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We provide direct elementary proofs of several explicit expressions for Bernoulli numbers and Bernoulli polynomials. As a byproduct of our method of proof, we provide natural definitions for generalized Bernoulli numbers and polynomials of complex order.

Introduction

As Gould pointed out in his survey article [START_REF] Gould | Explicit Formulas for Bernoulli Numbers[END_REF], a well-known explicit formula for Bernoulli numbers, which dates back to Worpitzky [START_REF] Worpitzky | Studien uber die Bernoullischen und Eulerschen Zahlen[END_REF], is given by the double sum

B k = k n=0 1 n + 1 n j=0 (-1) j n j j k , k ≥ 0, (1) 
where n j is the binomial coefficient. The first few values of formula (1) are B 0 = 1 B 1 = -1/2, B 2 = 1/6, B 3 = 0, B 4 = -1/30, B 5 = 0, B 6 = 1/42, B 7 = 0, B 8 = -1/30 etc.

For the sake of convenience and to agree with our notation, the lower limits of summation in both sums in (1) will be changed so that the above sum is given by the following equivalent form Email address: lazhar.fekihahmed@enit.rnu.tn (Lazhar Fekih-Ahmed) Preprint submitted to Elsevier May 2, 2012

B k = k n=1 1 n + 1 n j=1 (-1) j n j j k , k ≥ 1. ( 2 
)
If we define the forward differences ∆ n (k) by

∆ n (k) = n j=1 (-1) j n j j k , (3) 
equation ( 2) can be rewritten as

B k = k n=1 1 n + 1 ∆ n (k), k ≥ 1. (4) 
In this note, our main result is proving the following two explicit formulas for Bernoulli numbers

B k = (-1) k+1 k n=1 1 n(n + 1) ∆ n (k), k ≥ 1, (5) 
and

B k = (-1) k+1 k+1 n=1 1 n 2 ∆ n (k + 1), k ≥ 0. ( 6 
)
While formula (1) is a well-known explicit formula and several proofs have been provided by different authors, the two formulas ( 5) and ( 6) are less-known 1 .

As a byproduct of our method of proof we provide extensions to Bernoulli polynomials. We further provide natural definitions for generalized Bernoulli numbers and polynomials of complex order.

1 Formula (5) has been given in [10, formula (37)]. The same formula is mentioned in [8, formula LXV on page 83]. Formula ( 6) is also mentioned in [8, formula LXIII on page 82]. The proofs in [START_REF] Saalschütz | Vorlesungen über die Bernoullischen zahlen, ihren zusammenhang mit den secanten-coefficienten und ihre wichtigeren anwendungen[END_REF] 

use the identity ∆ n (k) = n(∆ n (k -1) -∆ n-1 (k -1)
) and the property that odd-indexed Bernoulli numbers have zero values. In [8, page 83] the identity is written in terms of a k n as

a k n = n(a k-1 n + a k-1 n-1 ) so that ∆ n (k) = (-1) n a k n = (-1) n n!S(k, n)
, where S(k, n) are Stirling numbers of the second kind.

Fractional Derivatives

Suppose that the function ψ(t) is holomorphic and that lim t→-∞ ψ(t) = 0. According to Laurent [START_REF] Laurent | Sur le calcul des dérivées à indices quelconques[END_REF], the fractional derivative of order α ∈ C between the points -∞ and x ∈ R of the function ψ(t) is given by the contour integral 2

I α ψ(x) = Γ(1 + α) 2πi C ψ(t) (t -x) α+1 dt, ( 7 
)
where C is the Hankel contour consisting of the three parts C = C -∪C ǫ ∪ C + : a path which extends from (-∞, -ǫ), around the point x counter clockwise on a circle of center the point x and of radius ǫ and back to (-ǫ, -∞), where ǫ is an arbitrarily small positive number.

