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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A

NON-LOCAL EQUATION WITH MONOSTABLE

NONLINEARITY

JÉRÔME COVILLE2,3, JUAN DÁVILA1,2, AND SALOMÉ MARTÍNEZ1,2

Abstract. Let J ∈ C(R), J ≥ 0,
∫
R
J = 1 and consider the nonlocal diffusion

operator M[u] = J ⋆ u− u. We study the equation

Mu+ f(x, u) = 0, u ≥ 0 in R,

where f is a KPP type non-linearity, periodic in x. We show that the principal
eigenvalue of the linearization around zero is well defined and a that a non-
trivial solution of the nonlinear problem exists if and only if this eigenvalue is
negative. We prove that if, additionally, J is symmetric then the non-trivial
solution is unique.

1. Introduction

Reaction-diffusion equations have been used to describe a variety of phenomena
in combustion theory, bacterial growth, nerve propagation, epidemiology, and spa-
tial ecology [13, 12, 15, 19]. However, in many situations, such as in population
ecology, dispersal is better described as a long range process rather than as a local
one, and integral operators appear as a natural choice. Let us mention in partic-
ular the seminal work of Kolmogorov, Petrovsky, and Piskunov [16], who in 1937
introduced a model for the dispersion of gene fractions involving a nonlocal linear
operator and a nonlinearity of the form u(1 − u), which many authors now call a
KPP-type nonlinearity.

Nonlocal dispersal operators usually take the form M[u] =
∫
RN k(x, y)u(y)dy −

u(x), where k ≥ 0 and
∫
RN k(y, x)dy = 1 for all x ∈ R

N . They have been mainly
used in discrete time models [17], while continuous time versions have also been
recently considered in population dynamics [14, 18]. Steady state and travelling
wave solutions for single equations have been studied in the case k(x, y) = J(x−y),
with J even, for some specific reaction nonlinearities in [1, 10, 8, 2, 6, 21].

In this work we restrict ourselves to one dimension and take

k(x, y) = J(x − y).

We are interested in the existence/nonexistence and uniqueness of solutions of
the following problem:

M[u] + f(x, u) = 0 in R,(1.1)

where f(x, u) is a KPP-type nonlinearity, periodic in x, and

M[u] := J ⋆ u− u.(1.2)

Date: October 31, 2006.

1



We assume that J satisfies

J ∈ C(R), J ≥ 0,

∫

R

J = 1,(1.3)

there exist a < 0 < b such that J(a) > 0, J(b) > 0.(1.4)

On f we assume that




f ∈ C(R× [0,∞)) and is differentiable with respect to u,

for each u, f(·, u) is periodic with period 2R,

fu(·, 0) is Lipschitz,

f(·, 0) ≡ 0 and f(x, u)/u is decreasing with respect to u,

there exists M > 0 such that f(x, u) ≤ 0 for all u ≥M and all x.

(1.5)

The model example of such a nonlinearity is

f(x, u) = u(a(x)− u),

where a(x) is periodic and Lipschitz.
In a recent work, Berestycki, Hamel, and Roques [2] studied the analogue of (1.1)

with a divergence operator in a periodic setting. More precisely, they considered

−∇ · (A(x)∇u) = f(x, u), x ∈ R
N , u ≥ 0,(1.6)

where A(x) is a symmetric matrix of class C1,α, periodic with respect to all variables
and uniformly elliptic, and f is C1 and satisfies (1.5). They showed existence of
nontrivial solutions provided the linearization of the equation around zero has a
negative first periodic eigenvalue.

We prove the following result.

Theorem 1.1. Assume J satisfies (1.3), (1.4) and f satisfies (1.5). Then there

exists a nontrivial, periodic solution of (1.1) if and only if

λ1(M + fu(x, 0)) < 0,

where λ1 is the principal eigenvalue of the linear operator −(M + fu(x, 0)) in the

set of 2R-periodic continuous functions. Moreover, if λ1 ≥ 0, then any nonnegative

bounded solution is identically zero.

To prove Theorem 1.1, we first need to show that the principal periodic eigenvalue
of −(M+ fu(x, 0)) is well defined. Let us introduce some notation:

Cper(R) = {u : R → R | u is continuous and 2R-periodic},

C0,1
per(R) = {u : R → R | u is Lipschitz and 2R-periodic}.

Theorem 1.2. Suppose a(x) ∈ C0,1
per(R). Then the operator −(M + a(x)) has a

unique principal eigenvalue λ1 in Cper(R); that is, there is a unique λ1 ∈ R such

that

M[φ1] + a(x)φ1 = −λ1φ1 in R(1.7)

admits a positive solution φ1 ∈ Cper(R). Moreover, λ1 is simple, that is, the space

of Cper(R) solutions to (1.7) is one dimensional.
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In [2] the authors proved that (1.6) has at most one nontrivial bounded solution,
and that it has to be periodic. A similar result is true for the nonlocal problem
(1.1), but this time we need J to be symmetric, that is,

J(x) = J(−x) for all x ∈ R.(1.8)

Note, however, that for the existence result, Theorem 1.1, we do not need this
condition.

Theorem 1.3. Assume J satisfies (1.3), (1.4), (1.8) and f satisfies (1.5). Let u
be a nonnegative, bounded solution to (1.1) and let λ1 be the principal eigenvalue

of the operator −(M+ fu(x, 0)) with periodic boundary conditions.

