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ON A SIMPLE CRITERION FOR THE EXISTENCE OF A PRINCIPAL
EIGENFUNCTION OF SOME NONLOCAL OPERATORS

JEROME COVILLE

UR 546 BIOSTATISTIQUE ET PROCESSUS SPATIAUX
INRA, DOMAINE ST PAUL SITE AGROPARC
F-84000 AVIGNON
FRANCE

ABSTRACT. In this paper we are interested in the existence of a principal eigenfunction of
a nonlocal operator which appears in the description of various phenomena ranging from
population dynamics to micro-magnetism. More precisely, we study the following eigenvalue

problem:
z—y\ o) B
/ﬂ / ( 9(v) ) Wt a(z)p = pg,

where 2 C R™ is an open connected set, J a nonnegative kernel and g a positive function. First,
we establish a criterion for the existence of a principal eigenpair (\,, ¢,,). We also explore the
relation between the sign of the largest element of the spectrum with a strong maximum prop-
erty satisfied by the operator. As an application of these results we construct and characterize
the solutions of some nonlinear nonlocal reaction diffusion equations.

1. Introduction and Main results

In the past few years much attention has been drawn to the study of nonlocal reaction
diffusion equations, where the usual elliptic diffusion operator is replaced by a nonlocal
operator of the form

(1.1) Mlu] = /Q Kz, y)uly) dy — b(a)u,

where @ C R”, k > 0 satisfies [, k(y,z)dy < oo for all z € R™ and b(z) € C(9); see
among other references [1, 2, 3, 10, 11, 12, 14, 15, 16, 19, 22, 23, 24, 33, 34, 39]. Such type
of diffusion process has been widely used to describe the dispersal of a population through
its environment in the following sense. As stated in [29, 30, 32] if u(y, t) is thought of as a
density at a location y at a time ¢ and k(z, y) as the probability distribution of jumping from
a location y to a location z, then the rate at which the individuals from all other places are
arriving to the location z is

| ke ot dy
Q
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On the other hand, the rate at which the individuals are leaving the location x is —b(x)u(x, t).
This formulation of the dispersal of individuals finds its justification in many ecological
problems of seed dispersion; see for example [9, 13, 25, 33, 34, 39].

In this paper, we study the properties of the principal eigenvalue of the operator M, when
the kernel k(z,y) takes the form

_g(rzyy L
(12 Moy) =7 ( 9(y) > g"(y)’

where J is a continuous probability density and the function g is bounded and positive. That
is to say we investigate the following eigenvalue problem:

(1.3) /Q J (”; (_y)y ) ;((yy)) dy —b(z)u= - u in Q.

Such type of diffusion kernel was recently introduced by Cortazar et al. [14] in order to model
a non homogeneous dispersal process. Along this paper, with no further specifications, we
will always make the following assumptions on €2, J, g and b :

Q1 C R™ is an open connected set (H1)
J e C.(R"), J>0,J(0)>0 (H2)
geL>®(Q),0<a<g<p, (H3)
be C(Q)NLX(Q) (H4)

where C.(R") denotes the set of continuous functions with compact support.

The existence and a variational characterization of the principal eigenvalue A\, of M is
known from a long time, see for example Donsker and Varadhan [26]. However, as Donsker
and Varadhan [26] have already noticed, ), is in general not an eigenvalue, that is to say
there exists no positive function ¢, such that (A, ¢,) is a solution of (1.3). In this paper, we
are interested in finding some conditions on M ensuring the existence of a principal eigen-
pair (\,, ¢p) of (1.3) such that ¢, € C(£2) and ¢, > 0. Such type of solution is commonly
used to analyse the long-time behaviour of some nonlocal evolution problems [10, 14] and
had proven to be a very efficient tool in the analysis of nonlinear integrodifferential prob-
lems; see for example [21, 31].

To our knowledge, besides some particular situations the existence of an eigenpair (A, ¢;,)
for the equation (1.3) is still an open question and many of the known results concern these
two cases:

(1) b(x) = Constant
(2) The operator M satisfies a mass preserving property, i.e Vu € C'(2),

[ (550 2 e f oo =o

In both cases, the principal eigenvalue problem (1.3) is either reduced to the analysis of the
spectrum of the positive operator £, defined below:

b= [ (55w
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or the principal eigenvalue is explicitly known, i.e. A\, = 0 and the principal eigenfunction
¢y is also the positive solution of the following eigenvalue problem

7 (57 ) o= e

Note, that even in this two simplified cases, showing the existence of an eigenfunction is still
a difficult task when the domain €2 is unbounded.

As observed in [19], the equation (1.1) shares many properties with the usual elliptic op-
erators

In particular, acting on smooth functions, we can rewrite M
Mlu] = Elu] + Rlu]

with R an operator involving derivatives of higher order that in £.
Indeed, we have

Miu] = /Q ke, ) u(y) — u(@)] dy — (@),

with ¢(x) fQ x,y)dy. Using the change of variables z = z — y and performing a
formal Taylor expans1or1 of u in the integral, we can rewrite the nonlocal operator as follows

/_Q k(z,z — 2)[u(x — z) —u(z)] dy = 045(x)0iu + fi(x)0iu + Ru]

where we use the Einstein summation convention and o;;(x), 8;(x), and R are defined by
the following expressions

1
oij(z) = 5/ . k(z,z — 2)ziz; dz

51-(;5):/ k(z,z — 2)z dz

/ / / / 2)zizjt s@wku(ﬂv + tsTz) dtdsdrdz.

For a second order elliptic operator £, the existence of a principal eigenpair (\,, ¢,) is
well known and various variational formulas characterising the principal eigenvalue exist,
see for example [7, 26, 28, 36, 37, 38]. In particular, Berestycki, Nirenberg and Varadhan [7]
give a very simple and general definition of the principal eigenvalue of £ that we recall be-
low. Namely, they define the principal eigenvalue of the elliptic operator £ by the following
quantity:

(1.4) A :=sup{A e R|3p € C(),¢ >0, suchthat E[¢p] + Ap <0}.
In this paper, we adopt the definition of Berestycki, Nirenberg and Varadhan for the defini-

tion of the principal eigenvalue of the operator M. The principal eigenvalue of the operator
M is then given by the following quantity:

Ap(M) :==sup{X e R|Fp € C(),¢ >0, such that M[p] + \p < 0}.
To make more explicit the dependence of the different parameters and to simplify the
presentation of the results, we shall adopt the following notations:

e a(r) == —b(x)
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o = supqa(x)

d,u is the measure defined by dyu := 42

g™ (@
fQ (5G4) 2 dy, = Jo 7 (554 uly) dp
. M .M =L, —i— a(x)ld
With this new notation the principal eigenvalue of M, can be rewritten as follows
(1.5 ApM,,) =sup{AeR[Fp e C(Q),¢ >0, suchthat L,[¢] + (a(z) + )¢ < 0}.

Under the assumptions (H1 — H4), the principal eigenvalue \,(M,,) is well defined, see
the appendix for the details.

Obviously, A, is monotone with respect to the domain, the zero order term a(x) and J.
Moreover, )\, is a concave function of its argument and is Lipschitz continuous with respect
to a(z). More precisely, we have
Proposition —1.1.

(1) Assume € C ), then

Mp(Lo, +a(@)) = Ap(Lg, + a(@)).

(ii) Fix Q and assume that a1(x) > as(x), then
Ap(Lg +aa(x)) = Ap(Lg + a1 ().

Moreover, if a1 (x) > az(z) + § for some § > 0 then

Ap(Lg + az(x)) > Ap(Lg, + ar(z)).

(iii) Ap(L,, + a(z)) is Lipschitz continuous in a(z). More precisely,

Ap(Lg + a(x)) = Ap(Ly +b(2))] < [la(z) = b(2)]|oo

(iv) Let J; < J; be two positive continuous integrable functions and let us denote respec-
tively £, , and L, , the corresponding operators. Then we have

ALy +a(x) > Ap(L, o + alz)).

