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Abstract. We consider a so-called random obstacle model for the mo-
tion of a hypersurface through a field of random obstacles, driven by
a constant driving field. The resulting semi-linear parabolic PDE with
random coefficients does not admit a global nonnegative stationary so-
lution, which implies that an interface that was flat originally cannot
get stationary. The absence of global stationary solutions is shown by
proving lower bounds on the growth of stationary solutions on large do-
mains with Dirichlet boundary conditions. Difficulties arise because the
random lower order part of the equation cannot be bounded uniformly.

1. Introduction

We are interested in the behavior of a moving interface Γ in a random
medium, where Γ is a graph, i.e. defined as

(1) Γ(t) := {(x, y) ∈ R
2 : y = u(x, t)}

and the function u evolves according to the following equation:

∂u

∂t
= uxx(x, t) + f(x, u(x, t)) + F in R×R

+,(2)

u(x, 0) = 0(3)
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where f ∈ C1(R2 × Ω) is a random field representing the random medium
and will be defined more precisely later on. Note that f is not restricted to
be either positive or negative. F is a positive constant called ”driving field.”
The objective is to prove that the solution of (2)-(3) does not get pinned,
i.e. does not converge to a nonnegative stationary solution if F is above
a critical value Fc. To this end, we will show that nonnegative stationary
solutions on bounded intervals [−N,N ] with Dirichlet boundary conditions
get large with high probability as N → ∞.

The main contribution of this paper is to show that a finite F is sufficient
to keep the graph moving, even if it will have to pass through regions where
f(x, u, ω) ≪ −1, provided the probability of finding such a region is small.
As f can become arbitrarily big, one cannot find a deterministic subsolution
that keeps moving, and instead probabilistic arguments are needed.

The interest in the model stems from the theoretical analysis of the ef-
fective behavior on large scales of models for interface evolution specified
at a microscopic scale, which is at the heart of many problems in physics
and material science. Of particular interest is the influence of material het-
erogeneities, which are generally assumed to be random. Mathematically,
this leads to studying the limit of evolution equations with rapidly varying
random coefficients. In the case of dissipative equations, on which we fo-
cus here, the randomness leads to new and interesting effects absent in the
case of periodic coefficients, e.g. pinning and de-pinning for obstacles with
a strength that cannot be bounded uniformly. If the strong obstacles are
sufficiently rare, than the interaction through the Laplacian helps the graph
overcome them although the total forcing f(x, u)+F remains negative near
the obstacle.

One example we have in mind as motivation are driven elastic systems,
for a review of the research in physics and its possible applications we refer
to [1]. For a survey of front evolutions in random media, with evolution laws
different from the ones considered here, see e.g. the recent monograph [8].

The model (2) is obviously a gradient flow for a random energy. In fact,
it approximates a more geometric interface evolution law:

In fact, if the hypersurface Σ is the boundary of the set AΣ then we can
define for any bounded D ⊆ R

2 the energy

F (Σ|D) := H1(Σ ∩D) +

∫

D∩AΣ

f(X,ω)dX

where X ∈ R
2 and H1 denotes the 1-dimensional Hausdorff measure.

Requiring that the first variation of that functional (with respect to inner
variations, i.e. deforming the interface with the flow of a smooth vector field)
is proportional to the normal velocity of the interface leads to forced mean
curvature flow,

V = κ+ f(X),
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where κ denotes the mean curvature of the interface (trace of the second
fundamental form) and the scalar V is the velocity of the interface in the di-
rection of the inner normal. This geometric evolution law leads to nonlinear
degenerate parabolic equations, hence questions concerning the large-scale
behaviour of solutions are related to homogenising such equations with pe-
riodic or random coefficients. This is an active field of research (see e.g. [2],
[6]) but many difficult problems remain open. Here we consider a modified
evolution law:

If we suppose that the interface is a graph is “flat” (no overhangs, small
gradients) then we can consider a semi-linear equation as in (2) as heuristic
approximation of the evolution by forced mean curvature flow.

This model, here called random obstacle model (ROM) because of the
precise nature of the random nonlinearity f(x, u, ω) used in this paper, is
a special case of a class of equations sometimes called quenched Edwards-
Wilkinson model which, for some choices of the random nonlinearity, is used
in physics as a model for overdamped interface evolution in a random envi-
ronment when “overhangs” can be neglected. For further comments on phys-
ical properties and justifications of the model we refer to [1]. In particular,
one expects that solutions move with a deterministic effective (large-scale)
velocity for F larger than a critical forcing F∗. For F slightly larger than F∗,
the relation between the effective velocity and F − F∗ is expected to be a
power law. (See also [4] for the periodic case.).

While there are important differences between the forced mean curvature
flow and the semi-linear model (e.g. forced mean curvature flow can ”wrap
around” strong obstacles), we expect that the techniques we will develop
when studying (2) will prove helpful in investigating more general models
for interface evolution. This strategy was successful in the periodic case,
where first the semi-linear case was solved ([4]) and then the results could
be extended to graphs evolving by forced mean curvature flow ([3]).

One more reason why such models are of mathematical interest is the
relation with ”singular” homogenization problems, i.e. problems where the
ǫ-equation is of second order (possibly degenerate) and the homogenized
equation of first order. Note that the effective velocity c(η) of an interface
evolving with average slope η can be found by considering

∂u

∂t
= uxx(x, t) + f(x, η · x+ u(x, t)) + F,

i.e. this can be seen as the “cell problem” for

∂v(y, τ, ω)

∂τ
= ǫvyy(y, τ, ω) + f(ǫ−1y, ǫ−1v(y, τ, ω), ω) + F

with τ = ǫ−1t, y = ǫ−1x.
The paper is organised as follows. In Section 2 we define the random

obstacle model precisely and state our main results.
In Section 3, we introduce an auxiliary model which is more suitable for

explicit estimates and whose solutions can be related to solutions of the
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original equation (2) by the comparison principle for parabolic equation.
This auxiliary problem has the property that any of its stationary solutions
u solve uxx = −F away from the obstacles and is a convex function on the
obstacles. This fact allows us to define a discretization, using that each
solution is determined by its values when entering and leaving an obstacle.
This yields a discretised path v̄δ : Z → δZ characterizing each stationary
solution.