(a) If λ1 < 0, then either u ≡ 0 or u ≡ p, where p is the positive periodic solution

of Theorem 1.1.
(b) If λ1 ≥ 0, then u ≡ 0.

Part (b) of the preceding theorem is already covered in Theorem 1.1 and does
not depend on the symmetry of J .

When f is independent of x and satisfies (1.5), the principal eigenvalue of
−(M + f ′(0)) is given by λ1 = −f ′(0) and φ1 is just a constant. Thus in this
case Theorem 1.1 says that a bounded, nonnegative, nontrivial solution exists if
and only if f ′(0) > 0, and this solution is just the constant u0 such that f(u0) = 0.
Assuming that J is symmetric, Theorem 1.3 then implies that the constant u0 is
the unique solution in the class of nonnegative, bounded functions.

Recently, considering a nonperiodic nonlinearity f , Berestycki, Hamel, and Rossi
[3] analyzed the analogue of Theorem 1.3 for general elliptic operators in R

N , finding
sufficient conditions that ensure existence and uniqueness of a positive bounded
solution. It is natural to ask whether the periodicity of f and the symmetry of
J are crucial hypotheses in Theorem 1.3. We believe that this is the case, since
a general nonlocal operator such as (1.2) may contain a transport term, and a
standing wave connecting the steady states of the system could appear. We shall
investigate further this issue in a forthcoming work.

Hypothesis (1.4) implies that the operator M satisfies the strong maximum
principle. Suppose, for instance, that J satisfies (1.3), (1.4). If u ∈ C(R) satisfies
M[u] ≥ 0 in R, then u cannot achieve a global maximum without being constant
(see [9]). However, we will need the following version.

Theorem 1.4. Assume J satisfies (1.3), (1.4) and let c ∈ L∞(R). If u ∈ L∞(R)
satisfies u ≤ 0 a.e. and M[u] + c(x)u ≥ 0 a.e. in R, then ess supKu < 0 for all

compact K ⊂ R or u = 0 a.e. in R.

If f satisfies the stronger hypothesis that, for any x, f(x, u) is concave with
respect to u, then actually the periodic solution p of Theorem 1.1 is continuous. To
see this notice that from the strong maximum principle, Theorem 1.4, J⋆p > 0 in R.
The concavity of f with respect to u implies that for any x the map u 7→ u−f(x, u)
is strictly increasing whenever u − f(x, u) > 0. Then from the continuity of J ⋆ p
and (1.1), which can be rewritten as in the form J ⋆p = p− f(x, p), we deduce that
p is continuous.

In section 2 we review some spectral theory and give the argument of The-
orem 1.2. Then we prove Theorem 1.1 in section 3 and the uniqueness result,
Theorem 1.3(a), in section 4. We leave for an appendix a proof of Theorem 1.4.
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2. Some spectral theory

In this section we deal with the principal eigenvalue problem (1.7). Before stating
our result, let us recall some basic spectral results for positive operators due to
Edmunds, Potter, and Stuart [11] which are extensions of the Krein–Rutmann
theorem for positive noncompact operators.

A cone in a real Banach space X is a nonempty closed set K such that for
all x, y ∈ K and all α ≥ 0 one has x + αy ∈ K, and if x ∈ K, −x ∈ K, then
x = 0. A cone K is called reproducing if X = K −K. A cone K induces a partial
ordering in X by the relation x ≤ y if and only if x − y ∈ K. A linear map or
operator T : X → X is called positive if T (K) ⊆ K. The dual cone K∗ is the set
of functionals x∗ ∈ X∗ which are positive, that is, such that x∗(K) ⊂ [0,∞).

If T : X → X is a bounded linear map on a complex Banach space X, its essential
spectrum (according to Browder [5]) consists of those λ in the spectrum of T such
that at least one of the following conditions holds: (1) the range of λI − T is not
closed, (2) λ is a limit point of the spectrum of T , (3) ∪∞

n=1 ker((λI−T )
n) is infinite

dimensional. The radius of the essential spectrum of T , denoted by re(T ), is the
largest value of |λ| with λ in the essential spectrum of T . For more properties of
re(T ) see [20].

Theorem 2.1 (Edmunds, Potter, and Stuart [11]). Let K be a reproducing cone in

a real Banach space X, and let T ∈ L(X) be a positive operator such that T p(u) ≥ cu
for some u ∈ K with ‖u‖ = 1, some positive integer p, and some positive number c.

Then if c
1
p > re(T ), T has an eigenvector v ∈ K with associated eigenvalue ρ ≥ c

1
p

and T ∗ has an eigenvector v∗ ∈ K∗ corresponding to the eigenvalue ρ.

A proof of this theorem can be found in [11]. If the coneK has nonempty interior
and T is strongly positive, i.e., u ≥ 0, u 6= 0 implies Tu ∈ int(K), then ρ is the
unique λ ∈ R for which there exists nontrivial v ∈ K such that Tv = λv and ρ is
simple; see [22].

Proof of Theorem 1.2. For convenience, in this proof we write the eigenvalue
problem

M[u] + a(x)u = −λu

in the form

L[u] + b(x)u = µu,(2.1)

where

L[u] = J ⋆ u, b(x) = a(x) + k, µ = −λ+ 1 + k,

and k > 0 is a constant such that inf [−R,R] b > 0.
Observe that L : Cper(R) → Cper(R) is compact (Cper(R) is endowed with

the norm ‖u‖L∞([−R,R])). Indeed, let un ∈ Cper(R) be a bounded sequence, say

‖un‖L∞([−R,R]) ≤ B. Let ǫ > 0 and let A be large enough so that
∫
|x|≥A

J ≤ ǫ.