Let us state our first result concerning a sufficient condition for the existence of a principal
eigenpair (\,, ¢p) for the operator M.

v

Theorem 1.1 (Sufficient condition). Assume that ), J, g and a satisfy (H 1 — H4). Let us denote
o = supgq a(x) and assume further that the function a(xr) satisfies — a(x & Ldu(QO) for some

bounded domain Qo C ). Then there exists a principal eigenpair (), ¢,,) solution of (1.3). Moreover,
¢p € C(Q), ¢p > 0 and we have the following estimate

—0' < Ap < —o0,

where o' = SUPgcn [ + fQ <g(:v9§> g’?—(y:v)]'

Note that the Theorem holds true whenever (2 is bounded or not

The condition Uﬁi(x) ¢ Lgl (€2) is sharp in the sense that if — ( y € L} 1loc(§2) then we can
construct an operator M, such that the equation (1.3) does not have a principal eigenpair.
This is discussed in section 5, where such an operator is constructed. We want also to stress
that the boundedness of the open set 2 does not ensure the existence of an eigenfunction,
see the counterexample in section 5.
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In contrast with the elliptic case, the sufficient condition has nothing to do with the regu-
larity of the functions a(z), J or g. This means that in general improving the regularity of the
coefficients does not ensure at all the existence of an eigenpair. However, in low dimension
of space n = 1,2 the condition #(m) 4 L}w(Qo) can be related to a regularity condition
on the coefficient a(z). Indeed, in one dimension if a is Lipschitz continuous and achieves

a maximum in 2 then the condition #(x) ¢ Ll ,.(€20) is automatically satisfied. Similarly,

when n = 2 the non-integrability condition is always satisfied when a(z) € C*'(Q) and
achieves a maximum in 2. More precisely, we have the following

Theorem 1.2. Assume that ), J, g and a satisfy (H1 — H4), that a achieves a global maximum at
some point xo € ). Then there exists a principal eigenpair (\p, ¢,) solution of (1.3) in the following
situations

e n=1a(x)cC"(Q)

e n=2a(x)cCH(Q)

e n>3a(z) € C" YN, VE < n,0%a(xg) = 0.

One of the most interesting properties of the principal eigenvalue for an elliptic operator
£ is its relation with the existence of a maximum principle for £. Indeed, Berestycki et al. [7]
have shown that there exists a strong relation between the sign of this principal eigenvalue
and the existence of a maximum principle for the elliptic operator £. Namely, they have
proved

Theorem 1.3 (BNV). Let €2 be a bounded open set, then £ satisfies a refined maximum principle if
and only if Ay > 0.

It turns out that when the principal eigenpair exists for M, we can also obtain a similar
relation between the sign of the principal eigenvalue of M and some maximum principle
property. More precisely, let us first define the maximum principle property satisfied by M:

Definition 1.4 (Maximum principle). When €2 is bounded, we say that the maximum prin-

ciple is satisfied by an operator M, if for all function v € C((2) satisfying
Myul <0 in Q
©u>0 in 00

then v > 0in Q.

With this definition of maximum principle, we show

Theorem 1.5. Assume that 2 is a bounded set and let J, g and a be as in Theorem 1.1. Then the
maximum principle is satisfied by M, if and only if \,(M,) > 0.

Note that there is a slight difference between the criteria for elliptic operators and for
nonlocal ones. To have a maximum principle for nonlocal operator it is sufficient to have a
non negative principal eigenvalue, which is untrue for a elliptic operator where a strict sign
of )\, is required.

Our last result is an application of the sufficient condition for the existence of a principal
eigenpair to obtain a simple criterion for the existence/non-existence of a positive solution
of the following semilinear problem:

(1.6) M, u] + f(z,u) =0 in Q.
5



where f is a KPP type non-linearity. Such type of equation naturally appears in some eco-
logical problems when in addition to the dispersion of the individuals in the environment,
the birth and death of these individuals are also modelled, see [31, 32, 33, 34].

On f we assume that:

f e C(R x[0,00)) and is differentiable with respect to u

fu(,0) is Lipschitz

f(-,0) =0and f(x,u)/u is decreasing with respect to u

there exists M > 0 such that f(z,u) < 0 forall w > M and all z.

(1.7)

The simplest example of such a nonlinearity is

fz,u) = u(p(r) = u),
where pi(z) is a Lipschitz function.

Such type of problem have received recently a lot of attention, see for example [4, 32,
33, 34] and reference therein. In particular, for Q2 bounded and for a symmetric kernel .J
Hutson et al. [32] have shown that there exists a unique non trivial stationary solution (1.6)
provided that some principal eigenvalue of the linearised operator around the solution 0
is positive. This result can be extended to more general kernel J using the definition of
principal eigenvalue (1.5). More precisely, we show that

Theorem 1.6. Assume €, J, g and a satisfy (H1-H4), 2 is bounded, a(x) < 0 and f satisfies (1.7).
Then there exists a unique non trivial solution of (1.6) when

Ap(Mg + fu(2,0)) <0,

where X, is the principal eigenvalue of the linear operator M, + f,(x,0). Moreover, if A, > 0 then
any nonnegative uniformly bounded solution of (1.6) is identically zero.

As a consequence, we can derive the asymptotic behaviour of the solution of the evolution
problem associated to (1.6):

(1.8) % = Mg[u] + f(z,u) in RT xQ.

(1.9) u(0,x) =up(xr) in Q

Namely, the asymptotic behaviour of u(t,z) as t — 400 is described in the following theo-
rem:

Theorem 1.7. Let 2, J, g, b and f be as in Theorem 1.6. Let ug be an arbitrary bounded and contin-
uous function in S such that uy > 0,ug # 0. Let u(t, z) be the solution of (1.8) with initial datum
u(0, x) = ug(x). Then, we have
(1) If 0is an unstable solution of (1.6) (that is X\, < 0), then u(t,x) — p(z) pointwise as t — oo
, where p is the unique positive solution of (1.6) given by Theorem 1.6.
(2) If 0 is a stable solution of (1.6) (that is A, > 0), then u(t, z) — 0 pointwise in 2 as t — +oo.

Note that this criterion involves only the sign of )\, and does not require any conditions
on the function f,(x,0) ensuring the existence of a principal eigenfunction. Therefore, even
in a situation where no principal eigenfunction exists for the operator M, + f,,(x,0) we still
have information on the survival or the extinction of the considered species. Observe also
that the condition obtained on the principal eigenvalue of the linearised operator is sufficient
and necessary for the existence of a non trivial solution.
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Before going into the proofs of these results, let us make some comments. We first point
out that the proofs we have given apply to a more general situation. More precisely, the
above results can be easily extended to the case of a dispersal kernel k(x,y) which satisfies
the following conditions:

k(x,y)eCc(QxQ),kEO,/k(x,y)dy<+oo Ve (H1)

Q

decop > 0, €9 > 0 such that min < min k(x,y)) > ¢p. (H2)
z€Q \yeB(x,e0)

An example of such kernel is given by

[Ty T2 Y2 Tn—Yn 1
kmwy_J<m@)’m@)"”’%@))Hiﬂﬂﬂ

with 0 < ¢; < gi < Bi.

We want also to emphasize that the condition that J or k has a compact support is only
needed to construct an eigenpair when €2 is unbounded. For a bounded domain, all the
results will also holds true if J is not assume compactly supported in €.

Note that the assumption J(0) > 0 implies that the operator £, is not trivial on any open
subset w C Q,ie. Vw C Q, Yu € C(Q), L,[u] # 0 for x € w. This condition makes sure
that the principal eigenfunction ¢, is positive in 2, which is a necessary condition for the
existence of such principal eigenfunction. Indeed, when there exists an open subset w C {2
such that £, is trivial, there is no guarantee that a principal eigenpair exists . For example,
this is the case for the operator M, where  := (—1,1), , J is such that supp(J) C (3,1) and
3 < g < 4. In this situation, we easily see that for any = € (—i, i) and for any function
u € C(2), we have L, [u](x) = 0. Therefore, the existence of an eigenfunction will strongly
depend on the behaviour of the function a(z) on this subset, i.e. (A, + a(x))¢ = 0 for z €
(—2,3)- If (A, +a(z)) # 0 then ¢ = 0in (—1, 1). In this situation there is clearly no existence
of a positive principal eigenfunction. However, the condition J(0) > 0 can still be relaxed
and the above Theorems hold also true if we only assume that the kernel J is such that there
exists a positive integer p € Ny such that the following kernel J,(z, y) satisfies (H2) where
Jp(x,y) is defined by the recursion

() L
L@wy_J<ﬂw>ng
Jpt1(z,y) ::/S)Jp(x,z)l]l(z,y)dz for p>1.

The above condition is slightly more general that J(0) > 0 and we see that J(0) > 0
implies that J; satisfies (f[ 2). In particular, as showed for example in [17], for a convolution
operator K (z,y) := J(x —y), this new condition is optimal and can be related to a geometric
condition on the convex hull of {y € R"|J(y) > 0}:

There exists p € N*, such that J,, satisfies H?2 if and only if the convex hull of {y € R™|.J(y) > 0}
contains 0.

