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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A
NON-LOCAL EQUATION WITH MONOSTABLE
NONLINEARITY

JEROME COVILLE23, JUAN DAVILAL2, AND SALOME MARTINEZ!2

ABSTRACT. Let J € C(R), J >0, [, J =1 and consider the nonlocal diffusion
operator M[u] = J x u — u. We study the equation

Mu+ f(z,u) =0, w>0 inR,
where f is a KPP type non-linearity, periodic in . We show that the principal
eigenvalue of the linearization around zero is well defined and a that a non-
trivial solution of the nonlinear problem exists if and only if this eigenvalue is

negative. We prove that if, additionally, J is symmetric then the non-trivial
solution is unique.

1. INTRODUCTION

Reaction-diffusion equations have been used to describe a variety of phenomena
in combustion theory, bacterial growth, nerve propagation, epidemiology, and spa-
tial ecology [13, 12, 15, 19]. However, in many situations, such as in population
ecology, dispersal is better described as a long range process rather than as a local
one, and integral operators appear as a natural choice. Let us mention in partic-
ular the seminal work of Kolmogorov, Petrovsky, and Piskunov [16], who in 1937
introduced a model for the dispersion of gene fractions involving a nonlocal linear
operator and a nonlinearity of the form w(1 — u), which many authors now call a
KPP-type nonlinearity.

Nonlocal dispersal operators usually take the form Mu] = f]RN k(z,y)u(y)dy —
u(z), where k > 0 and [pn k(y,z)dy =1 for all z € RY. They have been mainly
used in discrete time models [17], while continuous time versions have also been
recently considered in population dynamics [14, 18]. Steady state and travelling
wave solutions for single equations have been studied in the case k(z,y) = J(x —y),
with J even, for some specific reaction nonlinearities in [1, 10, 8, 2, 6, 21].

In this work we restrict ourselves to one dimension and take

k(z,y) = J(x —y).

We are interested in the existence/nonexistence and uniqueness of solutions of
the following problem:

(1.1) Mu] + f(z,u) =0 inR,
where f(z,u) is a KPP-type nonlinearity, periodic in x, and

(1.2) Mlu) == J xu — u.
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We assume that J satisfies

(1.3) JeCR), J>0, /J:1,
R

(1.4) there exist a < 0 < b such that J(a) > 0, J(b) > 0.
On f we assume that

f € CR x [0,00)) and is differentiable with respect to u,
for each u, f(-,u) is periodic with period 2R,
(1.5) fu(-,0) is Lipschitz,

f(-;0) =0 and f(x,u)/u is decreasing with respect to u,

there exists M > 0 such that f(z,u) <0 for all v > M and all .

The model example of such a nonlinearity is

f(x,u) = u(a(m) —u),

where a(x) is periodic and Lipschitz.
In a recent work, Berestycki, Hamel, and Roques [2] studied the analogue of (1.1)
with a divergence operator in a periodic setting. More precisely, they considered

(1.6) ~V - (A(x)Vu) = f(z,u), xR, u>0,

where A(x) is a symmetric matrix of class C1®, periodic with respect to all variables
and uniformly elliptic, and f is C' and satisfies (1.5). They showed existence of
nontrivial solutions provided the linearization of the equation around zero has a
negative first periodic eigenvalue.

We prove the following result.

Theorem 1.1. Assume J satisfies (1.3), (1.4) and f satisfies (1.5). Then there
exists a nontrivial, periodic solution of (1.1) if and only if

MM+ fu(z,0)) <0,

where A1 is the principal eigenvalue of the linear operator —(M + fyu(x,0)) in the
set of 2R-periodic continuous functions. Moreover, if \y > 0, then any nonnegative
bounded solution is identically zero.

To prove Theorem 1.1, we first need to show that the principal periodic eigenvalue
of —=(M + fu(x,0)) is well defined. Let us introduce some notation:

Cper(R) ={u: R — R | u is continuous and 2R-periodic},

C%L(R) = {u: R — R | u is Lipschitz and 2R-periodic}.

per

Theorem 1.2. Suppose a(x) € CY.(R). Then the operator —(M + a(x)) has a
unique principal eigenvalue i in Cper(R); that is, there is a unique A\; € R such

that
(17) M[¢1] + a($)¢1 =—-M¢1 mR

admits a positive solution ¢1 € Cper(R). Moreover, Ay is simple, that is, the space
of Cper(R) solutions to (1.7) is one dimensional.
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In [2] the authors proved that (1.6) has at most one nontrivial bounded solution,
and that it has to be periodic. A similar result is true for the nonlocal problem
(1.1), but this time we need J to be symmetric, that is,

(1.8) J(x) = J(—x) forall zeR.

Note, however, that for the existence result, Theorem 1.1, we do not need this
condition.

