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Abstract

We provide direct elementary proofs of several explicit expressions for Bernoulli
numbers and Bernoulli polynomials. As a byproduct of our method of proof,
we provide natural definitions for generalized Bernoulli numbers and poly-
nomials of complex order.
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1. Introduction

As Gould pointed out in his survey article [5], a well-known explicit for-
mula for Bernoulli numbers, which dates back to Worpitzky [10], is given by
the double sum

k n
1 . (n
B, — —1) ko> 1
=Y p(2)it ez 1)

where (?) is the binomial coefficient. The first few values of formula (1) are
By=1B;=-1/2, B, =1/6, By =0, By = —1/30, Bs = 0, Bg = 1/42,
B7 = O, Bg = —]_/30 etc.

For the sake of convenience and to agree with our notation, the lower
limits of summation in both sums in (1) will be changed so that the above
sum is given by the following equivalent form
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j=1

equation (2) can be rewritten as

k
-
In this note, our main result is proving the following two explicit formulas
for Bernoulli numbers

) k> 1. (4)

k
1)+t A (k) k>1 5
Y k2 @
and
k1
By, = (—1)*! Z ﬁAn(k +1),k>0. (6)
n=1

While formula (1) is a well-known explicit formula and several proofs
have been provided by different authors, the two formulas (5) and (6) are
less-known!.

As a byproduct of our method of proof we provide extensions to Bernoulli
polynomials. We further provide natural definitions for generalized Bernoulli

numbers and polynomials of complex order.

Formula (5) has been given in [10, formula (37)]. The same formula is mentioned in [8,
formula LXV on page 83]. Formula (6) is also mentioned in [8, formula LXIIT on page 82].
The proofs in [8] use the identity A, (k) = n(A,(k —1) — A,—1(k — 1)) and the property
that odd-lndexed Bernoulli numbers have zero values. In [8, page 83] the identity is written
in terms of a® as a® = n(ak~1 +af71) so that A, (k) = (=1)"a* = (=1)"n!S(k,n), where
S(k,n) are Stlrhng numbers of the second kind.



2. Fractional Derivatives

Suppose that the function () is holomorphic and that lim;_, ., 1(¢t) = 0.
According to Laurent [7], the fractional derivative of order o € C between the
points —oco and x € R of the function ¢(t) is given by the contour integral®

o 1+ a) ¥(t)
i) = 2mi /C (t —x)ott at, 0

where C is the Hankel contour consisting of the three parts C' = C_UC. U
C': a path which extends from (—oo, —¢), around the point x counter clock-
wise on a circle of center the point = and of radius € and back to (—e, —00),
where € is an arbitrarily small positive number.

When Re(1 4+ «) > 0, there is no ambiguity in the definition of % ().
The integrals along C_ and C, cancel each other. %) (x) is thus equal to
the integral along C,. and this integral can be easily evaluated by residue
calculus. In particular, when o = 0, formula (7) is simply Cauchy’s formula:

I"Y(x) = ¢(2), (8)
and when o = n is a positive integer, Laurent’s contour integral I*(z)
gives the classical derivative of ¥ (¢) at the point x:

"y (x) = p(x). (9)
When Re(1+4a) < 1, the portion of the integral along the circle C. is zero.
The integral along the remaining portions of the contour is estimated using a
proper determination of the multi-valued function (¢ — x)~*"!. If we choose
the cut long the semi-axis (—oo,z), then (t — x)7@"! = e~ (atlog(t—a)=im)
along C_ and (t — 2)7271 = e~(e+Dloelt=2)+im) along O, where log(t — z) is
purely real when t —x > 0. Moreover, t = re~" along C_ and t = re'™ along
(', as r varies from € to +oo. The integral (7) becomes

rot) = e - o) [T yen et (o)
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Finally, using the reflection formula of the Gamma function, we obtain

2The derivative can of course be defined for all z € C.



() = F /oo W(=r)(r — 2)~" dr. (11)

3. Specializing to {(s)

For the particular case x = 0 and o = —s, the fractional derivative of
order —s at zero is given by

[(0) = ”;77;5) /C D) dt (12)

when Re(1 — s) > 0, and by

I=(0) = ﬁ /0 Tttt (13)

when Re(s) > 0.
Now by an appropriate choice of ¥(t), we will be able to write the Rie-
mann zeta function as the fractional derivative of ¢(¢) at 0. Indeed, let

—t

o= A - e

We have shown in [3] that the Riemann zeta function has the integral
representation®

(s —1)C(s) = 1"(15) /OOO o(t)t*~t dt, Re(s) > 0, (15)
and that for all s € C
(5= 6 = 5 [wor-ar (16)

where C is the same Hankel contour used in equation (7). Comparing
with equations (12) and (8), we easily obtain

()] mg = (s = 1)C(s). (17)

3The definition of ¢(t) used here is different from the one in the cited paper.