In section 4, we estimate the discrete Laplacian of v̄δ(i) against the ob-
stacles that sit above and below i ∈ Z and are approached by the path,
i.e. ∆dv̄(i) + F̄ ≤ Cℓi,[v̄δ(i)[(ω) where F̄ is a constant which can be chosen
arbitrarily large. A technical problem is posed by the fact that the path may
pass more than one obstacle above the same integer.

In section 5 we estimate the probability of a discrete path being ”com-
patible” with the random environment. This probability can be estimated
against an auxiliary random measure on paths:

P

({
ω : u(ω) compatible with v̄δ(i)

})
≤ C2N

P

(
{∆dv̄

δ(i)}N−1
i=−N+1

)
,

P

(
{∆dv̄

δ(i)}N−1
i=−N+1

)
:= Z−1e−λ

∑N−1
i=−N+1 |∆dv̄

δ(i)+F̄ |,

where Z is a normalization (corresponding to the partition function in sta-
tistical mechanics).

In section 6 we conclude that the probability of a nonnegative solution of
the Dirichlet problem to cross KN −K|x| is O(e−CN ). The key observation

is that for such a path N−1
∑N−1

i=−N+1

(
∆dv̄

δ(i) + F̄
)
must be large, which is

very unlikely under the auxiliary (product) probability measure.
Finally, we show by invoking the comparison principle for semi-linear par-

abolic equations that these results for large N imply non-existence of global
nonnegative stationary solutions. This implies that for a solution u of (2),
(3) and all x ∈ R it holds that limt→∞ u(t, x, ω) = +∞ almost surely in ω,
i.e. the interface cannot be stopped by the obstacles.

Acknowledgements The second named author would like to thank Enza
Orlandi and Michael Scheutzow for helpful discussions. The authors ac-
knowledge gratefully the hospitality of the Max Planck Institute for Math-
ematics in the Sciences Leipzig.

2. Results and Definitions

2.1. The random field f . Here, the field f is negative on ”obstacles” in R
2

which are random in strength, but positioned on a lattice. More precisely,
we make the following assumption:

Definition 2.1 (Obstacles).

(1) Let Z
∗ := Z + 1/2. We assume that the obstacles lie on a lattice

L := Z× Z
∗ where for convenience (bij)i∈Z,j∈Z∗

denotes the nodes of

this lattice, i.e bi,j := (i, j).
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1

1 − 2δ

Figure 1. The obstacles

(2) Let δ ≪ 1/2 and defineQδ(0, 0) := [−δ, δ]2, andQδ(i, j) := Qδ(0, 0)+
bi,j . Then the obstacles, i.e. regions where f < 0 is possible, are given
by the Qδ(i, j), see also Figure 1

In order to obtain existence and regularity of the solutions, the nonlinear-
ity f(x, y) should be sufficiently regular, hence in order to define f we have
to smooth out the obstacles.

Definition 2.2 (Random field). Let φ ∈ C∞
c be a nonnegative function such

that its support is contained in cube Qδ(0, 0).
Let (l(i, j)(ω))(i,j)∈Z×Z∗ be a family of independent identically distributed

exponential random variables, i.e. there exists λ0 > 0 such that for r ≥ 0

P{l(i, j)(ω) > r} = e−λ0r.

Let Σ be the set of the obstacles, i.e. Σ :=
⋃

(i,j)∈Z×Z∗

(
Qδ(bi,j)

)
, then

the field f is defined the following way:

f(x, s) = g(x, s)−
∑

(i,j)∈Z×Z∗

l(i, j)φ((x, s) − bi,j)
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where g is a non-negative function chosen so that the field has mean zero in
a suitable sense:

g ≥ 0 in R
2

lim
L→∞

(2L)2
∫

[−L,L]2
f(x, s) dxds = 0

Remark 1. (1) As E(l(i, j)) = 1
λ , the law of large numbers implies that

a possible choice of g is

g(x, s) =
∑

(i,j)∈Z×Z∗

1

λ
φ((x, s)− bi,j).

(2) The results on non-existence of nonnegative stationary solutions hold
for any i.i.d. random variables l(i, j) such that there exists λ0 > 0
with

P{l(i, j)(ω) > r} ≤ e−λ0r.

(3) As we are only interested in the combined effect of f(x, s) and the
constant forcing F, the mean zero property of the random nonlinear-
ity is just a normalisation.

(4) In our analysis, the shape of the obstacles (supp(φ)) plays no role
and the results will stand as well if we consider a random field like
e.g.

f = g(x, s) −
∑

(i,j)∈Z×Z∗

l(i, j)φi,j((x, s))

where φi,j are smooth functions uniformly bounded and such that
supp(φi,j) ⊂ Qδ(bi,j) .

2.2. Results: We consider the stationary version of (2) with Dirichlet
boundary conditions:

uxx + f(x, u, ω) + F = 0 in [−N + δ,N − δ](4)

u(−N + δ) = u(N − δ) = 0(5)

Theorem 2.3. Let u(ω) solve (4, 5). Then there exist F0 > 0, C and K
such that for F > F0 and N sufficiently large

P ({ω|u(x, ω) ≥ (K(N − 1)−K|x|)+ on [−N + δ,N − δ]}) ≥ 1− Ce−
N
C ,

where a+ denotes the positive part of a real number a.

Corollary 1. Let F > F0, with F0 as in Theorem 2.3.

(1) There is almost surely no global nonnegative stationary solution of
(2).

(2) Let u solve (2), (3). Then

lim
t→∞

u(t, x, ω) = +∞ for all x ∈ R

holds with probability one.
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3. Blocked path and auxiliary problem

In this section we define a auxiliary problem that we will constantly use
along this paper. We will denote by χB the characteristic function of the set
B.

Definition 3.1 (Auxiliary field). Let

A := R
2 \ {

⋃

i∈Z

(i− δ, i + δ)× R}

Aǫ := R
2 \ {

⋃

i∈Z

(i− δ − ǫ, i+ δ + ǫ)× R}

and define

f̃(x, s) := −
∑

(i,j)∈Z∗×Z∗

l(i, j)φ((x, s) − bi,j).