We also want to stress that we can easily extend the results of Theorems 1.6 and 1.7 to a
periodic setting using the above generalisation on general nonnegative kernel. Namely, if
7



we consider the following problem
ou

(1.10) Fr M, [u] + f(z,u) in R"xRT,

where g and f(.,u) are assumed to be periodic functions then the existence of a unique non
trivial periodic solution of (1.10) is uniquely conditionned by the sign of the periodic princi-
pal eigenvalue A\, pe (M., + fu(x,0)), where A, ., is defined as follows:

Apper(M) :=sup{\ € R| 3¢ > 0,9 € Cpe,r(R") such that M_, [¢)] + A < 0}.
It is worth noticing that in this context, using the periodicity, we have
Apper(Man + fu(2,0)) = Ap(Ly, + fu(2,0),Q),
where @ is the unit periodic cell and £, [/] := fQ k(x,y)u(y)dy with k a positive kernel

satisfying H1 and H2. Hence the analysis of the existence/ non existence of stationary so-
lutions of (1.10) will be handled through the the analysis of the existence/ non existence of
stationary solutions of a semilinear KPP problem defined on a bounded domain.

Finally, along our analysis, provided a more restrictive assumption on the coefficient a(z)
is made, we also observe that Theorem 1.1 holds as well when we relax the assumption on
the function g and allow g to touch 0. More precisely, assuming that g satisfies

1 ~ ~
geL®(Q),0<g<p, — €L (Q) with p>1 (H3)
g

loc
then for a bounded domain (2, we have the following result:

Theorem 1.8. Assume that 2, J and a satisfy (H1, H2, H3, H 4), Q bounded and g satisfies H3.
Let us denote o := supg a(x) and let I" be the following set

[:={x e Qla(x) =0}
Assume further that 10“7é (. Then there exists a principal eigenpair (A, ¢p,) solution of (1.3). More-
over, ¢, € C(Q2), ¢, > 0 and we have the following estimate
—o' <\ < —o0,

where 0’ := sup,cq [a(:v) + [oJ <%> g,fl—(yx)]

As a consequence the criterion on the survival/extinction of a species obtained in Theo-
rems 1.6 and 1.7 can be extended to such type of dispersal kernel. More precisely, we have

Theorem 1.9. Assume (2, J and g satisfy (H1,H2, H3), Q is bounded and f satisfies (1.7). Then
there exists a unique non-trivial solution of (1.6) if
Ap(M, + fu(z,0)) <0,

where X, is the principal eigenvalue of the linear operator M, + f,(x,0). Moreover, if A, > 0 then
any nonnegative uniformly bounded solution is identically zero.

and

Theorem 1.10. Let Q2,.J,g,b and f be as in Theorem 1.9. Let uy be an arbitrary bounded and
continuous function in ) such that ug > 0,ug # 0. Let u(t, z) be the solution of (1.8) with initial
datum u(0,x) = ug(z). Then, we have

8



(1) If 0is an unstable solution of (1.6) (that is A, < 0), then u(t,x) — p(z) pointwise as t — oo
, where p is the unique positive solution of (1.6) given by Theorem 1.9.
(2) If 0 is a stable solution of (1.6) (that is A, > 0), then u(t, z) — 0 pointwise in 2 as t — +oo.

In this context, the existence of a simple sufficient condition for the existence of a prin-
cipal eigenpair when (2 is an unbounded domain is more involved and we have to make a
technical assumption on the set ¥ := {z € €, | g(z) = 0 }. More precisely, we show

Theorem 1.11. Assume that 0, J and a satisfy (H1, H2, HA) and g satisfies H3. Let us denote
o = supq a(z) and let I, ¥ be the following sets

I:={x € Qla(r) =0}
Y= {z € Q| g(x) = 0}.

Assume further that QN CC Qand Io‘yé (). Then there exists a principal eigenpair (X, ¢,) solution
of (1.3). Moreover, ¢,, > 0 and we have the following estimate

—O', < )\p < —0,
where 0’ := sup,cq [a(m) + Jod <%> g’f?x)]’

The paper is organized as follows. In Section 2 we review some spectral theory of positive
operators and we recall some Harnack’s inequalities satisfied by a positive solution of inte-
gral equation. Then, we prove the Theorems 1.1 and 1.8 in Section 3. The relation between
the maximum principle and the sign of the principal eigenvalue (Theorem 1.5) and a counter
example to the existence of a principal eigenpair are obtained respectively in Section 4 and
in Section 5. The last two sections is devoted to the derivation of the survival/extinction
criteria (Theorems 1.6,1.7, 1.9).

2. PRELIMINARIES

In this section we first recall some results on the spectral theory of positive operators and
some Harnack’s Inequalities satisfied by a positive solution of

(2.1) L, [u] —b(z)u =0,

where L, is defined as above and b(x) is a positive continuous function in €. Let us start
with the spectral theory.

2.1. Spectral Theory of positive operators.

Let us recall some basic spectral results for positive operators due to Edmunds, Potter and
Stuart [27] which are extensions of the Krein-Rutman theorem for positive non-compact op-
erators.

A cone in a real Banach space X is a non-empty closed set K such that for all z,y € K
and all « > Oonehasz +ay € K,andif r € K, —x € K then 2 = 0. A cone K is called
reproducing if X = K — K. A cone K induces a partial ordering in X by the relation z < y
if and only if x —y € K. A linear map or operator 7' : X — X is called positive if T'(K) C K.
The dual cone K* is the set of functional z* € X* which are positive, that is, such that
z*(K) C [0, 00).

If T : X — X isabounded linear map on a complex Banach space X, its essential spectrum
(according to Browder [8]) consists of those A in the spectrum of 7" such that at least one of
the following conditions holds : (1) the range of AI — T"is not closed, (2) A is a limit point of

9



the spectrum of A, (3) U, ker((A —T)") is infinite dimensional. The radius of the essential
spectrum of T', denoted by r.(7'), is the largest value of |\| with X in the essential spectrum
of T'. For more properties of (1) see [35].

Theorem 2.1 (Edmunds, Potter, Stuart).
Let K be a reproducing cone in a real Banach space X, and let T' € L(X) be a positive operator such
that TP(u) > cu for some u € K with ||u|| = 1, some positive integer p and some positive number

1 1
c. Then if c» > r.(T¢), T has an eigenvector v € K with associated eigenvalue p > cv and T* has
eigenvector v* € K* corresponding to the eigenvalue p. Moreover p is unigue.

A proof of this Theorem can be found in [27].
2.2. Harnack’s Inequality.
Let us now present some Harnack’s inequality satisfied by any positive continuous solution
of the nonlocal equation (2.1) .

Theorem 2.2 (Harnack Inequality). Assume that Q,J,g and b > 0 satisfy (H1, H2 H3,H 4).
Let w CC 2 be a compact set. Then there exists C(.J,w,b, g) such that for all positive continuous
bounded solutions u of (2.1) we have

u(z) < Cul(y) forall z,y € w.

When the assumption on g is relaxed the above Harnack’s estimate does not hold any
more but an uniform estimate still holds. Namely;,

Theorem 2.3 (Local uniform estimate). Assume that (2, J, gand b > 0 satisfy (H1, H2, H3,H 4).
Assume that QN'Y CC Qand let w C 2 be a compact set. Let Q(w) denote the following set

Qw) := U B(z, ).

TEW

Then there exists a positive constant n* such that, for any 0 < n < n*, there exist a compact set
W CC Qw) N Qand a constant C(J,w,Q, W', b, g,n) such that the following assertions are verified

(1) {z € Qw) NWyld(z, 0(Qw) NW,)) > n} C W', where W, := {x € Qlg(x) > n}
(ii) for all positive continuous solution u of (2.1), the following inequality holds:

uw(x) < Culy) forall zew,yew Nuw.

Next, we present a contraction Lemma which guarantees that v_vhen Q is bounded then
any continuous positive solution u of equation (2.1) is bounded in €.

Lemma 2.4 (Contraction Lemma). Let Q C R™ and u € C(2) be respectively an open set and
a positive solution of (2.1). Then there exists €* > 0 such that for all e < €*, there exists Q. and

C(a, B, J,€,b) such that
| wwav=zc [ uay
Qe Q

Moreover, ). satisfies the following chain of inclusion
{z € Q|d(z,00) > ae} C Q C {:c € Qld(x,00) > %} .
A proof of these results can be found in [19].
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3. CONSTRUCTION OF A PRINCIPAL EIGENPAIR

In this section we prove the criterion of existence of a principal eigenpair (Theorems 1.1,1.8
and 1.11). That is, we prove the existence of a solution (), ¢,) of the equation

(3.1) L, [op] + a(x)pp = —Apopp In Q.

with ¢, > 0, ¢, € C(Q) and ), is the principal eigenvalue of £, + a(z) defined by (1.5). In
this task, we first restrict our analysis to the case of a bounded domain 2 and then prove the
criterion for unbounded domains. We split this section into two subsections, each of them
dedicated to one situation.

3.1. Existence of a principal eigenpair when (2 is a bounded domain .

To simplify the presentation, we will first concentrate our attention on the construction of
a principal eigenpair when J, g, b satisfy the assumptions (H2 — H4) (Theorem 1.1). Then we
provide an argumentation for the construction of a principal eigenpair when the assump-
tions on g are relaxed (Theorem 1.8).