Since J is uniformly continuous in [−R − 2A,R + 2A] there is δ > 0 such that
|J(z1) − J(z2)| ≤

ǫ
2(A+R) for z1, z2 ∈ [−R − 2A,R + 2A] with |z1 − z2| ≤ δ. Then
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for x1, x2 ∈ [−R,R],

|L[un](x1)− L[un](x2)| ≤

∫

R

|J(x1 − y)− J(x2 − y)| |un(y)| dy

≤ 2Bǫ+B

∫ R+A

−R−A

|J(x1 − y)− J(x2 − y)| dy

≤ 3Bǫ.

This shows that L[un] is equicontinuous, and therefore by the Arzelà–Ascoli theo-
rem, L[un] is relatively compact.

Let us now establish some useful lemma.

Lemma 2.2. Suppose b(x) ∈ C0,1(R) is 2R-periodic, b(x) > 0, and let σ :=
max[−R,R] b(x). Then there exist p ∈ N, δ > 0, and u ∈ Cper(R), u ≥ 0, u 6≡ 0,
such that

Lpu+ b(x)pu ≥ (σp + δ)u.
Observe that the proof of Theorem 1.2 will then easily follow from the above

lemma. Indeed, if the lemma holds, then since u and b are nonnegative and L is a
positive operator, we easily see that

(L+ b(x))p[u] ≥ Lp[u] + b(x)pu ≥ (σp + δ)u.

Using the compactness of the operator L, we have re(L+ b(x)) = re(b(x))=σ, and

thus (σp+δ)
1
p > re(L+b(x)) and Theorem 2.1 applies. Finally, we observe that the

principal eigenvalue is simple since the cone of positive 2R-periodic functions has
nonempty interior and, for a sufficiently large p, the operator (L + b)p is strongly
positive.

�

Let us now turn our attention to the proof of the above lemma.
Proof of Lemma 2.2. Recall that for p ∈ N \ {0}, J ⋆p u := J ⋆ (J ⋆p−1 u) is well

defined by induction and satisfies J ⋆p u = Jp ⋆ u with Jp defined as follows:

Jp := J ⋆ J ⋆ · · · ⋆ J ⋆ J︸ ︷︷ ︸
p times

.

By (1.4) it follows that there exists p ∈ N such that inf(−2R−1,2R+1) Jp > 0.
Using the definition of L, a short computation shows that

Lp[u] :=

∫ R

−R

J̃p(x, y)u(y) dy

with J̃p(x, y) =
∑

k∈Z
Jp(x + 2kR − y). Following the idea of Hutson et al. [14],

consider now the following function:

v(x) :=

{
η(x)

bp(x0)−bp(x)+γ
in Ω2ǫ := (x0 − 2ǫ, x0 + 2ǫ),

0 elsewhere,

where x0 ∈ (−R,R) is a point of maximum of b(x), ǫ > 0 is chosen such that
(x0 − 2ǫ, x0 + 2ǫ) ⊂ (−R,R), γ is a positive constant that we will define later on,
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and η is a smooth function such that 0 ≤ η ≤ 1, η(x) = 1 for |x− x0| ≤ ǫ, η(x) = 0
for |x− x0| ≥ 2ǫ. Let us compute Lp[v] + bp(x)v − σpv:

Lp[v] + bp(x)v − σpv =

∫ x0+ǫ

x0−ǫ

J̃p(x, y)
dy

bp(x0)− bp(y) + γ
+

∫

Ω2ǫ\Ωǫ

J̃p(x, y)v(y) dy

+ (bp(x)− bp(x0))v

≥

∫ x0+ǫ

x0−ǫ

J̃p(x, y)
dy

bp(x0)− bp(y) + γ
+ (bp(x) − bp(x0))v

≥

∫ x0+ǫ

x0−ǫ

J̃p(x, y)
dy

bp(x0)− bp(y) + γ
− 1.

Using that inf(−2R−1,2R+1) Jp > 0, it follows that J̃p(x, y) ≥ c > 0 for x, y ∈
(−R,R). Hence

∫ x0+ǫ

x0−ǫ

J̃p(x, y)
dy

bp(x0)− bp(y) + γ
≥ c

∫ x0+ǫ

x0−ǫ

dy

k|x0 − y|+ γ
,

where k is the Lipschitz constant for bp. Using this inequality in the above estimate
yields

Lp[v] + bp(x)v − σpv ≥ c

∫ x0+ǫ

x0−ǫ

dy

k|x0 − y|+ γ
− 1.

Therefore we have

Lp[v] + bp(x)v − (σp + δ)v ≥
2c

k
log

(
1 +

kǫ

γ

)
− 1− δv

≥
2c

k
log

(
1 +

kǫ

γ

)
− 1−

δ

γ
.

Choosing now γ > 0 small so that 2c
k
log (1 + kǫ

γ
) − 1 > 1

2 and δ = γ
4 , we end up

with

Lp[v] + bp(x)v − (σp + δ)v ≥
1

4
> 0.

�

3. Existence of solutions

Proof of Theorem 1.1. We follow the argument developed by Berestycki, Hamel,
and Roques in [2].

First assume that λ1 < 0. From Theorem 1.2 there exists a positive eigenfunction
φ1 such that

M[φ1] + fu(x, 0)φ1 = −λ1φ1 ≥ 0.