Let us now consider the following auxiliary problem

∂v

∂t
= vxx + f̃(x, v(t, x)) + Fχǫ

A(x)(6)

v(0, x) = 0,(7)

where χǫ
A is a smooth function such that χAǫ ≤ χǫ

A ≤ χA. ǫ is a small
parameter which will be fix later on.

To visualize the new random field defined by g̃ = f̃ + Fχǫ
A(x) see figure

2. Note that it is differentiable in x and s.
Observe that, as the obstacles are negative, f̃ + Fχǫ

A ≤ f + F. Therefore
the comparison principle for the parabolic equation (see section 3.1) implies
that solutions of the auxiliary problem remain below solutions of the orig-
inal problem. Hence existence of a nonnegative stationary solution for the
original problem implies existence of one for the auxiliary problem. By con-
traposition, nonexistence for the auxiliary problem implies nonexistence for
the original problem.

Stationary sub/supersolutions can be constructed as piecewise quadratic
functions. For any F we can construct the graph of such a solution (also
called ”paths” to emphasize the analogy with a stochastic process).

Definition 3.2 (blocked path). A graph (x, v(x)) is called blocked path if
and only if v ∈ C1

loc(R), and

vxx = −Fχǫ
A(x) in (i+ δ, i + 1− δ),(8)

vxx =
∑

j∈Z∗

l(i, j)(ω)φi,j(x, v(x)) in (i− δ, i + δ).(9)

where φi,j(x, s) := φ((x, s)− bi,j).

Observe that the path for x ∈ (i+ δ, i+ 1− δ) is uniquely determined by
the boundary values v(i+δ) and v(i+1−δ), because it solves a linear elliptic
equation there. But note that, for a given realisation of the random field,
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1 − 2δ

Figure 2. Mapping of the obstacles for the auxiliary problem

there may be more than one blocked path, as equations like uxx = f(x, u)
do not have unique solutions without further conditions on the nonlinearity.

Remark 2. ¿From Definition 3.2, we see that v is a convex function in
(i− δ, i + δ) and hence we have

v(i+ δ) ≥ v(i− δ) + 2δv′(i− δ)

Let us now define some discrete quantities that we will use throughout
the paper.

Definition 3.3. Let v̂(i) and v̄δ[i] be defined as follows:

v̂(i) := v(i− δ) + 2δvx(i− δ),

v̄δ[i] := δ

[
δ−1v̂(i)−

1

2

]
= inf{j ∈ δZ | j ≥ v̂(i)−

δ

2
} ∈ δZ.

We will need the following Lemma.

Lemma 3.4. Let v be as in Definition 3.2 and v̂, v̄δ be in Definition 3.3.
Denote by w̄δ the piecewise linear interpolation of v̄δ , and by w the piecewise
linear interpolation of v̂. Then v + δ/2 ≥ w̄δ , and v ≥ w.
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Proof. First, note that convexity of v in [i−δ, i+δ] implies that v̂(i) ≤ v(i+δ).
Let

Ii := (i− 1 + δ, i+ δ)

and let the auxiliary function ŵ be the solution of

∆ŵ = −F1[i−1+δ,i−δ] on Ii

ŵ(i− 1 + δ) = v(i− 1 + δ), ŵ(i+ δ) = v̂(i).

This function is C1 on its domain and solves the ODE ŵxx = −F on (i−1+
δ, i− δ). (Here x is considered as ”time”). Suppose ŵ(i− δ) > v(i− δ). Then
ŵx(i − δ) < vx(i − δ), and integrating the ODE backwards in x we obtain
ŵ(i− 1+ δ) > v(i− 1+ δ), a contradiction. Assuming ŵ(i− δ) < v(i− δ) we
obtain a contradiction in a similar way, and we conclude ŵ(i− δ) = v(i− δ).
This implies ŵ = v on [i− 1+ δ, i− δ] and (by convexity of v on [i− δ, i+ δ])
ŵ ≤ v on [i− 1 + δ, i − δ].

Now consider

∆w = 0 on Ii

w(i − 1 + δ) = v̂(i− 1), w(i+ δ) = v̂(i)

Clearly w is the piecewise linear interpolation of v̂.
As ∆ŵ ≤ ∆w and w ≤ ŵ on ∂Ii, the comparison principle for the Laplace

operator implies ŵ ≥ w, so v ≥ ŵ ≥ w. The conclusion for w̄δ follows
immediately.

�

3.1. Existence and uniqueness for parabolic equations.

Lemma 3.5. There exists a global classical solution of the parabolic Cauchy
problems (2), and (6) with initial conditions which are uniformly bounded
and locally C2. The solutions are unique. If 0 ≤ v0 ≤ u0, v solves (6) with
initial condition v0, u solves (2) with initial condition u0, then v ≤ u.

Proof: For M ∈ N, replace l(i, j)(ω) by lM (i, j) := M ∧ l(i, j), where ∧

denotes the operation a ∧ b := inf{a, b}.The corresponding fields fM , f̃M

are uniformly bounded and uniformly Lipschitz in s. Therefore we can apply
the Banach fixed point theorem in L∞ in order to obtain a local in time
solution, which, by local parabolic regularity, is classical. It can be extended
as the nonlinearity is uniformly bounded. Hence a global solution uM (x, t)
exists. Note that by the comparison principle uM is a positive monotonic
non-increasing function of M i.e. uM > uN > 0 for N > M , so u(x, t) :=
limM→∞ uM (x, t) exists. Applying regularity locally, (where the obstacles
are bounded) we obtain that the limit is a classical solution.