In a first step, let us show that the eigenvalue problem (3.1) admits a positive solution i.e.

there exists (y1,0,¢1) with ¢1 > 0, ¢1 € L>®(Q) N C(Q) solution of (3.1). More precisely, we
prove

Theorem 3.1. Let 2 C R"™ be a bounded open set and assume that J, g, and a(x) satisfy (H1 — H4).
Let us denote o := supg a(z) and Qp = {z € Q|d(x,00) > 0}. Assume further that the function
a(x) satisfies #@) ¢ L}m(Q)- Then there exists 8y > 0 such that for all 6§ < 6y the operator
L, + a(z) has a unique eigenvalue py g in C(dy), that is to say, there is an unique 1,9 € R such

that
(3.2) Lo, [¢1] +alx)dr = —p1001  in Qy.

admits a positive solution ¢ € C(Qp). Moreover i g is simple (i.e the space of C(€p) solutions to
(3.1) is one dimensional) and satisfies

p1o < —maxa(x).
Qo

Suppose for the moment that the above Theorem holds true. To conclude the proof of
Theorem 1.1 which establishes the criterion of existence of an eigenpair, we are left to show
that the principal eigenvalue defined by 1.5 is the same as the one obtained in the Theorem
3.1 for § = 0. Namely, we are reduced to prove of the following results.

Lemma 3.2. Let a(x) be as in Theorem 3.1 then we have A\, = 1,0 where A, and p;  are respectively
the principal eigenvalue of L, + a(x) defined by (1.5) and the eigenvalue of L, + a(x) obtained in
Theorem 3.1.

Before proving Theorem 3.1, let us prove the above Lemma.
Proof of Lemma 3.2 :
First, let us define the following quantity

A, i=sup{A € R3¢ > 0,¢ € C(Q) so that L, [¢] + a(x)¢ + A\p < 0in Q}.

Obviously )\;, is well defined and is sharing the same properties than \,. Moreover, we have
)\;, < Xp. Let us now show that )\;, = p1,0. First by definition of )\; we easily have )\;, > p10-
11



Now to obtain the equality A, = 1110 we argue by contradiction. Assume that A}, > 11 ,0. By
definition of X, there exists 1) > 0, ¢» € C(Q) such that

(3.3) L]+ (a(z) + N <0 in Q.

Observe that we can rewrite £, [¢1] + a(x)¢$; the following way
Loldr] +a(z)or =

1L
ol

¢1(y)

<>] S e
] $)or )

5w ) D)9ly)

a(x)p < —Lo[¢] =M

$1(x)
P(z)

dy + a(x)

()

From (3.3), we find that

and it follows that

b() [my) ) ¢1<w>] dy - A28 0

r—Y
Ly[p1] + a(z)pr < /QJ [ 9(y) ] a(y) | ¥(y) Y(x) Y(x)

By using the definition of 11 o, we end up with the following inequality

z—ylvW) [¢1(y)  d1(z) B
G4 /QJ { g(y)] 9(y) Lb(y) w(w)} A2 (A= 1) >0

Let us denote w := % Observe that by (3.3) w € L™ N C(R), therefore w achieves a global

maximum somewhere in (), say at . By using the inequality (3.4) at the point z, we find the
following contradiction

T —y| ¥(y) .
V< /QJ [ 9(y) } 9(y) wly) = w(@]dy <0
Thus 10 = )\;,.

Observe now that if there exists a positive eigenfunction ¢ € C'(2) N L>°(Q2) associated to
the principal eigenvalue )\, i. e. £, [¢]+(a(z)+,)1) = 0, then we have ¢ € C(2). Therefore,
using the definition of )\1’0 it follows that )\, < )\;, = 11,0 < Ap. To conclude the proof, we are
left to show that such bounded function v exists.

So let (6,,)nen be a positive sequence which converges to 0 and consider the sequence of
set (Qg, )nen defined in Theorem 3.1. By construction, using the monotonicity property of
the principal eigenvalue with respect to the domain ( (i) of Proposition 1.1) we deduce that
()\;,(ﬁgen + a(z)))nen is a non increasing bounded sequence. Namely, we have for all n € N

AL + (@) < XLy, +al@)) < N(Ly, +ala))

Thus, as n goes to infinity A),(L, ~+ a(x)) converges to some A >\

On another hand since §,, tends to 0, by Theorem 3.1, there exists ng so that for all n > ny,
a principal eigenpair (1, , ¢r) exists for the operator Eﬂen + a(z). Arguing as above, we
conclude that 1114, = A, (Lq, + a(z)).

We claim that

Claim - 3.1. There exists n; € N such that for all n > n; we have 1, 9, < —0 = —supqa(x).
12



Assume for the moment that the claim holds. Then the final argumentation goes as fol-
lows. Next, let us normalized ¢,, so that supq o ¢n, = 1. With this normalisation (¢, )nen is
an uniformly bounded sequence of continuous functions. So by a standard diagonal extrac-
tion argument, there exists a subsequence still denoted (¢, )nen such that (¢, )nen converges
locally uniformly to a non negative bounded continuous function . Furthermore, 1) satisfies

L] + (a(z) + N = 0.
Now recall that (1.9, , ¢n) satisfies

£QG" [(bn] + a(x)¢n + ,U'l,Gn(bn =0.

Using the above claim, we have p; 9, < —0 = —supqa(z) < —supgena(x) for n big enough,
so supg, (a(z) + pi1,9,) < 0 and the uniform estimates i.e. Theorem 2.3 applies to ¢,,. Thus
we have for n > 0 small fixed independently of n

1 <Cm)pn(x) forall ze{xe Qg,|d(z,0,) > n}.

Therefore ¢ is non trivial and (A, ) solves the eigenvalue problem (3.1). Using once again
the equation satisfied by 1 and the definition of \,, we easily obtain that A < A\, < X which
proves that v is our desired eigenfunction associated to \,,.
U
Let us turn our attention to proof of the Claim 3.1. But before proving the Claim let us
establish the following a useful estimate.

Lemma 3.3. There exists positives constants r and cy so that

vz € Q, /Br(mm J (ﬂ) u(y)du(y) > CO/ u(y)dp(y).

9(y) By (2)nQ

Proof:

Since J is continuous and J(0) > 0, there exists § > 0 and ¢y > 0 so that for all z € B(0, ¢)
we have J(z) > ¢o.
Observe that for all (z,y) € Q x B,(z) with r < %, using that g > « > 0, we have

s

Thus, for r < 670‘ and y € B,(x) we have J <%> > ¢p, and the estimate follows.
(]
We are now in position to prove Claim 3.1.
Proof of Claim 3.1
Let us denote o the maximum of a(z) in Q. By assumption, we have #(m) ¢ Li.(Q). So
there exists zo € Q such that chlb(m)
have

¢ L'(B,(x9) N Q) and for ¢ small enough say € < ¢y we

/ d >4
C .
! QNB(xo,r) _(a’(x) -0+ 6) N



Choose n big enough, so that for all n > ny, B,.(x) N Qy, # 0. For € < €, since Qy, — Q,
we can increase n; if necessary to achieve for all n > n,

dx
“ /anﬁB(on’) —(a(z) — 0 —¢)
Recall now that for n big enough, say n > n», there exists (11 4,,, $») that satisfies the equation
Lo, [bn] +al@)bn + 0,60 = 0.
Since ¢, is positive we have
Loy gy 0] < ~(al2) + 15,60

Using the Lemma 3.3, we see that

o / Gn(y) dy < bu(x).

—((Z(CE) + :U’l,en) Qp,,NB(z0,7)

Integrating the above inequality on Qy, N B(zg,7) it follows that

co
bu(y)dy | <
/anﬁB(xo,r) <—(a(9€) + p1,6,) /anﬁB(J:o,r)

C /
Pnly) dy
AgnﬂB(IQ,T) (—(a(m) + lu’lﬂn)) anﬂB(IQ,T) ( )

co
<1
/anﬁB(xo,r) <—(a(90) + Ml,%))

From (3.5), it follows that for all n > sup(ny, ne) we have

(3.5) > 2.

On NB(zo,7)

/ ¢n(x).
Qg,, NB(zo,r)

n

S~

IN

Thus,

1,0, < —0 — €.
(]
Remark 3.4. Observe that if supq a(x) is achieved in € then the estimation x(1,6) follows

immediately from the monotonicity properties of the principal eigenvalue. Indeed, for ¢
small enough, say ¢ < 6y we have supg,, a(r) = supg, a(z). Hence,

)\;(ﬁﬂe +a(z)) < )\;,(EQQO +a(z)) < —supa(x) = —o.

Let us now turn our attention to the proof of Theorem 3.1.
For convenience, in this proof we write the eigenvalue problem

Lo, [ul + a(z)u = —pu
in the form
(3.6) Lo, [u] +a(z)u = pu
where
a(x) =a(z)+k, p=-p+k
and k > 0 is a constant such that infg, a > 0.