Computing M[ǫφ1] + f(x, ǫφ1), it follows that

M[ǫφ1] + f(x, ǫφ1) = f(x, ǫφ1)− fu(x, 0)ǫφ1 − λ1ǫφ1

= −λ1ǫφ1 + o(ǫφ1) > 0.

Therefore, for ǫ > 0 small, ǫφ1 is a periodic subsolution of (1.1). By definition
of f , any constant M sufficiently large is a periodic supersolution of the problem.
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Choosing M so large that ǫφ1 ≤ M and using a basic iterative scheme yields the
existence of a positive periodic solution u of (1.1).

Let us now turn our attention to the nonexistence setting and assume that
λ1 ≥ 0.
Let u be a bounded nonnegative solution of (1.1). Observe that γφ1 is a periodic
supersolution for any positive γ. Indeed,

M[γφ1] + f(x, γφ1) <M[γφ1] + fu(x, 0)γφ1

≤ −λ1γφ1 ≤ 0.

Since φ1 ≥ δ for some positive δ we may define the following quantity:

γ∗ := inf{γ > 0|u ≤ γφ1}.

We have the following claim.

Claim 3.1. γ∗ = 0.

Observe that we end the proof of the theorem by proving the above claim.
Proof of the claim. Assume that γ∗ > 0. Since v := u − γ∗φ1 satisfies v ≤ 0 in

R and
M[v] + c(x)v ≥ 0 in R,

where c(x) = f(x,u)−f(x,γ∗φ1)
v

by the strong maximum principle, Theorem 1.4, we
have the following possibilities:

• either u ≡ γ∗φ1, or
• there exists a sequence of points (xn)n∈N such that |xn| → +∞ and
limn→+∞ γ∗φ1(xn)− u(xn) = 0.

In the first case we get the following contradiction:

0 = M[γ∗φ1] + f(x, γ∗φ1) <M[γ∗φ1] + fu(x, 0)γ
∗φ1 ≤ 0.

Hence γ∗ = 0.
In the second case we argue as follows. Let (yn)n∈N be a sequence of points

satisfying, for all n, yn ∈ [−R,R] and xn − yn ∈ 2RZ. Up to extraction of a
subsequence, yn → ȳ. Now consider the following sequence of functions un :=
u(.+ xn), φn := φ1(.+ xn), and wn := γ∗φn − un so that wn > 0 in R. Since M is
translation invariant and f is periodic, un and φn > 0 satisfy

M[un] + f(x+ yn, un) = 0 in R,

M[γ∗φn] + fu(x+ yn, 0)γ
∗φn ≤ 0 in R.

It follows that
J ⋆ wn ≤ an(x)wn,

where

an(x) = 1−
γ∗fu(x+ yn, 0)φn − f(x+ yn, un)

γ∗φn − un
.

Since wn > 0 we see that an is well defined and an ≥ 0. Using that f(x, u)/u is
nonincreasing with respect to u we have f(x, γ∗φn) ≤ γ∗fu(x, 0)φn. This implies

γ∗fu(x+ yn, 0)φn − f(x+ yn, un)

γ∗φn − un
≥
f(x+ yn, γ

∗φn)− f(x+ yn, un)

γ∗φn − un
≥ −C.

Thus
0 ≤ an ≤ C + 1 in R for all n,
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with C independent of n. Observe that

J ⋆ wn(0) = an(0)(γ
∗φ1(xn)− u(xn)) → 0,

which implies ∫

R

J(−y)wn(y) dy → 0 as n→ +∞.

Similarly,

J ⋆ J ⋆ wn(0) = J ⋆ (anwn)(0) =

∫

R

J(−y)an(y)wn(y) dy,

but ∫

R

J(−y)an(y)wn(y) dy ≤ ‖an‖L∞

∫

R

J(−y)wn(y) dy → 0.

Hence

J ⋆ J ⋆ wn(0) =

∫

R

(J ⋆ J)(−y)wn(y) dy → 0 as n→ +∞.

Defining

Jk := J ⋆ · · · ⋆ J︸ ︷︷ ︸
k times

,

we see that for any fixed k ∈ N,
∫

R

Jk(−y)wn(y) dy → 0 as n→ +∞.

By (1.4) the support of Jk increases to all of R as k → +∞. Thus we may find
a new subsequence such that wn → 0 a.e. in R as n → +∞. Since φ1 is periodic
and continuous, φn(x) → φ̄(x) uniformly with respect to x, where φ̄(x) = φ(x+ ȳ).
Hence ū(x) = limn→+∞ un(x) exists a.e. and is given by ū(x) = γ∗φ̄ . By dominated
convergence, ū is a solution to

M[ū] + f(x+ ȳ, ū) = 0,

while by uniform convergence

M[γ∗φ̄] + fu(x + ȳ, 0)γ∗φ̄ ≤ 0 in R.

Since ū = γ∗φ̄ it follows that f(x+ ȳ, γ∗φ̄) ≡ fu(x+ ȳ, 0)γ∗φ̄. This contradicts the
fact that f(x, u)/u is decreasing in u. Hence, γ∗ = 0.

�

4. Uniqueness when J is symmetric

Throughout this section we assume that J is symmetric. For the proof of Theo-
rem 1.3 we follow the ideas in [2].

Proof of Theorem 1.3. Part (b) of this theorem is contained in Theorem 1.1 so
we concentrate on part (a).