4. a priori estimates on v̂(i) and v̄δ[i]

In this section, we establish some a-priori estimates on v̂(i) and v̄δ[i].
First we show a lemma which allows to estimate the discrete Laplacian of

v̂ at i (which involves i, i+ 1 and i− 1) by something that depends only on
the obstacles above i.
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Lemma 4.1. Let v̂(i) defined as in the previous section, and define the
discrete Laplacian as

∆dv̂(i) := v̂(i+ 1)− 2v̂(i) + v̂(i− 1) =
(
v̂(i+ 1)− v̂(i)

)
−
(
v̂(i)− v̂(i− 1)

)

Then

−2δ[vx(i−1+δ)−vx(i−1−δ)] ≤ ∆dv̂(i)+ F̂ ≤ (1+2δ)[vx(i+δ)−vx(i−δ)].

where F (1− 2(δ + ǫ)) ≤ F̂ ≤ (1− 2δ)F for the ǫ > 0 in Def. 3.1.

Note that our discretization, using the tangents, implies that the discrete
Laplacian does not necessarily satisfy the same lower bound as the Laplacian
of the original path.

Proof:

Step One : Upper Bound

As a preparation, let us recall some formulas satisfied by v.
Since v satisfies (8), we have for all i ∈ Z

vx(i+ 1− δ)− vx(i+ δ) = −F

∫ i+1−δ

i+δ
χǫ
A(x)dx

(10)

v(i+ 1− δ) − v(i+ δ) = (1− 2δ)vx(i+ δ)− F

∫ i+1−δ

i+δ

(∫ s

i+δ
χǫ
A(x)dx

)
ds

(11)

Let us define

F̂ := F

∫ i+1−δ

i+δ
χǫ
A(x)dx.

Observe that since χǫ
A(x+ p) = χǫ

A(x) for all integer p, F̂ is independant of
i ∈ Z. Moreover

F (1− 2(δ + ǫ)) ≤ F̂ ≤ (1− 2δ)F

since χAǫ(x) ≤ χǫ
A(x) ≤ χA(x).

Using now (10), the definition of v̂(i+ 1) and (11) we see that

v̂(i+ 1) = v(i+ δ) + vx(i+ δ)− F

∫ i+1−δ

i+δ

(∫ s

i+δ
χǫ
A(x)dx

)
ds+ 2δ(vx(i+ 1δ)− vx(i+ δ))

= v(i+ δ) + vx(i+ δ)− F

∫ i+1−δ

i+δ

(∫ s

i+δ
χǫ
A(x)dx

)
ds− 2δF̂ .

Therefore,
(12)

v̂(i+1)−v̂(i) = v(i+δ)+vx(i+δ)−F

∫ i+1−δ

i+δ

(∫ s

i+δ
χǫ
A(x)dx

)
ds−2δF̂−v̂(i).

Observe that since χǫ
A(x+ p) = χǫ

A(x) for all integer p we have

F

∫ i+1−δ

i+δ

(∫ s

i+δ
χǫ
A(x)dx

)
ds+2δF̂ = F

∫ i−δ

i−1+δ

(∫ s

i−1+δ
χǫ
A(x)dx

)
ds+2δF̂ .
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Hence, from the definition of the discrete laplacian and using (12) it follows
that

(13) ∆dv̂(i) = v(i+δ)+vx(i+δ)− v̂(i)−v(i−1+δ)−vx(i−1+δ)+ v̂(i−1)

Using now the definition of v̂(i) and the convexity of v in (i− δ, i+ δ) for
all i ∈ Z we see that

v(i+ δ) + vx(i+ δ) − v̂(i) ≤ vx(i+ δ) + 2δ(vx(i+ δ)− vx(i− δ))

− v(i− 1 + δ) + v̂(i− 1) ≤ 0.

Hence,

∆dv̂(i) ≤ (1 + 2δ)vx(i+ δ)− 2δvx(i− δ) − vx(i− 1 + δ).

Using now (10) it follows that

∆dv̂(i) ≤ (1 + 2δ)(vx(i+ δ)− vx(i− δ)) − F̂ .

Step two: Lower bound

From formula (13) we have

(14) ∆dv̂(i) = v(i+δ)− v̂(i)+vx(i+δ)−v(i−1+δ)+ v̂(i−1)−vx(i−1+δ)

Since v is convex in (i−δ, i+δ), we have v(i+δ)− v̂(i) ≥ 0 and vx(i+δ) ≥
vx(i− δ). Therefore we have

(15) ∆dv̂(i) ≥ vx(i− δ)− vx(i− 1 + δ) − v(i− 1 + δ) + v̂(i− 1).

Using now (10), the convexity of v̂ in (i− 1− δ, i− 1 + δ) and the definition
of v̂(i− 1) it follows that

(16) ∆dv̂(i) ≥ −F̂ − 2δ[vx(i− 1 + δ)− vx(i− 1− δ)].

�

Now we proceed to estimate the change of the discrete gradient

k(i) := vx(i+ δ) − vx(i− δ)

in terms of the obstacle strengths above i. Observe that always k ≥ 0 by
convexity. If the gradients are very steep, the path will pass through several
obstacles above the interval [i−δ, i+δ]. The number of obstacles passed and
the time spent in each of them (i.e. the Lebesgue measure of its image under
the inverse mapping) can be estimated in terms of v′(i− δ) and v′(i+ δ).

Lemma 4.2. Let v be a blocked path, i ∈ Z and and assume that k(i) > 0.
Set M := sup{|vx(i− δ)|; |vx(i+ δ)|} then we have

k(i) ≤
18δ

M

∑

v̂(i)−4δM≤j≤v̂(i)+4δM

l(i, j)

Proof:

Step 1: As v is convex on [i − δ, i + δ], the gradient is monotone, hence
|vx(x)| ≤ M for all x ∈ I(i) := [i − δ, i + δ]. As a consequence, we have on
I(i)

v(i)− δM ≤ v(x) ≤ v(i) + δM,



12 J. COVILLE, N. DIRR AND S. LUCKHAUS

As |v̂(i)− v(i− δ)| ≤ 2δM, |v(i) − v(i− δ)| ≤ δM, we obtain

|v(x)− v̂(i)| ≤ 4δM on[i− δ, i+ δ].