Let us now prove the following useful result:
14



Lemma 3.5. Let 2, J, g and a be as in Theorem 3.1. Then there exists 6y > 0 so that for all 0 < 6,
there exists § > 0 and u € C (), u > 0, u # 0, such that

Lo, lu] +a(@)u = (6 + 6)u,
where 5(0) := maxgq, a(x).

Observe that the proof of Theorem 3.1 easily follows from the above Lemma. Indeed, if the
Lemma holds true, since under the assumption (H1-H4) the operator £, : C(Qg) — C(Qy)
is compact, we have r¢(L,, + a(z)) = re(a(z))=0c(0). Thus (5(0) + 6) > re(L,,, + a(z)) and
the existence Theorem of Edmund et al. (Theorem 2.1) applies.

Finally we observe that the principal eigenvalue is simple since for a bounded domain
(2 the cone of positive continuous functions has a non-empty interior and, for a sufficiently
large p, the operator (£, + a)” is strongly positive, that is, it maps u > 0, u # 0 to a strictly
positive function, see [40].

U

Remark 3.6. Note that the simplicity of the eigenvalue j requires that {2y is a connected
set. Indeed, when open set {2 is not connected, it may happen that the operator (£, + a)”

is never strongly positive in C(2) and several non-positive eigenfunction exists with no
positive eigenfunction.

Let us now turn our attention to the proof of Lemma 3.5:

Proof of the Lemma 3.5:
Let us denote I the closed set where the continuous function a takes its maximum & in €.

[:={z€Qa(z) =a}.

Since a is a continuous function and (2 is bounded, I' is a compact set. Therefore I' can
be covered by a finite number of balls of radius r, i.e. T C JY, B,(z;) with ; € T. By

. ~ N ~
construction, we have 676%(1) = Jii(m) ¢ Lcllu,loc(Q)‘ Therefore #(m) ¢ L}w(Ui:1 B, (z;)NQ)
and there exists —\g > & so that for some z; we have

Co
(3.7) / I R— '}
By (z)n0 —Ao — () :
Since 0y — 2 as  tends to 0 there exists 6 so that for all # < 6y we have
Co
(3.8) / S PP
BT(IZ’)QQQ _)‘0 - CL(.I)

Let us fix z; such that (3.8) holds true and let us denote w, := B, (z;) N Qg. We consider now
the following eigenvalue problem

(3.9) o [ uly) duly) + ale)u(e) + Na(w) = o

4

where ¢y is the constant obtained in the Lemma 3.3.
We claim that

Claim - 3.2. There exists (A1, ¢1) solution of (3.9) so that ¢; € L*>(w,) N C(w,) and ¢; > 0.
15



Observe that by proving this claim we end the proof of the Lemma. Indeed, fix 6 < 6y and
assume for the moment that this claim holds true. Then there exists (A1, ¢1) such that

(3.10) o [ on)duy) + a()61(2) + Mo (x) = 0.

Obviously, for any positive constant p, (A1, p¢1) is also a solution of the equation (3.10).
Therefore without any loss of generality we can assume that ¢, is such that ¢; < 1. Set
Co = ¢y fwe #1(y)dp(y). From the equation (3.10), since 0 < ¢; < 1 we see easily that

— (O +a(z) > .

Therefore there exists a positive constant dy such that

(311) ¢1 > d(] in w
and
(3.12) —(M+a(9) >c>0.

Let us now consider a set w. CC w, which verifies

(3.13) / dp < M_
w, \w6 200

Since by construction 2y \ w, and @, are two disjoint closed subsets of (2, the Urysohn’s
Lemma applies and there exists a positive continuous function  such that 0 <7 <1, n(x) =
linwe, n(x) =0in Qp \ w,.

Next, we define w := ¢17 and we compute £, [w] + b(z)w.

Since w = 0in Qp \ w,, we have

Lo, fu] + alajo = [

w

T—y _ -
6J<g(y) >w(y)du2 (@(0)+d)w =0

for any § > 0.
On another hand, in w,, by using the Lemma 3.3 we see that

(3.14) Lo, [w]+a(z)w = /

w

9 J <%> w(y)dp + alz)w

(3.15) > ¢ / w(y)du(y) + a(z)w

0

(3.16) >co [ ddu(y) +a(z)w.

We

16



Since ¢, satisfies the equation (3.10), using the estimates (3.11), (3.12) and (3.13) we deduce
from the inequality (3.16) that

(3.17)

ﬁwwﬁ+amwz—u«+amwy+mmw—%/\ "

(3.18) > L;(H)'@ +(5(0) — alx))b1 + alz)w + w . / _rn
(3.19) z(ﬁigﬂm)@+wam—au»¢+aum.

where we use in the last inequality, that ¢; < 1 and the estimate (3.13).
Since (7 (6) — a(x)) and w are two positive quantities and ¢; > w, we conclude that

(3.20) Lo, 0] + a(z)w > <w + 5(9)) w.

Hence, in Qy, w satisfies

Lo, [w] +a(z)w = (a(0) + d)w,

with 6 = %, which proves the Lemma.

O
Let us now prove the claim 3.2.
Proof of Claim 3.2
Fix 6 < 6y. For A < —&(0), consider the positive function ¢, := _/\fi%(x) Let us substitute

¢, into the equation (3.9), then we have
co [ Padu—co=0.
“o
Therefore, we end the proof of the Claim 3.2 by finding A such that fwe ¢rdp = 1. Observe
that the functional F'(\) := [ ¢, du is continuous and monotone increasing with respect to
0

Ain (—oo, —a). Moreover, by construction, we have:

lim F(A\)=0 and F(\) > 2.
A——00

Hence by continuity there exists a A\; such that F'(\;) = 1.
U
Now we expose the argumentation for the construction of a principal eigenpair when the
assumptions on g are relaxed and prove the Theorem 1.8. To show Theorem 1.8 we follow
the scheme of the argument developed above.

Proof of Theorem 1.8
As above, we can rewrite the eigenvalue problem (3.1) the following way

(3.21) Lo, [u] +a(z)u = pu
with

Ql

(1) =a(x) +k, p=—p+k
17



and k > 0 is a constant such that infg, @ > 0.
Observe that under the assumptions (H1, H2, H3, H4) the following family

Loy (B1) :={Lo [f1/ f: Q=R ||[flloc <1}

is equicontinuous. Indeed, let € > 0 be fixed. Since gin € LY (Qy), there exists > 0 such that

loc

dy €
(322) / dy _
Qgn{g<n} g (y) 4HJHOO

From the uniform continuity of J in the unit ball B(0, 1), we deduce that there exists v > 0
such that for |w — w| < /7,

(3.23) [J(w) — J(w)| < en™/2|Qp].
A short computation using (3.22) and (3.23) shows that for |z — z| < v

cater=cutnin= [ 557 - [ sl
St SO Ty B b B s |

<e.

Hence, £, (B1) is equicontinuous and £, : C () — C(Qy) is a compact operator.

Next, we show the following
Lemma 3.7. Let €2, J, g and a be as in Theorem 1.8. Then there exists 0 so that for all 6 < 0 there
exists § > 0 and u € C(Qy), u >0, u # 0, such that

Lo, lu] +a(@)u > (6 + 6)u.

As above the existence of a positive eigenpair (p, ¢) easily follows from the Lemma 3.7.
Arguing as above, we see that 111 0 = A\,(L, + a(x)), which concludes the proof of Theorem
1.8.

O
Let us turn our attention to the proof of Lemma 3.7

Proof of Lemma 3.7

First let us recall that by assumption f‘;ﬁ f where I := {x € Qla(r) = ¢} and let us define
the following set 3, := {z € Q|g(x) > n}.

By construction, we easily see that I'# () where I := {x € Qla(z) = ¢}. Therefore, there
exists zp € Q and € > 0 such that B.(z9) C (I" NQ). Moreover for § small, say 6 < 6, we

have B(zg) C (IV NQy).

Let us define w;, := B.(x9)N3,. By assumption we have gin € LP(Q), so for n small enough
wy is a non void open subset of {2y for 6 < 6.

Let us now consider the eigenvalue problem (3.21) with 2 = w,, i.e

L, [ul+a@u=pu in wy,.
By construction, in B.(z() we have a(z) = . So the above equation reduces to:
(3.24) L, u

[l

=pu in  wy,

18



where p = (p — 7).
Since £, is a compact strictly positive operator in C(w,), using Krein-Rutmann Theorem

there exists a positive eigenvalue p; > 0 and a positive eigenfunction ¢; € C(w,) such that
(p1, ¢1) satisfies (3.24) i.e

L, [¢1] = por.