Let p denote the positive periodic solution to (1.1) constructed in Theorem 1.1
and let u ≥ 0, u 6≡ 0 be a bounded solution. We will prove that u ≡ p.

We show first that u ≤ p. Set

γ∗ := inf{γ > 0 | u ≤ γp}.

Note that γ∗ is well defined because u is bounded and p is bounded below by a
positive constant. We claim that

γ∗ ≤ 1.
8



Suppose that γ∗ > 1 and note that u ≤ γ∗p. By Theorem 1.4 either u ≡ γ∗p
or ess infK(γ∗p − u) > 0 for all compact K ⊂ R. The first possibility leads to
f(x, γ∗p) = γ∗f(x, p) for all x ∈ R, which is not possible if γ∗ > 1. In the second
case there exists a sequence (xn)n∈N such that |xn| → +∞ and limn→+∞ γ∗p(xn)−
u(xn) = 0. Let (yn)n∈N be a sequence satisfying yn ∈ [−R,R] and xn − yn = kn2R
for some kn ∈ Z. We may assume that yn → ȳ. Let un := u(.+xn), which satisfies

M[un] + f(x+ yn, un) = 0.

Let wn = γ∗p(.+ yn)− un ≥ 0. Then wn > 0 in R and

J ⋆ wn = an(x)wn,

where

an(x) = 1−
γ∗f(x+ yn, p(x+ yn))− f(x+ yn, un(x))

γ∗p(x+ yn)− un(x)
.

Since wn > 0 we deduce that an is well defined and an ≥ 0. Using that f(x, u)/u
is nonincreasing with respect to u and the fact that γ∗ > 1, we have f(x, γ∗p) ≤
γ∗f(x, p). This implies

γ∗f(x, p)− f(x, u)

γ∗p− u
≥
f(x, γ∗p)− f(x, u)

γ∗p− u
≥ −C.

Thus
0 ≤ an ≤ C + 1 in R for all n,

with C independent of n. Observe that

J ⋆ wn(0) = an(0)(γ
∗p(yn)− u(xn)) = an(0)(γ

∗p(xn)− u(xn)) → 0,

which implies ∫

R

J(−y)wn(y) dy → 0 as n→ +∞.

Similarly,

J ⋆ J ⋆ wn(0) = J ⋆ (anwn)(0) =

∫

R

J(−y)an(y)wn(y) dy,

but ∫

R

J(−y)an(y)wn(y) dy ≤ ‖an‖L∞

∫

R

J(−y)wn(y) dy → 0.

Hence

J ⋆ J ⋆ wn(0) =

∫

R

(J ⋆ J)(−y)wn(y) dy → 0 as n→ +∞.

Defining
Jk := J ⋆ · · · ⋆ J︸ ︷︷ ︸

k times

,

we see that for all k ∈ N,
∫

R

Jk(−y)wn(y) dy → 0 as n→ +∞.

Hypothesis (1.4) implies that the support of Jk converges to all of R as k → +∞.
Therefore, for a subsequence, wn → 0 a.e. in R as n→ +∞. Since p is periodic, for
possibly a new subsequence p(x+yn) → p(x+ȳ) a.e. Hence, ū(x) = limn→+∞ un(x)
exists a.e. and by dominated convergence, ū is a solution to

M[ū] + f(x+ ȳ, ū) = 0.(4.1)

9



But since wn → 0 a.e. we have ū = γ∗p(· + ȳ). Thus γ∗p(· + ȳ) is a solution to
(4.1), which is impossible for γ∗ > 1 as argued before.

The proof that p ≤ u is analogous, but a key point is to prove first that under the
conditions of Theorem 1.3 any nontrivial, nonnegative solution is bounded below
by a positive constant. This is the content of Proposition 4.1.

�

Proposition 4.1. Assume that J satisfies (1.3), (1.4), and (1.8), f satisfies (1.5),
and that the operator −(M−fu(x, 0)) has a negative principal periodic eigenvalue.
Suppose that u is a nonnegative, bounded solution to (1.1). Then u ≡ 0 or there
exists a constant c > 0 such that

u(x) ≥ c for all x ∈ R.
The basic tool to prove Proposition 4.1, following an idea in [2], is to study the

principal eigenvalue of the linearized operator in bounded domains. More precisely,
let Ω = (−r,+r) and a : Ω → R be Lipschitz. We consider the eigenvalue problem
in Ω with “Dirichlet boundary condition” in the following sense:





M[ϕ] + a(x)ϕ = −λϕ in Ω,

ϕ(x) = 0 for all x 6∈ Ω,

ϕ|Ω is continuous.

(4.2)

We show that the principal eigenvalue for (4.2) exists and converges to the princi-
pal periodic eigenvalue as r → +∞. The first step is to establish variational charac-
terizations of these eigenvalues, which is the argument that requires the symmetry
of J .

Lemma 4.2. Let Ω ⊂ R be a bounded open interval. Assume that J satisfies

(1.3), (1.4), and (1.8), and let a : Ω → R be Lipschitz. Then there exists a smallest

λ1 such that (4.2) has a nontrivial solution. This eigenvalue is simple and the

eigenfunctions are of constant sign in Ω. Moreover,

λ1 = min
ϕ∈C(Ω)

−

∫
Ω(M[ϕ̃] + a(x)ϕ)ϕ∫

Ω ϕ
2

,(4.3)

where ϕ̃ denotes the extension by 0 of ϕ to R and the minimum is attained.