That is, (s — 1)((s) is simply the fractional derivative of order —s of the
function 1 (t) at the origin. Furthermore, for an integer k& > 2, the derivative
of order k — 1 of ¥(t) at the point ¢ = 0 is, by Laurent’s definition, given by

I ()] g =0 70(0) = 5 / Y(t)t " dt. (18)

Having achieved this, we know also that the Bernoulli numbers are usually
defined using the generating function

t >, By
= > ﬁtk, It| < 2m. (19)
k=0

These numbers can also be defined in terms of the function v (t) instead,
since we have

)= 20

k=1

Therefore,

B, = (=1)M"0(0) = (=) I ()] = (=) TRC(L = k), or
By = —¢"D(0) = —I*'o(—t)],p = k(1 — k). (21)
This last equation is the basis of all our subsequent derivations. It relates

the Bernoulli numbers, the Riemann-zeta function and fractional derivatives
in a single equation.

4. The First Explicit Formula for By

In [3], we have also obtained a globally convergent series representation
of the Riemann zeta function. It is given by the formula

(s —1)¢ Z - + 1 with (22)
n—1 -1 B}
Sn(s) = ko(—l) ( k )(k +1)7° for n > 2, (23)



and S;(s) = 1. We have also shown that when Re(s) > 0 the sum S,(s)
can be rewritten as
1 oo
Sn(s) = —/ (1 —e Hrtett=tat, (24)
I'(s) Jo

and that the function ¢(t) verifies

o 1 . e—t n— 1e—t
Z (25)
n=1 n+ 1

uniformly* for 0 < ¢ < oo .

Because of equation (24), the definition of fractional derivative (15) and
uniform convergence, we may interchange summation and integration inside
the integral sign®. Thus, we may apply the fractional derivative operator
termwise to obtain

()], =177 - Z 1

n=1

Particularly, for —s = k — 1 we obtain

[kfl[(b(_t)]tzo _ Z 1" [(1 — et>n_ et]t:O

- n+1
. 1 g+t .
= Z n—ﬂm[(l — )" et
- 1 t\n
= Znn+1 PG (1 )" imo- (28)
=1

But 4 “1(1 = €"",_, = 0 if n > k 4 1. Therefore, the infinite sum in (28)
reduces to a finite sum

“When Re(s) < 1, S,,(s) can obviously be written as

Si(s) = F(;;, 2) /6(1—6 Jr=letys=1 gy (26)

>This have been rigourously proved in [3].
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o)),y = ZTH_

1

n +

k n

i 1 (Y
SRR Ve (j)j
k

ZmAn(k). (29)

The last equation combined with (21) gives the explicit formula for By:

k
By, = (—1)*! 2K, k> 1. 30
: ZMH (k) k= (30)

n=1

5. Bernoulli Polynomials By(1 — x)

The generalization of the series formula (22) for the Hurwitz zeta function
((s,z) defined for 0 <z <1 by

C(s,m) =) m (31)

n=1

is given in [4] by the formula

(s — 1)C(s,2) = iSn(s,x)( 1L o= 1), (32)

n—+1 n

where S,,(s, z) is the generalization of the sums S, (s):

n—1
-1
S(s,2) = ;(—1)k(” . )(k + ) forn > 2. (33)
There is also a corresponding integral given by

(s — 1)¢( )" dt, (34)




where ¢, (t) is defined by

(b <t> _ te—wt B e—(x—l)t N (SL’ _ 1)t€—(x—1)t
* (et —1)2 et —1 et —1
d < —t ) R (x — 1)te~ @Dt
= — e
dt \et — 1 et —1
d ;—te @Dt
= —(——). 35
dt( et —1 ) (35)

The formula for Bernoulli polynomials is obtained by repeating exactly
the same steps of the previous section. We will repeat these steps for the
sake of clarity.