Arguing as in Lemma 3.5, for all § < 6, we can construct a nonnegative test function u
such that

Lo, lu] +a(@)u = (0 +0)u,

fora 6 > 0 small enough.
O

Remark 3.8. Observe that all the previous constructions can be easily adapted to an operator
T + a(x) where T is an integral operator with a continuous nonnegative kernel k(z, y) that

satisfies H 2, 1.e.

Jep > 0, g > 0 such that min ( min k(m,y)) > .
z€Q \yeB(z,€0)

In particular, we can extend the criterion of existence of a principal eigenpair for an operator
T + a(z) where T is an integral operator with a kernel k(z,y) that only satisfies that there

exists a positive integer N, so that the kernel ky (z, y) satisfies (H2) where ky is defined by
the recursion:

ki(z,y) := k(z,y)

knii(z,y) ::/QkN(:U,z)kzl(z,y)dz for N>1

Indeed, in this situation the construction of a test function v (Lemma 3.5 or Lemma 3.7 )
holds also for the operator 7%V + @ (z). Using that a > 0, we deduce

(T +a(x)Nu] > TVu+a" (x)u > (N + d)u.
Since in this situation 7 is a compact operator, we also have 7.((T + a(x))") = re(a(x)V).
Thus (6% +6) > 7.((T +a(x))") and the Theorem 2.1 applies. Hence, there exists an unique
principal eigenpair (), ¢,) of the following problem

(T + @(x))N‘bp = =X

To obtain a principal eigenpair for 7 + a we argue as follows. Applying 7 + a(x) to the
above equation it follows that

(T + ()" oy = =M(T + al))ep
(T + @(w))Nw = =\t

with ¢ := (T + a(x))¢,. Since (T + @) is positive operator in C(Q), ), is simple, we have
Y = p¢pp. Hence, ((—)\p)% , p) is the principal eigenpair of 7 + a(z).
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3.2. Construction of a Principal eigenpair when (2 is an unbounded domain.

For simplicity in the presentation of the arguments and since the proof of the existence
of a principal eigenpair under the relaxed assumptions does not significantly differ, we will
only present the case where (2, J, g and a satisfy the assumptions (H1 — H4).

To construct an eigenpair (A, ¢,) in this situation, we proceed using a standard approxi-
mation scheme .

First let us recall that, by assumption, there exists ) C Q a bounded subset such that
#@) ¢ L}lu(Qo). Let (wp)nen be a sequence of bounded increasing set which covers (2, i.e.

Wy C Wnt, U wy, = Q.
neN

Without loss of generality, we can also assume that {2y C wy and therefore #(w) ¢ Lclm (@n)
for all n € N. Observe that for each w,, the Theorem 3.1 and the Lemma 3.2 apply. Therefore
for each n there exists a principal eigenpair (A, ,,, ¢p.n) to the eigenvalue problem (3.1) with
wy, instead of ().

By construction, using the monotonicity of the sequence of (wy,)nen and the assertion (i) of
the Proposition 1.1 we deduce that (A, ,)ncn is @ monotone non increasing sequence which
is bounded from below. Thus ), ,, converges to some A > \,(L,, + a(z)). Moreover, we also
have that foralln € N

M(Ly +a(x)) <A< A < Apo < —supa(z) = o.
Q

Let us now fix 1 € wp N Q2. Observe that since for each integer n the eigenvalue )\, ,, is
simple we can normalize ¢y, ,, by ¢p, ,(z1) = 1.

Let us now define b, (x) := —\, , — a(z). Then ¢, , satisfies

(3.25) L, [opn] =bn(x)dpn in wy.

By construction for all n € Nwehave b, (z) < —\, g—0c > 0, therefore the Harnack inequality
(Theorem 2.2) applies to ¢, ,,. Thus for n fixed and for all compact set w’ CC w, there exists
a constant C,, (w') such that

¢p7n(.%') < Cn(w,)¢p7n(y) v T,y € w'.

Moreover the constant C',(w’) only depends on | J, ., B(x, 3) and is monotone decreasing
with respect to inf e, by(x). For all n, the function b, (z) being uniformly bounded from
below by a constant independent of n, the constant C,, is bounded from above independently
of n by a constant C'(w’). Thus we have

Gpn () <C(W)ppnly) V zyeuw.

From a standard argumentation, using the normalization ¢, ,(z1) = 1, we deduce that
the sequence (¢, n)nen is bounded in Cj,.(§2) topology. Moreover, from a standard diagonal
extraction argument, there exists a subsequence still denoted (¢, ,)nen such that (¢p n)nen
converges locally uniformly to a continuous function ¢. Furthermore, ¢ is a nonnegative non
trivial function and ¢(z;) = 1.

Since J has a compact support we can pass to the limit in the equation (3.25) using the
Lebesgue monotone convergence theorem and get

=Y )\ = m .
| ( — >¢(y)du(y) L (A ta(@)é@) =0 in 9
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As above using the equation, we deduce that ¢ > 0 in Q. Lastly, from the definition of A,
using (A, ¢) as a test function, we see that A\ < A\, < A. Hence, (), ¢) is our desired eigenpair.
O

Remark 3.9. Note that our proof of the existence of a principal eigenpair in this situation
relies only on the Harnack estimate which for some form holds true when the assumption
on J and g are relaxed.

Remark 3.10. From the above proofs, using the properties of the principal eigenvalue, we can
derive a practical dichotomy for ),. Indeed, either A, = —o or A\, < —o and there exists a
principal positive eigenfunction ¢, associated to A,,.

4. EXISTENCE OF A MAXIMUM PRINCIPLE

In this section, we explore the relation between a maximum principle property satisfied
by an operator M and the sign of its principal eigenvalue. Namely, we prove the Theorem
1.5 that we recall below

Theorem 4.1. Assume that 2 is a bounded set and let J, g and a be as in Theorem 1.1. Then the
maximum principle is satisfied by M, if and only if \,(M,,) > 0.
Proof of Theorem 4.1

Assume first that the operator satisfies the maximum principle. From the Theorem 1.1,

there exists (\,, ¢,,) such that ¢, € C(€2), ¢, > 0 and
Lo [¢p] + a(z)dp + Apdp = 0.

As in the previous section, we have can normalise ¢, so that we have 1 > ¢, < ¢y. Further-
more, there exists § > 0 so that =\, — o > § > 0 where o denotes the maximum of a in
Q.

Assume by contradiction that A\, < 0 we have

Lo [dp] + a(x)dp = —Apop > 0.
Let us choose w CC () such that

coinf{d, \p }
du(y) < SO0 )
/Q\w H) < T

As in the previous section, we can construct a continuous function 7 such that 0 < 7 <1,
n(z) = linw, n(x) = 0in J. Consider now ¢,n and let us compute L, [¢,1] +a(z)¢,n. Then
we have

Lol + a(@)épn > —Apdp — I /Q ) — a1~

coinf{d, A\p} "

> =App — 9 (2)dp(1 —n)
> =ApPp — w — max{o, 0},

_ coinf{d, A}

> — (% + max{o,0})gp — L
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Since by assumption —\, > 0 and —\, — ¢ > 0 it follows from the above inequality that

_ coinf{d, Ay}

L, [opn] + a(z)ppn > —(Np + max{c, 0})co 5

- infgé, Apt > 0.

By construction we have ¢,n € C(2) that satisfies

Lolépm] +a(@)ém >0 in Q
¢pn=0 on 00

Therefore, by the maximum principle 1.4, ¢,n < 0 in © which is a contradiction. Hence,
Ap > 0.

Let us now show the converse implication. Assume that \,(L, + a(z)) > 0, then we will
show that the operator satisfies the maximum principle. Let u # 0, u € C'(€2) such that u > 0
on 0f2 and

L, [u] + a(z)u <0.

Let us show that © > 0 in Q.
By Theorem 1.1, there exists ¢, > 0 such that

L [dp] + alx)dp = —Apép < 0.

Let us rewrite £, [u] + a(x)u the following way

_ -yl op(y) uly) JRVRRNCIC))
Lolul +alz)u= /QJ [ 9(y) ] 9(y) op(y) dy + a(z)p( )qbp(w)

= [ ) G ) oy

then we have the following inequality in 2

u

Let us set w := b
P

r—y ¢p(y)
J|—| —= (w(y) —w(x)) dy — \pp,w(x) < 0.
/Q [g(y)]g"(y)(() (=) PO ()
From the above inequality we deduce that w cannot achieve a non positive minimum in
without being constant. Therefore it follows that either w > 0in © or w = 0. Since u # 0, we
have w > 0. Hence, Q%p > (0 which implies that u > 0.
O

Remark 4.2. From the proof, we can observe that to show the implication
"Mp(L, +a(x)) > 0= L, + a(z) satisfies the maximum principle”

we do not need the existence of a principal eigenfunction ¢, when A\, (£, +a(z)) > 0. Indeed,
in this situation we can replace in our argumentation the principal eigenfunction ¢, by a
well chosen positive function v i.e. ¢ > 0 such that there exists 0 < A < )\, satisfying
L, [Y] + (a(z) + ) < 0 which is always possible since A, (L, + a(x)) > 0.