The statement and the proof are analogous to those of Theorem 3.1 in [14] except
that here we do not assume that J(0) > 0. A different formula for the principal
eigenvalue with a Dirichlet boundary condition appears in [7], where it is used to
characterize the rate of decay of solutions to a linear evolution equation.

Proof. Define the operator X [ϕ] =
∫
Ω J(x − y)ϕ(y) dy for ϕ ∈ C(Ω). Then X :

C(Ω) → C(Ω) is compact. Let c0 > 0 be such that infΩ a(x) + c0 > 0 and define
ã = a + c0. The eigenvalue problem (4.2) is equivalent to the following: find
ϕ ∈ C(Ω) and λ ∈ R such that

X [ϕ] + ãϕ = (−λ+ 1 + c0)ϕ in Ω.

A calculation similar to Lemma 2.2 shows that there exists an integer p, u ∈ C(Ω),
and δ > 0 such that

(X + ã)pu ≥

((
max
Ω

ã

)p

+ δ

)
u in Ω.(4.4)
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Using Theorem 2.1 we deduce that the operator X + ã has a unique principal
eigenvalue ρ > 0 and a principal eigenvector ϕ1 ∈ C(Ω). Let λ = 1+ c0 − ρ so that
X [ϕ1] + a(x)ϕ1 = (1− λ)ϕ1. From (4.4) we deduce that σ+ defined by

σ+ = sup
ϕ∈C(Ω)

∫
Ω(X [ϕ] + a(x)ϕ)ϕ∫

Ω ϕ
2

(4.5)

satisfies

σ+ ≥ 1− λ > max
Ω

a.(4.6)

Now, using the same argument as in [14] we deduce that the supremum in (4.5)

is achieved. Indeed, it is standard [4] that the spectrum of X̂ + a(x) is to the left
of σ+ and that there exists a sequence ϕn ∈ C(Ω) such that ‖ϕn‖L2(Ω) = 1 and

‖(X+a(x)−σ+)ϕn‖L2(Ω) → 0 as n→ +∞. By compactness of X : L2(Ω) → C(Ω)

for a subsequence, limn→+∞X [ϕn] exists in C(Ω). Then, using (4.6), we see that
ϕn → ϕ in L2(Ω) for some ϕ and (X+a)ϕ = σ+ϕ. This equation implies ϕ ∈ C(Ω),
and hence σ+ is a principal eigenvalue for the operator X and by uniqueness of this
eigenvalue we have σ+ = 1− λ. �

Lemma 4.3. Assume that J satisfies (1.3), (1.4), and (1.8) and that a : R → R

is a 2R-periodic, Lipschitz function. Then the principal eigenvalue of the operator

−(M+ a(x)) in Cper(R) is given by

λ1(a) = inf
‖ϕ‖

L2(R)=1
−

∫

R

(M[ϕ] + a(x)ϕ)ϕ(4.7)

= min
ϕ∈Cper(R)

−

∫ R

−R
(M[ϕ] + a(x)ϕ)ϕ

∫ R

−R
ϕ2

.(4.8)

Proof. By Theorem 1.2 we know that there exists a unique principal eigenvalue
λ1(a) of the operator −(M + a) in Cper(R). Let φ1 ∈ Cper(R) denote a positive
eigenfunction associated with λ1(a). We normalize φ1 such that

∫ R

−R

φ21 = 2R.(4.9)

On the other hand, the quantity

λ̃1(a) = inf
ϕ∈Cper(R)

−

∫ R

−R
(M[ϕ] + a(x)ϕ)ϕ

∫ R

−R
ϕ2

is also an eigenvalue of −(M + a) on Cper(R) with a positive eigenfunction. By

uniqueness of the principal eigenvalue, λ1(a) = λ̃1(a).
We claim that

inf
‖ϕ‖

L2(R)=1
−

∫

R

(M[ϕ] + a(x)ϕ)ϕ ≤ λ1(a).

Indeed, for r > 0 let ηr ∈ C∞
0 (R) be such that 0 ≤ ηr ≤ 1, ηr(x) = 1 for |x| ≤ r,

ηr(x) = 0 for |x| ≥ r + 1. It will be sufficient to show that

lim
r→+∞

∫
R
(M[φ1ηr] + aφ1ηr)φ1ηr∫

R
(φ1ηr)2

= −λ1(a).(4.10)
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By (4.9) we have

∫

R

(φ1ηr)
2 = 2r +O(1) as r → +∞.(4.11)

Let 0 < θ < 1. Then

|M[φ1](x) −M[φ1ηr]| ≤ ‖φ1‖L∞

∫

|x−z|≥r

|J(z)| dz

≤ ‖φ1‖L∞

∫

|z|≥(1−θ)r

|J(z)| dz for all |x| ≤ θr

= o(1) uniformly for all |x| ≤ θr.(4.12)

We split the integral

∫

R

(M[φ1ηr] + aφ1ηr)φ1ηr =

∫

|x|≤θr

. . . dx +

∫

|x|≥θr

. . . dx.(4.13)

Using ηr(x) = 1 for |x| ≤ θr and (4.12) we see that

∫

|x|≤θr

(M[φ1ηr] + aφ1ηr)φ1ηr =

∫

|x|≤θr

(M[φ1ηr] + aφ1)φ1

=

∫

|x|≤θr

(M[φ1] + aφ1 + o(1))φ1

= −2θλ1(a)r + o(r) as r → +∞.