Step 2. Define the time spent by the path in the j-th obstacle above i as

Sj :=
∣∣{x : v(x) ∈ [j − δ, j + δ]}

∣∣,

where |A| denotes the Lebesgue measure of the set A and j ∈ Z∗ = 1/2+Z.
Note that by convexity vx changes sign at most once, hence each Sj is the
union of at most two intervals, moreover Sj = ∅ if |j − v̂(i)| > 4δM Hence,
as for x ∈ I(i) vxx(x) ≤ l(i, j) on obstacle j and zero else,

vx(i+ δ) − vx(i− δ) ≤
∑

v̂(i)−4δM≤j≤v̂(i)+4δM

l(i, j)Sj .

where j ∈ Z
∗

Step 3. Note that k ≤ 2M. As the gradient is monotone on I(i), there
exists a τ̂ such that |vx(τ̂ )| = M − k/3 and |vx(x)| ≥ M − k/3 ≥ M/3 ≥ 0

on Î(i), where

Î(i) =

{
[τ̂ , i+ δ] if M = |vx(i+ δ)|
[i− δ, τ̂ ] if M = |vx(i− δ)|.

As the gradient does not change sign on Î(i), the sets Ŝj := Sj ∩ Î(i) are
intervals. Moreover,

|Ŝj | ≤
2δ

M/3
=

6δ

M

as |vx| ≥ M/3 on Î(i). Hence

k

3
= M−vx(τ̂) ≤

∑

v̂(i)−4δM≤j≤v̂(i)+4δM

l(i, j)Ŝj ≤
6δ

M

∑

v̂(i)−4δM≤j≤v̂(i)+4δM

l(i, j)

and the result follows.
�

Remark 3. Note that in the case where k(i) ≥ 1 then the corresponding
M(i) ≥ 1

2 . Indeed, by definition of M(i) and k(i) we have 2M(i) ≥ |vx(i −
δ)|+ |vx(i+ δ)| ≥ vx(i+ δ)− vx(i− δ) = k(i) ≥ 1, i.e. M(i) ≥ 1/2.

Combining now Lemmas 4.1 and 4.2 we deduce the following estimates,
which allow to estimate the discrete Laplacian of the blocking path (v̄δ [j])j∈[−N,N ]∩Z

at a site i against a normalized sum of random variables.
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Lemma 4.3. Let v be a blocked path. Then for all i ∈ [−N + δ,N − δ] ∩ Z

there exists M(i),M(i − 1) > 1
2 such that following holds

∆dv̄(i) + F̄ ≤ (1 + 2δ)




360δ2

2δ(4M(i) + 1
2)

∑

v̄(i)−δ(4M(i)+ 1
2
)≤j≤v̄(i)+δ(4M(i)+ 1

2
)

l(i, j)(ω)




≥ −2δ




360δ2

2δ(4M(i − 1) + 1
2)

∑

v̄(i−1)−δ(4M(i−1)+ 1
2
)≤j≤v̄(i−1)+δ(4M(i−1)+ 1

2
)

l(i− 1, j)(ω)


 ,

where F̄ := F̂ − (1 + 2δ).

Proof:

Let us first start with the proof of the upper bound. Observe first that

v̂(i)−
δ

2
≤ v̄δ [i] ≤ v̂(i) +

δ

2
,

which implies that

∆dv̂
δ[i]− 2δ ≤ ∆dv̄

δ[i] ≤ ∆dv̂
δ[i] + 2δ.

Therefore using Lemma 4.1 we have

(17) ∆dv̄
δ[i] ≤ (1 + 2δ)k(i) − F̂ + 2δ.

with k(i) > 0. By Lemma 4.2 and Remark 3, for k(i) ≥ 1 there exists
M(i) ≥ 1

2 so that

k(i) ≤
18δ

M(i)

∑

v̂(i)−4δM(i)≤j≤v̂(i)+4δM(i)

l(i, j)(ω).

So we easily see that

(18) k(i) ≤
18δ2(4M(i) + 1

2)

M(i)(4M(i) + 1
2)δ

∑

v̄δ[i]−(4M(i)+ 1
2
)δ≤j≤v̄δ [i]+(4M(i)+ 1

2
)δ

l(i, j)(ω).

Therefore, since M(i) > 1
2 we have

(19) k(i) ≤
180δ2

(4M(i) + 1
2)δ

∑

v̄δ[i]−(4M(i)+ 1
2
)δ≤j≤v̄δ [i]+(4M(i)+ 1

2
)δ

l(i, j)(ω).

Hence, for all k(i) ≥ 0, we have

k(i) ≤ 1 +
180δ2

(4M(i) + 1
2 )δ

∑

v̄δ [i]−(4M(i)+ 1
2
)δ≤j≤v̄δ [i]+(4M(i)+ 1

2
)δ

l(i, j)(ω).

and the estimate follows . The lower bound is treated in a similar way.
�
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5. Probabilistic Estimates

We first recall a standard fact for the Laplace transform of independent
exponential random variables and random variables with distribution func-
tion bounded by an exponential.

Lemma 5.1. (1) Let {Xi}i∈N be independent identically distributed ran-
dom variables such that for a parameter λ0 and a constant C > 0

(20) P[X0 > r] ≤ Ce−λ0r.

Then we have for any λ < λ0 and L ∈ N, L ≥ 2,

E

[
eλX1

]
≤ C

λ0

λ0 − λ
(21)

E

[
eλ

∑L
i=1 Xi

]
≤ CL

(
λ0

λ0 − λ

)L

(22)

E

[
eλ(

1
L

∑L
i=1 Xi)

]
≤ CLe

λ 4 ln(4/3)λ
3λ0 for L ≥ 2, λ ∈ (2/3λ0, λ0)(23)

(2) Let {Xi}i∈N be independent exponential random variables with pa-
rameter λ0 > 0. Then (21)-(22) hold as equalities with C = 1, while
(23) holds as inequality with C = 1.

Proof:

We first show 2. The first equality is standard, the second follows by using
independence. For the third, note that by concavity of ln(1− x) on [0, 3/4]

ln(1− x) ≥
4

3
x ln(3/4) for x ∈

[
0,

3

4

]

Using independence and this concavity estimate with x = λ0/(λL)

E

[
eλ

1
L

∑L
i=1 Xi

]
=

(
λ0

λ0 −
λ
L

)L

= e
−L ln

(
1− λ

λ0L

)

≤ e
ln(4/3) 4λ

3λ0 .