When Re(1 + α) ≥ 0, there is no ambiguity in the definition of I α ψ(x). The integrals along C -and C + cancel each other. I α ψ(x) is thus equal to the integral along C ǫ and this integral can be easily evaluated by residue calculus. In particular, when α = 0, formula [START_REF] Laurent | Sur le calcul des dérivées à indices quelconques[END_REF] is simply Cauchy's formula:

I 0 ψ(x) = ψ(x), (8) 
and when α = n is a positive integer, Laurent's contour integral I α ψ(x) gives the classical derivative of ψ(t) at the point x:

I n ψ(x) = ψ (n) (x). ( 9 
)
When Re(1+α) < 1, the portion of the integral along the circle C ǫ is zero. The integral along the remaining portions of the contour is estimated using a proper determination of the multi-valued function (t -x) -α-1 . If we choose the cut long the semi-axis (-∞, x), then (t -x) -α-1 = e -(α+1)(log(t-x)-iπ) along C -and (t -x) -α-1 = e -(α+1)(log(t-x)+iπ) along C + , where log(t -x) is purely real when t -x > 0. Moreover, t = re -iπ along C -and t = re iπ along C + , as r varies from ǫ to +∞. The integral [START_REF] Laurent | Sur le calcul des dérivées à indices quelconques[END_REF] becomes

I α ψ(x) = Γ(1 + α) 2πi (e -απi -e απi ) ∞ x ψ(-r)(r -x) -α-1 dr. (10) 
Finally, using the reflection formula of the Gamma function, we obtain 2 The derivative can of course be defined for all x ∈ C.

I α ψ(x) = 1 Γ(-α) ∞ x ψ(-r)(r -x) -α-1 dr.
(11)

Specializing to ζ(s)

For the particular case x = 0 and α = -s, the fractional derivative of order -s at zero is given by

I -s ψ(0) = Γ(1 -s) 2πi C ψ(t)t s-1 dt (12)
when Re(1 -s) ≥ 0, and by

I -s ψ(0) = 1 Γ(s) ∞ 0 ψ(-t)t s-1 dt (13)
when Re(s) > 0. Now by an appropriate choice of ψ(t), we will be able to write the Riemann zeta function as the fractional derivative of ψ(t) at 0. Indeed, let

ψ(-t) = φ(t) = d dt -t e t -1 = te -t (1 -e -t ) 2 - e -t 1 -e -t . (14) 
We have shown in [START_REF] Fekih-Ahmed | On the zeros of the Riemann Zeta function[END_REF] that the Riemann zeta function has the integral representation3 

(s -1)ζ(s) = 1 Γ(s) ∞ 0 φ(t)t s-1 dt, Re(s) > 0, ( 15 
)
and that for all s ∈ C

(s -1)ζ(s) = Γ(1 -s) 2πi C ψ(t)t s-1 dt, ( 16 
)
where C is the same Hankel contour used in equation [START_REF] Laurent | Sur le calcul des dérivées à indices quelconques[END_REF]. Comparing with equations ( 12) and ( 8), we easily obtain

I -s [ψ(t)] t=0 = (s -1)ζ(s). ( 17 
)
That is, (s -1)ζ(s) is simply the fractional derivative of order -s of the function ψ(t) at the origin. Furthermore, for an integer k ≥ 2, the derivative of order k -1 of ψ(t) at the point t = 0 is, by Laurent's definition, given by

I k-1 [ψ(t)] t=0 = ψ (k-1) (0) = Γ(k) 2πi C ψ(t)t -k dt. ( 18 
)
Having achieved this, we know also that the Bernoulli numbers are usually defined using the generating function

t e t -1 = ∞ k=0 B k k! t k , |t| < 2π. ( 19 
)
These numbers can also be defined in terms of the function ψ(t) instead, since we have

ψ(-t) = d dt -t e t -1 = ∞ k=1 -B k (k -1)! t k-1 . (20) 
Therefore,

B k = (-1) k ψ (k-1) (0) = (-1) k I k-1 [ψ(t)] t=0 = (-1) k+1 kζ(1 -k), or B k = -φ (k-1) (0) = -I k-1 [φ(-t)] t=0 = kζ(1 -k). (21) 
This last equation is the basis of all our subsequent derivations. It relates the Bernoulli numbers, the Riemann-zeta function and fractional derivatives in a single equation.

The First Explicit Formula for B k

In [START_REF] Fekih-Ahmed | On the zeros of the Riemann Zeta function[END_REF], we have also obtained a globally convergent series representation of the Riemann zeta function. It is given by the formula

(s -1)ζ(s) = ∞ n=1 S n (s) n + 1 , with (22) 
S n (s) = n-1 k=0 (-1) k n -1 k (k + 1) -s for n ≥ 2, ( 23 
)
and S 1 (s) = 1. We have also shown that when Re(s) > 0 the sum S n (s) can be rewritten as

S n (s) = 1 Γ(s) ∞ 0 (1 -e -t ) n-1 e -t t s-1 dt, (24) 
and that the function φ(t) verifies