22



5. A COUNTER EXAMPLE

In this section, we provide an example of nonlocal equation where no positive bounded
eigenfunction exists. Let {2 be a bounded domain and let us consider the following principal
eigenvalue problem:

(5.1) p/ﬂud:v + a(z)u = \u,

where 0 = a(rg) = maxq a(z), p is a positive constant and a(x) € C%((2) satisfies the condi-

tion J_(ll(x) € L} (). For this eigenvalue problem, we show the following result

Theorem 5.1. If p is so that p [, #(m) < 1, then there exists no bounded continuous positive
principal eigenfunction ¢ to (5.1).

Proof :

We argue by contradiction. Let us assume that there exists a bounded positive continuous
eigenfunction ¢ associated with ), that we normalize by [, ¢ = 1. By substituting ¢ into the
equation (5.1) it follows that

p=(Ap —a(2))o.

Since p > 0, from the above equation we conclude that A\, — o > 7 > 0. Therefore

_ P
¢= Ap —alx)

Next, using the normalization we obtain

1— / dx
" Jor —ale)’

By construction A, > o, therefore we have

Since p [, #x(x) < 1 we end up with the following contradiction

1_/ dx </ dx <1
P Jorg—a(@) =" Joo—a(x) =

Hence there exists no positive bounded eigenfunction ¢ associated to \,,.
O

6. EXISTENCE/NON EXISTENCE OF SOLUTION OF (1.6):

In this section we prove the Theorem 1.6 . That is to say, we investigate the existence/
non-existence of solution of the following problem:

(6.1) M, ul + f(z,u) =0 in Q

where f is of KPP type. We show that the existence of a non trivial solution of (1.6) is
governed by the sign of the principal eigenvalue of the following operator M, + f,(x,0).
Moreover, when a non trivial solution exists, then it is unique.
To show the existence/ non existence of solutions of (1.6) and their properties, we follow
and adapt the arguments developed in [5, 6, 20].
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6.1. Existence of a non trivial solution.
Let us assume that
Ap(M, + fu(z,0)) <O0.
Then we we will show that there exists a non trivial solution to (1.6).

Before going to the construction of a non trivial solution, let us first define some quantities.
First let us denote a(x) := f,(x,0) —b(x) and o := supgq a(x). Observe that with this notation,
we have A\, (M, + fu(z,0)) = A\p(L, + a(x)).

From the definition of ¢ there exists a sequence of points (z,)nen such that z,, € Q and
lo —a(x,)| < %

Then by continuity of a(z), for each n there exists 7, such that for all z € B,, (x,) we have
lo —a(x)| < %

Now let us consider a sequence of real numbers (¢, ),eny Which converges to zero such that
en < L.

Next, let (xn)nen be the following sequence of cut-off” functions : x,(z) := X(”ﬂt—:””)
where x is a smooth function such that 0 < x < 1, x(z) = 0 for |z| > 2 and x(z) = 1 for
|z| < 1.

Finally, let us consider the following sequence of continuous functions (a,),cn, defined
by a,(x) := sup{a(z),oxn}. Observe that by construction the sequence (a,)ncn is such that
a(2) — an(@) e — 0.

Let us now proceed to the construction of a non trivial solution.

By construction, for each n, the function a,, satisfies supg a,, = 0 and a,, = ¢ in B%n ().

Therefore, the sequence a,, satisfies ﬁ ¢ L}OC(Q) and by Theorem 1.1 there exists a princi-

pal eigenpair (A, ¢,) solution of the eigenvalue problem:

Lo[9] + an(x)g + Ap = 0,
such that ¢, € L*(Q) N C(Q).
Next, using that ||a,,(z) — a(z)||cc — 0as n — oo, from (iii) of the Proposition 1.1 it follows
that for n big enough, say n > ng, we have
n_ MLy +a(x))
)\p < pﬂf
Moreover, by choosing ng bigger if necessary, we achieve for n > ng
MLy +al))
1 .
Let us now compute M, [ep,| + f(x,€p,). For n > ng, we have

M edn] + [z, €dn) = [(@,ehn) — (b(x) + an())edn — eXjdn
= (ful@,0) = (an(@) + b(x))) epp — €Ay n + 0(edn)
> (= lla(z) = an(@)lloo — Ay) edn + 0(edyn)
_ WMy -qu(w, 0)) €pn, + o(epy,) > 0.
Therefore, for ¢ > 0 sufficiently small and n big enough, €¢,, is a subsolution of (1.6). By
definition of f, any large enough constant M is a supersolution of (1.6). By choosing M so

large that e¢,, < M and using a basic iterative scheme we obtain the existence of a positive
non trivial solution u of (1.6).

< 0.

Ap +llan(z) — a(@)[leo <

Vv
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6.2. Non-existence of positive bounded solutions.

Let now turn our attention to the non-existence result. Let us prove that when \,(M, +
fu(z,0)) > 0 then there exists no non trivial solution to (1.6).

Assume by contradiction that \,(M, + f,(x,0)) > 0 and there exists a positive bounded
solution u to equation (1.6).

Obviously, since u is nonnegative and bounded, using (1.6) we have for all z €

feu))

u
_ Let us denote h(r) := L,[u]. By construction, % is a nonnegative continuous function in
(2. Therefore, since €2 is compact, h achieves at some point zy € {2 a nonnegative minimum.
A short argument show that h(z¢) > 0. Indeed, otherwise we have

0~y u)
J dy = 0.
/g ( 9(y) ) 9" ()
Thus, since J, g and u are nonnegative quantities, from the above equality we deduce that
To—2

u(y) = 0 for almost every y € {z € Q| W) supp(J)}. By iterating this argument and using

(62) 0 < Lo[u] = (b(x) -

the assumption J(0) > 0, we can show that u(y) = 0 for almost every y € 2, which implies
that u = 0 since u is continuous.

As a consequence inf,cq(b(z) — > 0 for some § > 0 and there exists a positive
constant ¢y so that u > ¢ in 2. From the monotone properties of f(z,.), we deduce that
M < f(z,c0)

TR

=222 < fyu(x,0). Let us now denote y(z) = f(:'é—oco) — b(z). By construction, we have

v(z) < a(z) and therefore by (ii) of Proposition 1.1,
(Lo, +7(x) > Np(L,, + alzx)) > 0.
Moreover, since u is a solution of (1.6), we have

L, u] +v(x)u > M, u] + f(z,u) = 0.

f($7u))

By definition of \,(L,, + v(z)), for all positive A < \,(L,, + v(z)) there exists a positive
continuous function ¢, such that

L, [(bA] +y(z)pn < —Apy < 0.

Arguing as above, we can see that ¢, > ¢ for some positive J. Let us define the following
quantity
7" = 1inf{7 > Olu < 7¢,}.
Obviously, we end the proof of the theorem by proving that 7* = 0. Assume that 7* > 0.

Then by definition of 7%, there exists z¢ € € such that 7%¢,(z¢) = u(xp) > 0. At this point
2o, we have,

0 < Lo[wl(zo) = Lo[(T70x — w)](20) < 0.

Therefore, §ince w > 0, using a similar argumentation as above, we have w(y) = 0 for almost
every y € 2. Thus, we end up with 7*¢; = v and we get the following contradiction,

0 < L, [u] +v(x)u=L,[T"dx] +v(x)T"pr < 0.

Hence 7* = 0.
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6.3. Uniqueness of the solution.

Lastly, we show that when a solution of (1.6) exists then it is unique. The proof of the
uniqueness of the solution is obtained as follows.

Let u and v be two nonnegative bounded solution of (1.6). Arguing as in the above sub-
section, we see that there exists two positive constants ¢y and ¢; such that

u>c¢ inQ
v>¢;  in Q.
Since v and v are bounded and strictly positive, the following quantity is well defined
v i=inf{y > 0|yu > v}.
We claim that v* < 1. Indeed, assume by contradiction that v* > 1. From (1.6) we see that

6.3) Mg [V u] + f(z, 7" u) = f(x,v"u) =" f(z,u)
(6.4) o (f(?*ZU) B f(::;, u)> <0

Now, by definition of v*, there exists x €  so that yu(zo) = v(z¢) and from (1.6) we can
easily see that

(6.5) Mg [y ul(zo) + f (@, 7" u(z0)) = Lo [y u — v] = 0.
From (6.4) and (6.5) we deduce that
Lol u = v](zo) = 0.