In order to show 2., it is sufficient to prove the first inequality, the others
then follow as in the previous case. For (21) note that the expectation of
a random variable is the Riemann-Stieltjes integral with the distribution
function as integrator. Now integrate by parts and use that the integrand
eλx is monotone.

�

Remark 4. Observe that the above estimate on the Laplace transform of
SL is independent of L.

Let us define S̃M by

S̃M (ω)(i, j) :=
∑

−M≤j−l≤M

l(i, l).

The we have the following Corollary:
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Corollary 2. For any discrete function j(i) : Z → Z, the random variables

{S̃M (ω)(i, j(i))}i∈Z are independent and identically distributed. Moreover,

there exist constants C, λ̂ which depend only on λ0 such that

P

(
S̃M (ω)(i, j(i)) > r

)
≤ eC−λ̂r

Proof:

The first assertion is obvious. The second is a consequence of (21) and (23)
and the exponential Chebyshev inequality with a parameter λ ∈ (2/3λ0, λ0).

�

Let us now estimate the probability of a blocked path with boundary
conditions on [−N,N ] to be compatible with the l(i, j).

Definition 5.2. (blocked Dirichlet path) Let v(−N + δ) = v(N − δ) = 0.
Moreover, let v solve (8) for −N ≤ i ≤ N − 1, and let v solve (9) for
−N + 1 ≤ i ≤ N − 1.
Extend v to [−N − δ,N + δ] by

v(x) = v′(−N + δ)(x+N − δ) on [−N − δ,−N + δ]

and

v(x) = v′(N − δ)(x −N + δ) on [N − δ,N + δ].

Remark 5.

(1) Note that this path solves (9) for −N ≤ i ≤ N if we set l(i, j) = 0
for i = −N or i = N.

(2) If v ≥ 0 on [−N + δ,N − δ], then

0 ≥ v(x) ≥ −2δFN for x ∈ [−N − δ,−N + δ] ∪ [N − δ,N + δ].

Definition 5.3. Let v̄δ : [−N,N ]∩Z → δZ be a discrete path. We call the
path compatible with a random obstacle configuration if there exists a (not
necessarily unique) path as in Definition 5.2 which is mapped to v̄δ under
the discretization defined in Def. 3.3.

Note that the discrete path is fixed. Whether it is compatible or not
depends on the configuration of the random field.

Lemma 5.4. Let (Ω,F ,P) be a probability space and let l(i, j)(ω) be i.i.d.
exponential random variables with parameter λ0 > 0 and let v̄δ be a discrete
path with fixed boundary conditions

v̄δ(−N + δ) = 0, v̄δ(N) = b for some b ∈ [−FN,FN ].

Then there exist constants Ĉ(δ, λ0), λ1(δ, λ0) independent of b such that we
have for F sufficiently large

P[v̄δ compatible, v̄δ(N) = b] := Pb[v̄
δ compatible] ≤ eNĈe−λ1

∑N−1
−N+1 |∆dv̄

δ(i)+F̄ |.

with F̄ as in Lemma 4.3
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The previous estimates bounds the probability of the random obstacle
configurations such that a fixed discrete path is compatible with the random
environment. In order to prove that the probability that there exists some
compatible nonnegative path is small, we would have to sum over all possible
paths, each weighted with the right hand side of the previous estimate. It is
complicated to bound these sums, because the number of possible discrete
paths grows faster than exponentially in N. Fortunately, most of them are
extremely unlikely to be compatible. In order to quantify this, we define an
auxiliary probability measure on discrete paths.

Definition 5.5.

P̃b[∆dv̄
δ] :=

1

Z2N−1
e−λ1

∑N−1
−N+1 |∆dv̄

δ(i)+F̄ |,

Z :=

∞∑

k=−∞

e−λ1|δk+F̄ |

The normalisation constant is obtained by summing over all possible dis-
crete paths for fixed boundary conditions. This is equivalent to summing
over all discrete Laplacians. Note that Z is bounded from above and below
by constants independent of F.

Note that the law of the positive and the negative part of ∆dv̄
δ(i) + F̄

under P̃ is that of (discretized) independent exponential random variables.
In particular, probabilities of sums of the discrete Laplacians have certain
exponential moments and can be estimated by large deviation techniques.

Corollary 3. With P̃ as in Def. 5.5, there exists N0(λ0, δ) such that

Pb[v̄
δ compatible] ≤ eC̃N

P̃[∆dv̄
δ]

for N > N0.

Proof of Corollary 3:

We suppose that Lemma 5.4 holds. Then

Pb[v̄
δ compatible] ≤ eNĈe−λ1

∑N−1
−N+1 |∆dv̄

δ(i)+F̄ |

= eNĈ
(
Z2
)N

Z−1 1

Z2N−1
e−λ1

∑N−1
−N+1 |∆dv̄

δ(i)+F̄ | ≤ eNC̃
P̃[∆dv̄

δ]

for N sufficiently large. Here we can choose e.g.

C̃ = 2Ĉ + 2 ln(Z).

Proof of Lemma 5.4:

In order to simplify notation we write

Sv̄δ(ω)(i) := S̃M(v̄δ)(ω)(i, v̄
δ(i)).

We write the absolute value as sum of positive and negative part.
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By Lemma 4.3 we get that there exist universal positive constants C0 such
that the fixed discrete path v̄δ is compatible only if

ω ∈

(
N−2⋂

i=−N+1

(
Av̄δ ,+(i) ∩Av̄δ ,−(i)

)
)

∩Av̄δ ,+(N − 1) ∩Av̄δ ,−(−N + 1)

Av̄δ ,+(i) :=

{
ω : C0

(
∆dv̄

δ(i) + F̄
)
+
≤ Sv̄δ (ω)(i)

}

Av̄δ ,−(i) :=

{
ω : C0

(
∆dv̄

δ(i+ 1) + F̄
)
−
≤ Sv̄δ (ω)(i)

}

Bv̄δ (i) :=
(
Av̄δ ,+(i) ∩Av̄δ ,−(i)

)
.