The Bernoulli polynomials are usually defined using the generating func-
tion

t* |t < 2m, (36)

te” =, Byi(x)
é—l_g; k!

or in terms of the function ¢,(t) as a generating function

(e o]

d (—te~ @Dt —Br(1—2) ,
L) = (T D) N R T ke 37
6ul) = (1) ; (k1) (37)
Hence, by using the well-known identity Bip(1 — x) = (=1)*By(x), we
finally obtain

(=1 Bi(w) = Bi(l —x) = =o' (0) = ="Moo (1) (38)

Since, for 0 < t < oo,

C 1 z—1 —t\n—1_—uxt

ut) = (g + =) (1) e (39)

vt n+1 n

uniformly, we may apply the fractional derivative operator termwise to
obtain

Py = Y1 (s + )= e e (10)




For —s =k — 1,

Pty = ST (o ) e

n+1 n
=/ 1 ax—1yd! .
- Z (n +1 = )dtk—l (1 =€) ey (41)
n=1
But
dkfl
1 [(1— Gt)n_le_m]tzo =0, forn>k+1 and
n—1
. —1 .

1 — t\n—1 xt — —1)7 n (j+ax)t.
Y P e

therefore, the infinite sum in (36) reduces to a finite sum

P o]y = Z (i) j::<—1>j (") e
- <—1>’“-1n§k; (o =) ji;(—l)ﬂ—l (")t +a -1+
- <—1>’fi(n<n1+1) L) A, (12)

where

The last equation combined with (38) gives the explicit formula for By (1—

x):



Bu(l—2) = 12( TEy xn_21>An7m(k),k21. (44)

n=1

6. Bernoulli Numbers and Polynomials of Complex Index s

There are many generalizations of integer-indexed Bernoulli numbers and
polynomials to complex-indexed quantities. The reader may consult for ex-
ample [1] or [9] and the references therein. Here, we approach the general-
ization using fractional derivatives.

The Bernoulli numbers and polynomials Bg(x) for s complex can be de-
fined using the fractional derivative operator of order 1 —s (i.e. replace k—1
by s — 1). When Re(s) > 0 equation (13) applies. Formulas (24) and (25)
yield the following natural definition when Re(s) > 0:

Bs — _[S_l[(b(_t)]tzo _ Z I35 [(1 — et)n— et]t:o

— n+1
B 2 Sn(1 —s)
N _nz:; n+1
= sC(1—s). (45)

As for Bernoulli polynomials, their extension is obtained as follows

B(1—1x) = _1-571[(251(_]5)]2&:0 = - Z ( 1)18 1[<1 et)nilemt]tzo
: —iulﬂ;w—lf?—w(”” e
_ i Sn(1—s,2)
— n+1
= s¢(1—s,x), (46)

Thus, from equation (46), we see that the Bernoulli polynomials extend
naturally to the entire function s{(1—s, ). This is an illustration that entire
functions are natural generalization of polynomials.

10



7. The Second Explicit Formula for By

In this section we will prove formula (6) using the globally convergent
series representation of the Riemann zeta function discovered in [6]. The
series is given by

sCs+1) =Y Sﬁ(f), (47)

Sn(s) being defined in (23).

li is easy to show that the sum S,1(s) can be rewritten as

Snt1(s) = ﬁ /000(1 — e Hre 't dt, (48)
and that for Re(s) > 0,
sC(s+1) = ﬁ/o Yt dt, (49)

where the function v (t) is given by

n(t) = t :Zm' (50)

Using the generating function 1 (t), the Bernoulli numbers are now given
by
By, = 1™(0) = —I*[n(=1)] - (51)

Again, we may apply the fractional derivative operator (—s = k) termwise
to obtain

(= e)rel]

L

n=0
= 1 d .
= Z n—ﬂﬁ[(l —e)e'l,
n=0
=~ 1 d! el
= > 1) dii i [(1— )" (52)
n=0

11



dk+1

But S5 [(1—€")"*1,_, = 0if n+1 > k+ 2. Therefore, the infinite sum
in (52) reduces to a finite sum

1 dk—i—l
(n + 1) dtk+!

E

I [n(—t)]t:o =

[(1— et)n+1]t:0

1 G o+ 1\ dFt
- S ey (T e
SYPEwIE T

i=0 J

3
=l

3

_ (_1)k+1§ 0 i ™ g(—l)j (n ;ir 1)jk+1

LA ik +1). (53)

= () (n+12°"

n—=

o

With an appropriate change of variable in the summation index, the last
equation combined with (51) gives the explicit formula for By:

k41
1
_ k+1
By =(-1) Zl —An(k+1),k>0. (54)
The extension of the last explicit formula to Bernoulli polynomials and
Bernoulli numbers of fractional index is straightforward.
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