Therefore, arguing as in the above sub-section it follows that y*u = v. Using now (6.4), we
deduce that

0= My[o] + £, 0) = Myl + f(a, ") = +*u (

which implies that for all z € Q f(z,7*u) = f(z,u). This later is impossible since v* > 1.
Hence, v* < 1 and as a consequence u > v.

Observe that the role of v and v can be interchanged in the above argumentation. So we
also have v > u, which shows the uniqueness of the solution.

e Jen)

Y*u U

O

7. ASYMPTOTIC BEHAVIOUR OF THE SOLUTION OF (1.8)

Lastly, in this section, we prove the Theorem 1.7 which establishes the asymptotic be-
haviour of the solution of
% = Mg[u] + f(z,u) in RT xQ.
u(0,x) =upg(r) in Q

Proof of Theorem 1.7:

The existence of a solution defined for all time ¢ follows from a standard argument and
will not be exposed. Moreover, since vy > 0 and uy # 0, using the parabolic maximum
principle, there exists a positive constant § such that u(1,z) > § in Q. Let us first assume that
Ap < 0. By following the argument developed in above section, we can construct a bounded
continuous function ¢ so that ev is a subsolution of (1.8) for e small enough. Since, u(1,z) > 0
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and 1 is bounded, by choosing ¢ smaller if necessary we achieves also that ei) < u(1,z).
Now, let us denote ¥(x,t) the solution of evolution problem (1.8) with initial datum €. By
construction, using a standard argument, ¥(¢,z) is a non-decreasing function of the time
and ¥(¢,z) < u(t+ 1, x). On the other hand, since for M big enough M is a supersolution of
(1.8) and ug is bounded, we have also u(t,z) < U(t,z), where ¥(z,t) denotes the solution of
evolution problem (1.8) with initial datum W(0,2) = M > ug. A standard argument using
the parabolic comparison principle shows that ¥ is a non-increasing function of t. Thus we
have for all time ¢

e <W(t,a) <u(t+1,2) <W(t+1,2).

Since ¥ (t, z) (respectively ¥(¢, z)) is an uniformly bounded monotonic function of ¢, ¥ (resp.
W) converges pointwise to p (resp. p) which is a solution of (1.6). From ¥(t, x) # 0, using the
uniqueness of a non-trivial solution (Theorem 1.6), we deduce that p = p # 0 and therefore,
u(z,t) — p pointwise in €2, where p denotes the unique non trivial solution of (1.6).

In the other case, when )\, > 0 we argue as follows. As above, we have 0 < u(t,z) <
U(t,xz) and ¥ converges pointwise to p a solution of (1.6). By Theorem 1.6in this situation
we have p = 0, hence u(z,t) — 0 pointwise in (2.

]

Remark 7.1. Note that the above analyse will hold for more general kernel non negative
kernel k(z,y) that satisfies H2, i.e.

Jep > 0, €9 > 0 such that min ( min k(m,y)) > .
z€Q \yeB(z,€0)

APPENDIX A

In this appendix, we first prove the Proposition 1.1. Then we recall the method of sub and
supersolution to obtain solution of the semilinear problem :

(A.1) M, [u] = f(z,u) in Q.

Before going to the proof of the Proposition 1.1, let us show that A\, (£, + a(z)) is well
defined. Let us first show that the set A := {\ |3 ¢ € C(2),¢ > 0 such that L,[¢] + A¢ <0}
is non-empty. Indeed, as observed in [18] (Theorem 1.8), for 2, J, g and a satisfying the
assumptions (H1-H4) there exists a continuous positive function 1 satisfying

=Y\ W) o ele
/QJ ( 9(y) ) g(y) =)
where ¢(z) is defined by

@) ::{ 1 if xz€{reQ|glx)=0}

JoJ <%> gf—(yx) otherwise.

Obviously ¢(z) € L™ and for any A < (|al/s + [|¢|loc) We have
Lol + (a(z) + N = (a(z) + c(x) + )y
< (a(z) + c(z) = [lalleo = llelloo)d < 0.

Therefore, the set A is non-empty.
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Observe now that since J, g are nonnegative functions and a(x) € L, for any continuous
positive function ¢ we have

Lo[o] + (a(z) + [la(z)]|0) ¢ > 0.

Therefore, the set A has an upper bound and A, is well defined.
Let us now prove the Proposition 1.1.

Proof of the Proposition 1.1 :
(i) easily follows from the definition of A,. First, let us observe that to obtain
Ap(Lg, +a(x)) < Ap(Ly, +alx))
it is sufficient to prove the inequality
A< A(Lg, +a(x))
forany A < A\,(L,, + a(x)).

Let us fix A < \,(L,, + a(x)). Then by definition of A,(L,, + a(x)) there exists a positive
function ¢ € C(£22) such that

Lo, [¢] + (a(z) + AN)¢ < 0.
Since €21 C (9, an easy computation shows that
Lo, [8] + (a(z) + Ao < Ly, [¢] + (a(z) + A)p < 0
Therefore, by definition of A,(L,, + a(z)) we have A < A,(L,, + a(z)). Hence, \y(L,, +
a(z)) < Ap(Lg, +a()).

To show (ii), we argue as above. By definition of A, (L, +a1(x)) forany A < A, (L, +a1(x))
there exists a positive ¢ € C(Q2) such that

Lo[o] + (ar(z) + Ao <0
and we have
Lo[o] + (az(z) + )b < L [0] + (a1 (2) + M) < 0.
Therefore A < \,(L,, + a2(z)). Hence (ii) holds true.

Let us now prove (iii). Again we fix A < A\,(L,, + a(z)). For this ), there exists ¢ € C'(12),
¢ > 0 such that

(A2) £o16] + (a(x) + N < 0.

An easy computation shows that we rewrite the above equation the following way:

Lol + (a(z) + N)¢ = Lo[d] + (b(x) + X)o + (a(z) — b(x))d
> Lo[¢] + (b(x) + A = [la(z) = b(2)[|00)¢
Using that (), ¢) satisfies (A.2), it follows that
Lolo] + (b(z) + A = lla(z) = b(2)]loc)¢ < 0.
Therefore, A — ||a(x) — b(x)||cc < Ap(L,, + b(z)) and we have
A< Ap(Lg +0(2)) + [la(z) = b()]|oo-
The above computation being valid for any A < A,(L,, + a(z)), we end up with

Ap(Lg +a(@)) = Ap(Ly +b(2)) < [la(z) = b(z)]|oo-
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Note that the role of a(x) and b(z) can be interchanged in the above argumentation. So,
we also have

Ap(Lg +b(x)) = Ap(Ly, + a(2)) < [la(z) — b(2) | oo
Hence
[Ap(Lg +a(@)) = Ap(Lg, +0(2))] < [la(z) = b(@)]|oo,

which proves (iii).
The proof of (iv) being similar to the proof of (ii), it will be omitted.
O
Before recalling the sub/supersolution method, let us introduce some definitions and no-
tations. We call a bounded continuous function @ (resp. u) a super-solution (resp. a sub-
solution) if @ (resp. u) satisties the following inequalities:

(A.3) Mylu] < (Z)f(z,u) in Q.
Let us now state the Theorem.

Theorem A.1. Assume f(x,.) is a Lipschitz function uniformly in x and let @ and w be respectively
a supersolution and a subsolution of (A.1) continuous up to the boundary. Assume further that

w < u. Then there exists a solution u € C(2) solution of (A.1) satisfying u < u <@

Proof:

Let us first choose k£ > |\,(M,,)| big enough such that the function —ks + f(x,s) is a
decreasing function of s uniformly in z. We can increase further k if necessary to ensure that
k € p(M,,), where p(M,,) denotes the resolvent of the operator M,,.

Note that by this choice of k, by Theorem 1.5 the operator M, — k satisfies a comparison

principle.
Now, let u; be the solution of the following linear problem
(A4) M ui] —kuy = —ku + f(z,u) in Q.

u; always exists, since by construction the continuous operator M, — k is invertible. We
claim that v < u; < @. Indeed, since v and u are respectively a sub- and super-solution of
(A.1), we have

M uy — u] = k(uy — u)

Mﬂ[ul — ﬁ] — k:(u1 — ﬂ)

0 in Q
—k(u—a)+ f(x,u) — f(z,u) >0 in Q.

IV IA

So, the inequality u < u; < u follows from the comparison principle satisfied by the operator
M., — k. Now let ug be the solution of (A.4) with u; instead of u. From the monotonicity of
—ks + f(z, s) and using the comparison principle, we have u < u; < uy < u. By induction,
we can construct an increasing sequence of function (uy, )nen satisfying u < u,, < @ and

(A.5) M [unt1] — kups1 = —kuy, + f(z,u,)  in o Q.

Since the sequence is increasing and bounded, u™ () := suppenu,(x) is well defined. More-
over, passing to the limit in the equation (A.5) using Lebesgue’s Theorem it follows that ™
is a solution of (A.1).
O
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