Note that

Bv̄δ (i) ⊆

{
Sv̄δ(i) ≥

C0

2

(
∆dv̄

δ(i+ 1) + F̄
)
−
+

C0

2

(
∆dv̄

δ(i) + F̄
)
+

}

and we estimate with the help of Corollary 2 for i ∈ {−N + 1, . . . , N − 2}

P(Bv̄δ (i)) ≤ e
Ĉ−

λ̂1δ
C0

(
(∆dv̄

δ(i)+F̄ )
+
+(∆dv̄

δ(i+1)+F̄)
−

)

for constants Ĉ and λ̂1 depending only on λ0 but not on F.
Moreover, for i = N − 1 we obtain

P(Av̄δ ,+(N − 1)) ≤ e
Ĉ−

λ̂1δ
C0

(∆dv̄
δ(N−1)+F̄)

+

and for i = −N + 1 we obtain

P(Av̄δ ,−(−N + 1)) ≤ e
Ĉ−

λ̂1δ
C0

(∆dv̄
δ(−N+1)+F̄)

−

The events Bv̄δ (i) are independent for different i, hence

Pb[v̄
δ compatible] ≤ P(Av̄δ ,−(−N + 1))P(Av̄δ ,+(N − 1))

N−2∏

i=−N+1

P(Bv̄δ (i))

≤ eNĈe
−

λ̂1δ
C0

∑N−1
−N+1 |∆dv̄

δ(i)+F̄ |
.

The claim follows now by choosing λ1 =
λ̂1δ
C0

.
�

Remark 6. Note that the 1-1-correspondence between second derivatives
and paths with Dirichlet boundary conditions allows us to express each path
uniquely through its discrete Laplacians and thus estimate its probability
with the help of the previous lemma.

As a consequence the discrete Laplacians on average much larger than −F
are extremely unlikely. We will show that nonnegative paths that cross the
”triangle KN −K|x| require such unlikely values of the discrete Laplacian.
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6. Final Argumentation

6.1. Some formulas on discrete path and Comparison of two paths.

In this section, we recall some well known formulas for discrete paths and
their discrete derivatives. The proofs are straightforward computations and
therefore omitted.

Let us first recall some basic formulas satisfied by a discrete path z defined
in Z× R.

Lemma 6.1. Let us denote ∇lz[ℓ + 1] := z[ℓ + 1] − z[ℓ] and ∇rz[ℓ + 1] :=
z[ℓ+ 1]− z[ℓ+ 2]. Then for ℓ ∈ Z we have

(i)

∇lz[ℓ+ 1] = ∆dz[ℓ] +∇lz[ℓ] =
ℓ∑

i=1

∆dz[i] +∇lz[1]

∇lz[ℓ+ 1] = ∆dz[ℓ] +∇lz[ℓ] =

ℓ∑

i=k

∆dz[i] +∇lz[k].

(ii)

z[ℓ+ 1]− z[0] =

ℓ∑

i=1

i∑

j=1

∆dz[j] + (ℓ+ 1)∇lz[1].

z[ℓ+ 1]− z[k] =
ℓ+1∑

i=k+1

(z[i]− z[i− 1]) =
ℓ∑

i=k+1

i∑

j=k+1

∆dz[j] + (ℓ+ 1− k)∇lz[k + 1].

(iii)

∇rz[0] = ∆dz[1] +∇rz[1] =

ℓ∑

i=1

∆dz[i] +∇rz[ℓ],

∇rz[k] = ∆dz[k + 1] +∇rz[k + 1] =

ℓ∑

i=k+1

∆dz[i] +∇rz[ℓ].

(iv)

z[0]− z[ℓ+ 1] =

ℓ−1∑

i=0

ℓ∑

j=i+1

∆dz[j] + (ℓ+ 1)∇rz[ℓ]

z[k]− z[ℓ+ 1] =
ℓ∑

i=k

(z[i]− z[i+ 1]) =
ℓ−1∑

i=k

ℓ∑

j=i+1

∆dz[j] + (ℓ+ 1− k)∇rz[ℓ].

(v)

∇lz[ℓ+ 1] = −∇rz[ℓ]

Let us now define what we mean by ”crossing.”
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Definition 6.2. Let z1 and z2 be two given paths in Z × R. We say that
z1 cross z2 if and only if there exists i ∈ Z such that z1[i] ≥ z2[i] and
z1[i+ 1] ≤ z2[i+ 1].

We will apply this to the discrete path v̄δ and the triangle zK(i) := NK−
K|i|.

6.2. Proof of Theorem 2.3. First we state a trivial fact for discrete sums.

Lemma 6.3. Let aj be nonnegative numbers, then

(24)
N∑

i=1

N∑

j=i

aj =
N∑

i=1

jaj ≤ N
N∑

i=1

aj

We will show that paths that remain nonnegative but cross the triangle
zk require values of the average discrete Laplacian which are very unlikely

under P̃ . In order to do so, we distinguish cases: Either the path is above the
triangle near one of the two endpoints of the interval [−N,N ] and crosses at
the interior, or it crosses at N or −N. In both cases, this implies information
on the gradient. Note that the nonnegativity of the original subsolution
does not imply the nonnegativity of the discretized path, but only that the
discretized path is larger than −δFN, δ times the minimal possible gradient.
In particular, it implies that the terminal value b of the discretized path is
in [−δFN, 0].

Notation: As only discrete paths appear in the following estimates, we
will write v[i] for v̄δ [i] In order to simplify notation.

If −∇rv[−N ] ≤ K, then by Lemma 6.1

v[0] − v[−N ] =

−1∑

i=−N+1

i∑

j=−N+1

∆dv[j] −N∇rv[−N ].

Since v[−N ] = 0 and rewriting the double sum the right way, it follows that

−FN ≤ v[0] ≤ NK +
−1∑

i=−N+1

(−i)(∆dv[i]).

