after etching. The difference in slopes 

between the non doped (α = 0.90) and n-type doped Si NWs (α = 0.82) indicates that 
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recombination processes in both types of NWs are different. On assuming  to be 1, the 

minimum mobility valuefor 1 sccm NWs at the lowest incident intensity is then found to be 8 

and 16 cm
2
/Vs before and after etching, respectively. For NWs grown with a phosphine flow 

rate of 5 sccm, similar values are found. Although no discrimination can be made between the 

individual contributions from positive or negative charge carriers to the total mobility in using 

the TRMC technique, we can compare the measured AC mobility to the DC hole and electron 

mobilities in bulk crystalline silicon for similar dopant concentrations. These mobilities are 

expected to be around 100 cm
2
/Vs for electrons in the shell and 5 cm

2
/Vs for holes in the core 

[xxx,xxxi,xxxii]. The measured mobility is thus consistent with the DC hole mobility in n-

type Si bulk. Although the total mobility could be higher if the actual yield of charge carriers 

on the time scale of the TRMC experiment is less than 1, we rather suspect that the electron 

mobility in the Si NWs is small or even negligible. Indeed, due to the internal electric field, 

electrons drift to the shell. As the NWs stand predominantly in an upright position, electrons 

oscillate in the shell along the radial direction due to the high frequency electric field 

component of the microwaves. But, because of a limited shell thickness, that does not exceed 

10 nm at the base of the NWs and is smaller towards the top, electrons are likely to be 

constantly scattered at the boundaries of the shell. As a result their mobility is significantly 

lowered, suggesting that only holes contribute to the measured mobility. 

In summary, we have investigated the photoconductance of Si NWs with the 

contactless timre-resolved microwave conductance technique. The lateral overgrowth of a 

highly doped thin layer leads to the formation of core-shell NWs, where the internal electric 

field efficiently separates photoexcited electron-hole pairs. While a deep understanding of the 

photoconductive properties of the Si NWs requires their analysis with sophisticated 

complimentary characterization techniques such as TEM and APT, key parameters can be 

routinely measured using the non-invasive TRMC technique. Due to its simplicity, this 

technique can be applied to a wide range of nanostructure ensembles and offers the prospect 

to perform in-situ analyses.  
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FIGURE CAPTIONS  

FIGURE 1. (a) SEM image of high-density Si NWs grown by CVD on a quartz substrate 

with a high silane partial pressure of 1 mbar at 430°C. The brackets point to the upper area of 

two NWs that are covered with Au-rich clusters due to the decrease of the silane pressure at 

the end of the growth. (b) HRTEM image of such a Si NW that shows the straigth sidewalls 

and the absence of Au clusters. (c) HAADF-STEM image of n-type doped Si NW grown at 

high silane partial pressure, where the tapered shape is better seen by comparing the diameter 

of its top (right inset) and bottom (middle inset) ends. (d) Histograms for the distribution in 

non-doped and n-type doped Si NW diameter.   

 

FIGURE 2. (a) Photoconductance transients observed for doped Si NWs when the excitation 

is performed from the front (FS) or the back (BS) side of the sample. The photoexcitation was 

set at 420 nm using an incident intensity of 0.65
 
J/cm

2
.pulse. (b) Photoconductance 

transients observed for non-doped and n-doped Si NWs photoexcited at 420 nm using an 

incident intensity of 55×10
-9 

J/cm
2
.pulse for different flow rates of phosphine diluted in H2. 

The flow rate is expressed in units of standard cubic centimeters per minute (sccm). (c) 

Dependence of the photoconductance transients on the surface chemistry for n-doped Si NWs 

grown with 1 sccm of phosphine diluted in H2. The excitation was set at 420 nm using an 

incident intensity of 55×10
-9 

J/cm
2
.pulse. All the insets show corresponding normalized 

photoconductance transients. 

 

FIGURE 3. (a) End-on view and side view of the atomically resolved three-dimensional 

phosphorus distribution in the core of a 70 nm–diameter Si NW. Phosphorus atoms appear as 

pink dots, whereas the black matrix represents Si atoms. (b) Average phosphorus 

concentration along the radial axis starting from the middle of the NW towards the edge. 

Inset: SIMS analysis of the phosphorus concentration in the 25 nm-thick amorphous Si film 

grown on a SiO2 surface during the growth of the P-doped Si NWs. 

 

FIGURE 4. Calculated radial distribution of the electrical field in a n-type doped Si NWs 

grown, based on the  phosphorus doping profile shown in the inset.  
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FIGURE 5. µ values as a function of incident light intensity (



J
0 ) for doped and non-doped 

Si NWs at 420 nm. Left and right panel corresponds to (a) before and (b) after etching with 

HF, respectively. Solid lines are fits to data points using equation 



J
0

1
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