The second integral in (4.13) is bounded by

∣∣∣∣∣

∫

|x|≥θr

(M[φ1ηr] + aφ1ηr)φ1ηr

∣∣∣∣∣ ≤ C(1 − θ)r.(4.14)

Thus from (4.11)–(4.14) we conclude that

∣∣∣∣

∫
R
(M[φ1ηr] + aφ1ηr)φ1ηr∫

R
(φ1ηr)2

+ λ1(a)

∣∣∣∣ ≤ C(1− θ) + o(1),

which proves (4.10).
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To establish (4.7) it remains to verify that

λ1(a) ≤ −

∫
R
(M[ϕ] + a(x)ϕ)ϕ∫

R
ϕ2

for all ϕ ∈ Cc(R).(4.15)

By uniqueness of the principal eigenvalue we have

λ1(a) = inf
ϕ∈Cper(Ωk)

−

∫ kR

−kR
(M[ϕ] + a(x)ϕ)ϕ
∫ kR

−kR
ϕ2

,(4.16)

where

Ωk = (−kR, kR) for k ≥ 1

and Cper(Ωk) is the set of continuous 2kR-periodic functions on R.
Fix ϕ ∈ Cc(R) and consider k large enough so that supp(ϕ) ⊆ Ωk. Consider now

ϕk the 4kR-periodic extension of ϕ. Since ϕk ∈ Cper(Ω2k), (4.16) yields

λ1(a) ≤ −

∫ 2kR

−2kR(M[ϕk] + a(x)ϕk)ϕk
∫ 2kR

−2kR
ϕ2
k

= −

∫
R
(M[ϕk] + a(x)ϕ)ϕ∫

R
ϕ2

.(4.17)

For |x| ≤ kR we have

|M[ϕk](x)−M[ϕ](x)| ≤ ‖ϕ‖L∞

∫

|y|≥2kR

|J(x− y)| dy ≤ ‖ϕ‖L∞

∫

|z|≥kR

|J(z)| dz.

Hence

lim
k→+∞

∫

R

(M[ϕk] + a(x)ϕ)ϕ =

∫

R

(M[ϕ] + a(x)ϕ)ϕ.(4.18)

Thanks to (4.17) and (4.18), we conclude the validity of (4.15). �

Lemma 4.4. Assume J satisfies (1.3), (1.4), and (1.8) and that a : R → R is a

2R-periodic, Lipschitz function. Let λr,y be the principal eigenvalue of (4.2) for

Ωr,y = Br(y)

and let λ1(a) denote the principal eigenvalue of −(M+ a(x)) in Cper(R). Then

lim
r→+∞

λr,y = λ1(a).

Moreover, the applications y 7→ λ
r,y

and y 7→ ϕ
r,y

are periodic. The periodicity of

the application y 7→ ϕr,y is understood as follows:

ϕ
r,y+2R(x) = ϕ

r,y
(x− 2R).

Proof. For convenience we write

λr = λr,y

and let ϕr be a positive eigenfunction of (4.2) in Ωr.
By the variational characterization (4.3) we see that r 7→ λr is nonincreasing,

and hence limr→+∞ λr exists. Moreover, using (4.7) we have

λr ≥ λ1(a) for all r > 0.(4.19)

Let φ1 ∈ Cper(R) be a positive eigenfunction of −(M+a(x)) with eigenvalue λ1(a)
normalized such that ∫ R

−R

φ21 = 2R.
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Let ηr ∈ C∞
0 (R) be such that 0 ≤ η ≤ 1,

ηr(x) = 1 for |x− y| ≤ r − 1, ηr(x) = 0 for |x− y| ≥ r

and such that ‖ηr‖C2(R) ≤ C with C independent of r. Arguing in the same way
as in the proof of Lemma 4.3 we obtain

lim
r→+∞

∫
R
(M[φ1ηr] + aφ1ηr)φ1ηr∫

R
(φ1ηr)2

= −λ1(a).

Since

λr ≤ −

∫
R
(M[φ1ηr] + aφ1ηr)φ1ηr∫

R
(φ1ηr)2

we conclude that

lim
r→+∞

λr ≤ λ1(a).

This and (4.19) prove the desired result.
Let us now show the periodicity of the applications y 7→ λr,y and y 7→ ϕr,y. Re-

place y by y+2R in the above problem (4.2) and let us denote by λ
r,y+2R

and ϕ
r,y+2R

the corresponding principal eigenvalue and the associated positive eigenfunction:

M[ϕ
r,y+2R

] + a(x)ϕ
r,y+2R

= −λ
r,y+2R

ϕ
r,y+2R

in Br(y + 2R).

We take the following normalization:
∫

Ω
r,y+2R

ϕ2
r,y+2R

(x) dx = 1.

Let us defined ψ(x) := ϕ
r,y+2R

(x+ 2R) for any x ∈ Br(y). A short computation
shows that

M[ψ](x) = M[ϕ]
r,y+2R

(x+ 2R).

Therefore, using the periodicity of a(x), we have

M[ψ](x) + a(x+ 2R)ψ(x) = λ
r,y+2R

ψ in Br(y),

M[ψ](x) + a(x)ψ(x) = λ
r,y+2R

ψ in Br(y).