After adding and subtracting F̄ in each term in the summation

−FN ≤ NK +

−1∑

i=−N+1

(−i)(∆dv[i] + F̄ )− F̄
N(N − 1)

2
.

so, invoking (24) it follows that

F̄
N(N − 1)

2
− (F +K)N ≤ 2(N − 1)

N−1∑

i=−N+1

(∆dv[i] + F̄ )+.

By definition of F̄ , we have

F̄ ≥ F (1− 2(δ + ǫ))− (1 + 2δ).
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Therefore for ǫ small, says ǫ ≤ δ and F such that F ≥ 21+2δ
1−8δ we achieve

F̄ ≥
F

2
.

Whence

F
N(N − 1)

4
− (F +K)N ≤ 2(N − 1)

N−1∑

i=−N+1

(∆dv[i] + F̄ )+.

This implies that for N large and K fixed

1

2(N − 1)

N−1∑

i=−N+1

(∆dv[i] + F̄ )+ ≥
1− 2δ

8
F.

As the (∆dv[i] + F̄ )+ are independent random variables under the auxiliary

probability measure P̃ defined in Def. 5.5 which have exponential moments
bounded as in (21), we can derive an upper bound for the large deviations
principle: (For the basic form of the large deviations principle needed, see
e.g [5] Ch. 5.11) Let

I(F ) =
F

µ
− 1 + ln

( µ
F

)
,

where µ := λ−1
0 with λ0 as in Lemma 5.1. (I.e. for exponential random

variables µ is the expectation of (∆dv[i] + F̄ )+ under P̃. Note that µ is
decreasing in λ0.) Then, by the large deviations principle, for any η > 0
there exists N0 ∈ N such that for all N ≥ N0

P̃

(
1

2(N − 1)

N−1∑

i=−N+1

(∆dv[i] + F̄ )+ ≥
(1− 2δ)

8
F

)
≤ e

−N
(
C+I

(
(1−2δ)F

8

)
−η

)

.

where C is the constant in the bound (21). (C = 1 for exponential random
variables.) Now choose F sufficiently large such that

e
C̃C−I

(
(1−2δ)F

8

)

< 1,

where the constants are defined in Lemma 5.4.
Then there exists a constant C3 depending on λ0 and δ such that for N

sufficiently large

P(case 1) ≤ e−C3N .

The case ∇lv[N ] ≥ −K is done in a similar way.
Second case: −∇rv[−N ] > K,∇lv[N ] < −K. This implies that the path

has to cross the triangle inside the interval [−N,N ]. Suppose the path crosses
zK on [−N, 0], the other case is follows by symmetry. Then there exists
N1, −N < N1 < 0, such that −∇rv[N1] ≤ K and v[N1] ≤ KN. Then by
Lemma 6.1

v[N ]− v[N1] =
N−1∑

i=N1+1

i∑

j=N1+1

∆dv[j] − (N −N1)∇
rv[N1],
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so

−FN ≤ v[N ] ≤ 2KN+KN+
N−1∑

i=N1+1

i∑

j=N1+1

(∆dv[j]+F̄ )−F̄
(N −N1)(N −N1 − 1)

2
,

which implies

F̄
N(N − 1)

2
−(F+3K)N ≤

N−1∑

i=N1+1

i∑

j=N1+1

(∆dv[j]+F̄ ) ≤ 2(N−1)
N−1∑

i=−N+1

(∆d(v[i])+F̄ )+,

i.e. for N sufficiently large

1

2(N − 1)

N−1∑

i=−N+1

(∆dv[i] + F̄ )+ ≥
(1− 2δ)F

4
.

Now we can repeat the probabilistic argument from the first case.
Finally, we sum over all possible −FNvalues of the the terminal condition

b. This sum grows linearly in N, hence using the exponential decay of the
probabilities we obtain that there exists C4(δ, λ0) and F0(δ, λ0) such that for
F > F0

P
(
ω : v̄δ compatible and v̄δ crosses zK

)
≤ e−C4N .

Now we conclude with Lemma 3.4.
�

6.3. Proof of Corollary. Define vN as the solution of the initial-boundary
value problem

∂vN

∂t
= vNxx(x, t) + f̃(x, vN (x, t)) + F in (−N + δ,N − δ),

vN (−N, t) = u = vN (N, t) = 0

vN (x, 0) = 0,

and let u(x, t) solve 2. The comparison principle for parabolic equations
implies that vN (x, t) ≤ u(x, t) for x ∈ [−N − δ,N + δ], t > 0.

Moreover, vN (x, t) ր vNstat(x) as t → ∞, where vNstat(x) is a stationary
solution of the Dirichlet problem.

Note that ∂tv
N (x, t) ≥ 0 as ∂tv

N (x, 0) ≥ 0, and the time derivative w :=
∂tv

N solves

∂tw = ∆w + V (x)w,

where the potential V (x) = ∂f
∂u (x, v

N (x, t)) is bounded on compact subsets

of RN . (Note that ω is a fixed parameter here. vN ≤ FN21[−N,N ],so only

obstacles within [−N,N ] × FN2 can occur, but these are bounded for ω
fixed.)

Now a linear parabolic PDE with sufficiently regular potential V (x) and

nonnegative initial condition remains nonnegative: w̃ = e−t‖V ‖∞w solves

∂tw̃ = ∆w̃ + Ṽ (x)w, Ṽ ≤ 0
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with initial condition w̃ ≥ 0. So the classical parabolic comparison principle
([7]) implies w̃ ≥ 0.

By Thm. 2.3 and the first Borel-Cantelli Lemma (see e.g. [5]),

P
(
ω : vNstat(0) ≤ KN for infinitely many N

)
= 0,

so there exist almost surely arbitrarily large N such that

lim inf
t→∞

u(0, t) ≥ lim
t→∞

vN (0, t) = vNstat(0) ≥ KN,

which implies

(25) lim inf
t→∞

u(0, t, ω) = +∞

with probability 1. By the comparison principle, this contradicts the exis-
tence of a global nonnegative stationary solution.

Moreover, by arguments as in Lemma 3.4, ((25)) holds for x ∈ [−1, 1]. As
the distribution of the obstacles is invariant under translations in x-direction,
((25)) holds for x ∈ R.
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