φ(t) = ∞ n=1 (1 -e -t ) n-1 e -t n + 1 ( 25 
)
uniformly 4 for 0 < t < ∞ . Because of equation ( 24), the definition of fractional derivative (15) and uniform convergence, we may interchange summation and integration inside the integral sign 5 . Thus, we may apply the fractional derivative operator termwise to obtain

I -s [ψ(t)] t=0 = I -s [φ(-t)] t=0 = ∞ n=1 I -s [(1 -e t ) n-1 e t ] t=0 n + 1 . (27) 
Particularly, for -s = k -1 we obtain

I k-1 [φ(-t)] t=0 = ∞ n=1 I k-1 [(1 -e t ) n-1 e t ] t=0 n + 1 = ∞ n=1 1 n + 1 d k-1 dt k-1 [(1 -e t ) n-1 e t ] t=0 = ∞ n=1 1 n(n + 1) d k dt k [(1 -e t ) n ] t=0 . ( 28 
) But d k dt k [(1 -e t ) n ] t=0 = 0 if n ≥ k + 1.
Therefore, the infinite sum in (28) reduces to a finite sum 4 When Re(s) < 1, S n (s) can obviously be written as

S n (s) = Γ(1 -s) 2πi C (1 -e t ) n-1 e t t s-1 dt. ( 26 
) I k-1 [φ(-t)] t=0 = k n=1 1 n(n + 1) d k dt k [(1 -e t ) n ] t=0 = k n=1 1 n(n + 1) n j=0 (-1) j n j d k dt k [e jt ] t=0 = (-1) k k n=1 1 n(n + 1) n j=0 (-1) j n j j k = (-1) k k n=1 1 n(n + 1) ∆ n (k). ( 29 
)
The last equation combined with (21) gives the explicit formula for B k :

B k = (-1) k+1 k n=1 1 n(n + 1) ∆ n (k), k ≥ 1. (30) 5. Bernoulli Polynomials B k (1 -x)
The generalization of the series formula ( 22) for the Hurwitz zeta function ζ(s, x) defined for 0 < x ≤ 1 by

ζ(s, x) = ∞ n=1 1 (n -1 + x) s (31)
is given in [START_REF] Fekih-Ahmed | On the Hurwitz Zeta Function[END_REF] by the formula

(s -1)ζ(s, x) = ∞ n=1 S n (s, x) 1 n + 1 + x -1 n , (32) 
where S n (s, x) is the generalization of the sums S n (s):

S n (s, x) = n-1 k=0 (-1) k n -1 k (k + x) -s for n ≥ 2. ( 33 
)
There is also a corresponding integral given by

(s -1)ζ(s, x) = 1 Γ(s) ∞ 0 φ x (t)t s-1 dt, ( 34 
)
where φ x (t) is defined by

φ x (t) = te -xt (e t -1) 2 - e -(x-1)t e t -1 + (x -1)te -(x-1)t e t -1 = d dt -t e t -1 e -(x-1)t + (x -1)te -(x-1)t e t -1 = d dt -te -(x-1)t e t -1 . (35) 
The formula for Bernoulli polynomials is obtained by repeating exactly the same steps of the previous section. We will repeat these steps for the sake of clarity.

The Bernoulli polynomials are usually defined using the generating function

te xt e t -1 = ∞ nk=0 B k (x) k! t k , |t| < 2π, (36) 
or in terms of the function φ x (t) as a generating function

φ x (t) = d dt -te -(x-1)t e t -1 = ∞ k=1 -B k (1 -x) (k -1)! t k-1 . (37) 
Hence, by using the well-known identity B k (1 -x) = (-1) k B k (x), we finally obtain

(-1) k B k (x) = B k (1 -x) = -φ (k-1) x (0) = -I k-1 [φ x (-t)] t=0 . (38) 
Since, for 0 < t < ∞,

φ x (t) = ∞ n=1 1 n + 1 + x -1 n (1 -e -t ) n-1 e -xt (39) 
uniformly, we may apply the fractional derivative operator termwise to obtain

I -s [φ x (-t)] t=0 = ∞ n=1 I -s 1 n + 1 + x -1 n [(1 -e t ) n-1 e xt ] t=0 . (40) 
For -s = k -1,