Thus, λ
r,y+2R

is a principal eigenvalue of the problem (4.2) with Ωr,y = Br(y).
Hence, by uniqueness of the principal eigenvalue we have λ

r,y
= λ

r,y+2R and ψ =
γϕ

r,y
for some positive γ. Using the normalization, it follows that γ = 1. Therefore,

ϕ
r,y

(x) = ϕ
r,y+2R

(x+ 2R); in other words

ϕ
r,y+2R(x) = ϕ

r,y
(x− 2R).

�

Remark 4.5. The proof of Lemma 4.4 yields the slightly stronger conclusion that
the convergence

lim
r→+∞

λr,y = λ1(a)

is uniform with respect to y ∈ R, since λr,y is continuous in y.

Proof of Proposition 4.1. Let u ≥ 0 be a bounded solution to (1.1) such that
u 6≡ 0. By the strong maximum principle (Theorem 1.4) we must have infK u > 0
for compact sets K ⊂ R.
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Given y ∈ R and r > 0 we write Ωr,y = (y−r, y+r), λr,y the principal eigenvalue
of −(M+ fu(x, 0)) with Dirichlet boundary condition in Ωr,y as in (4.2), and ϕr,y

a positive Dirichlet eigenfunction normalized so that
∫

Ωr,y

ϕ2
r,y = 1.

Since the principal eigenvalue λ1 := λ1(fu(x, 0)) of −(M+ fu(x, 0)) with periodic
boundary conditions is negative by hypothesis, by Lemma 4.4 and Remark 4.5 we
may fix r > 0 large enough so that

λr,y < λ1/2 for all y ∈ R.

Note that for x ∈ Ωr,y,

M[γϕr,y] + f(x, γr,y) = −λr,yγϕr,y − fu(x, 0)γϕr,y + f(x, γϕr,y)

≥ −λ1/2γϕr,y − fu(x, 0)γϕr,y + f(x, γϕr,y)

≥ 0

if 0 ≤ γ ≤ γ0 with γ0 fixed suitably small. For x 6∈ Ωy,r we have ϕy,r(x) = 0 and
M[ϕr,y] ≥ 0. Thus

M[γϕr,y] + f(x, γϕr,y) ≥ 0 in R(4.20)

for all 0 < γ < γ0.
We claim that

γ0ϕr,y ≤ u in R for all y ∈ R.(4.21)

This proves the proposition because there is a positive constant c such that ϕr,y(y) ≥
c for all y ∈ R since the application y 7→ ϕr,y is periodic and ϕr,y(y) > 0 for any
y ∈ [−2R, 2R].

Now, to prove (4.21) fix y ∈ R and set

γ∗ = sup{ γ > 0 / γϕr,y ≤ u in R}.

Since infK u > 0 for compact sets K ⊂ R and ϕr,y has compact support we see that
γ∗ > 0. Assume that γ∗ < γ0. Then by (4.20), γ∗ϕr,y is a subsolution of (1.1) while
u is a solution. By the strong maximum principle (Theorem 1.4) either γ∗ϕr,y ≡ u
in R or infK(u−γ∗ϕr,y) > 0 for compact sets K ⊂ R. The former case is impossible
because u is strictly positive, while the latter case yields a contradiction with the
definition of γ∗. It follows that γ∗ ≥ γ0 as desired.

�

Appendix

In this appendix we give a short proof of Theorem 1.4. We assume that J satisfies
(1.3), (1.4), c ∈ L∞(R), and u ∈ L∞(R) satisfies

u ≤ 0 a.e. in R,

M[u] + cu ≥ 0 a.e. in R.(A.1)

For ǫ > 0 define

uǫ(x) =
1

2ǫ

∫ x+ǫ

x−ǫ

u.

Then uǫ is continuous in R, uǫ ≤ 0, and uǫ → u a.e. as ǫ→ 0. There are two cases:
15



(1) for any closed interval I one has lim supǫ→0 supI uǫ < 0, or
(2) for some closed interval I one has lim supǫ→0 supI uǫ = 0.
If case (1) occurs, we see that for all closed intervals I we have ess supIu <

0. Assume case (2) holds. Let I be a closed interval and ǫn → 0 be such that
limn→+∞ uǫn(xn) = 0, where xn ∈ I is such that supI uǫn = uǫn(xn). Integrating
(A.1) from xn − ǫn to xn + ǫn and dividing by 2ǫn, we have

J ⋆ uǫn(xn) ≥ uǫn(xn)−
1

2ǫn

∫ xn+ǫn

xn−ǫn

cu.

But, since u ≤ 0 a.e.,

∣∣∣∣
1

2ǫn

∫ xn+ǫn

xn−ǫn

cu

∣∣∣∣ ≤ −‖c‖L∞uǫn(xn) → 0.

Hence

lim inf
n→+∞

J ⋆ uǫn(xn) ≥ 0.

We may assume that xn → x ∈ I. Then by dominated convergence,

J ⋆ uǫn(xn) =

∫

R

J(xn − y)uǫn(y) dy →

∫

R

J(x− y)u(y) dy.

This shows that u = 0 a.e. in x − supp(J). Now, for any x1 in the interior of
x − supp(J) we have J ⋆ u(x1) ≥ 0, which shows that u = 0 a.e. in x − 2supp(J),
where 2supp(J) = supp(J) + supp(J). Note that assumption (1.4) implies that
k supp(J) covers all of R as k → +∞, where k supp(J) is defined inductively as
(k− 1) supp(J)+ supp(J). Repeating the previous argument we deduce that u = 0
a.e. in R.

�
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