I k-1 [φ x (-t)] t=0 = ∞ n=1 I k-1 1 n + 1 + x -1 n [(1 -e t ) n-1 e xt ] t=0 = ∞ n=1 1 n + 1 + x -1 n d k-1 dt k-1 [(1 -e t ) n-1 e xt ] t=0 (41) 
But

d k-1 dt k-1 [(1 -e t ) n-1 e -xt ] t=0 = 0, for n ≥ k + 1 and (1 -e t ) n-1 e xt = n-1 j=0 (-1) j n -1 k e (j+x)t ;
therefore, the infinite sum in (36) reduces to a finite sum

I k-1 [φ x (-t)] t=0 = k n=1 1 n + 1 + x -1 n n-1 j=0 (-1) j n -1 j d k-1 dt k-1 [e (j+x)t ] t=0 = (-1) k-1 k n=1 1 n + 1 + x -1 n n-1 j=0 (-1) j n -1 j (j + x) k-1 = (-1) k-1 k n=1 1 n(n + 1) + x -1 n 2 n j=1 (-1) j-1 n j j(j + x -1) k-1 = (-1) k k n=1 1 n(n + 1) + x -1 n 2 ∆ n,x (k), (42) 
where

∆ n,x (k) = n j=1 (-1) j n j j(j + x -1) k-1 . ( 43 
)
The last equation combined with (38) gives the explicit formula for B k (1x):

B k (1 -x) = (-1) k+1 k n=1 1 n(n + 1) + x -1 n 2 ∆ n,x (k), k ≥ 1.
(44)

Bernoulli Numbers and Polynomials of Complex Index s

There are many generalizations of integer-indexed Bernoulli numbers and polynomials to complex-indexed quantities. The reader may consult for example [START_REF] Butzer | Bernoulli Numberes and Polynomials of Arbitrary Complex indices[END_REF] or [START_REF] Temme | Bernoulli polynomials old and new: Generalizations and asymptotics[END_REF] and the references therein. Here, we approach the generalization using fractional derivatives.

The Bernoulli numbers and polynomials B s (x) for s complex can be defined using the fractional derivative operator of order 1 -s (i.e. replace k -1 by s -1). When Re(s) > 0 equation (13) applies. Formulas (24) and (25) yield the following natural definition when Re(s) > 0:

B s = -I s-1 [φ(-t)] t=0 = - ∞ n=1 I s-1 [(1 -e t ) n-1 e t ] t=0 n + 1 = - ∞ n=1 S n (1 -s) n + 1 = sζ(1 -s). (45) 
As for Bernoulli polynomials, their extension is obtained as follows

B s (1 -x) = -I s-1 [φ x (-t)] t=0 = - ∞ n=1 1 n + 1 + x -1 n I s-1 [(1 -e t ) n-1 e xt ] t=0 = - ∞ n=1 1 n + 1 + x -1 n I s-1 [ n-1 j=0 (-1) j n -1 k e (j+x)t ] t=0 = - ∞ n=1 S n (1 -s, x) n + 1 = sζ(1 -s, x), (46) 
Thus, from equation (46), we see that the Bernoulli polynomials extend naturally to the entire function sζ(1-s, x). This is an illustration that entire functions are natural generalization of polynomials.

But d k+1

dt k+1 [(1 -e t ) n+1 ] t=0 = 0 if n + 1 ≥ k + 2. Therefore, the infinite sum in (52) reduces to a finite sum (

) 53 
With an appropriate change of variable in the summation index, the last equation combined with (51) gives the explicit formula for B k :

B k = (-1) k+1 k+1 n=1 1 n 2 ∆ n (k + 1), k ≥ 0. ( 54 
)
The extension of the last explicit formula to Bernoulli polynomials and Bernoulli numbers of fractional index is straightforward.

  k+1 [(1 -e t ) n+1 ] t=0 1) 2 ∆ n+1 (k + 1).

The definition of φ(t) used here is different from the one in the cited paper.

This have been rigourously proved in[START_REF] Fekih-Ahmed | On the zeros of the Riemann Zeta function[END_REF].

The Second Explicit Formula for B k

In this section we will prove formula (6) using the globally convergent series representation of the Riemann zeta function discovered in [START_REF] Hasse | Ein Summierungsverfahren für die Riemannsche Reihe[END_REF]. The series is given by

S n (s) being defined in (23).

Ii is easy to show that the sum S n+1 (s) can be rewritten as

and that for Re(s) > 0,

where the function ψ(t) is given by

Using the generating function ψ(t), the Bernoulli numbers are now given by

Again, we may apply the fractional derivative operator (-s = k) termwise to obtain (52)