Theorem 1.3. Assume J satisfies (1.3), (1.4), (1.8) and f satisfies (1.5). Let u
be a mnonnegative, bounded solution to (1.1) and let A1 be the principal eigenvalue
of the operator —(M + f,(x,0)) with periodic boundary conditions.

(a) If \1 < 0, then either u =0 or u = p, where p is the positive periodic solution
of Theorem 1.1.

(b) If Ay >0, then u = 0.

Part (b) of the preceding theorem is already covered in Theorem 1.1 and does
not depend on the symmetry of J.

When f is independent of x and satisfies (1.5), the principal eigenvalue of
—(M + f'(0)) is given by Ay = —f/(0) and ¢ is just a constant. Thus in this
case Theorem 1.1 says that a bounded, nonnegative, nontrivial solution exists if
and only if f/(0) > 0, and this solution is just the constant ug such that f(ug) = 0.
Assuming that J is symmetric, Theorem 1.3 then implies that the constant wug is
the unique solution in the class of nonnegative, bounded functions.

Recently, considering a nonperiodic nonlinearity f, Berestycki, Hamel, and Rossi
[3] analyzed the analogue of Theorem 1.3 for general elliptic operators in RY | finding
sufficient conditions that ensure existence and uniqueness of a positive bounded
solution. It is natural to ask whether the periodicity of f and the symmetry of
J are crucial hypotheses in Theorem 1.3. We believe that this is the case, since
a general nonlocal operator such as (1.2) may contain a transport term, and a
standing wave connecting the steady states of the system could appear. We shall
investigate further this issue in a forthcoming work.

Hypothesis (1.4) implies that the operator M satisfies the strong maximum
principle. Suppose, for instance, that J satisfies (1.3), (1.4). If u € C'(R) satisfies
M{[u] > 0 in R, then u cannot achieve a global maximum without being constant
(see [9]). However, we will need the following version.

Theorem 1.4. Assume J satisfies (1.3), (1.4) and let ¢ € L*°(R). If u € L>®(R)
satisfies w < 0 a.e. and Mu] + c¢(x)u > 0 a.e. in R, then ess supgu < 0 for all
compact K CR oru=0 a.e. in R.

If f satisfies the stronger hypothesis that, for any z, f(x,u) is concave with
respect to u, then actually the periodic solution p of Theorem 1.1 is continuous. To
see this notice that from the strong maximum principle, Theorem 1.4, Jxp > 0in R.
The concavity of f with respect to u implies that for any « the map u — u— f(x, u)
is strictly increasing whenever uw — f(x,u) > 0. Then from the continuity of J * p
and (1.1), which can be rewritten as in the form Jxp = p— f(x, p), we deduce that
p is continuous.

In section 2 we review some spectral theory and give the argument of The-
orem 1.2. Then we prove Theorem 1.1 in section 3 and the uniqueness result,
Theorem 1.3(a), in section 4. We leave for an appendix a proof of Theorem 1.4.
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2. SOME SPECTRAL THEORY

In this section we deal with the principal eigenvalue problem (1.7). Before stating
our result, let us recall some basic spectral results for positive operators due to
Edmunds, Potter, and Stuart [11] which are extensions of the Krein-Rutmann
theorem for positive noncompact operators.

A cone in a real Banach space X is a nonempty closed set K such that for
all z,y € K and all @ > 0 one has x + ay € K, and if x € K, —x € K, then
2 =0. A cone K is called reproducing if X = K — K. A cone K induces a partial
ordering in X by the relation z < y if and only if x —y € K. A linear map or
operator T : X — X is called positive if T(K) C K. The dual cone K* is the set
of functionals z* € X* which are positive, that is, such that z*(K) C [0, c0).

If T: X — X is a bounded linear map on a complex Banach space X, its essential
spectrum (according to Browder [5]) consists of those A in the spectrum of T such
that at least one of the following conditions holds: (1) the range of AT — T is not
closed, (2) A is a limit point of the spectrum of T, (3) USZ, ker((AI —T)™) is infinite
dimensional. The radius of the essential spectrum of T', denoted by r.(7T'), is the
largest value of |A| with A in the essential spectrum of T. For more properties of
re(T) see [20].

Theorem 2.1 (Edmunds, Potter, and Stuart [11]). Let K be a reproducing cone in
a real Banach space X, and let T € L(X) be a positive operator such that TP (u) > cu
for some u € K with ||u]| = 1, some positive integer p, and some positive number c.
Then if cF > re(T), T has an eigenvector v € K with associated eigenvalue p > c¥
and T* has an eigenvector v* € K* corresponding to the eigenvalue p.

A proof of this theorem can be found in [11]. If the cone K has nonempty interior
and T is strongly positive, i.e., u > 0, u # 0 implies Tu € int(K), then p is the
unique A € R for which there exists nontrivial v € K such that Tv = Av and p is
simple; see [22].

Proof of Theorem 1.2. For convenience, in this proof we write the eigenvalue
problem

M{u] + a(z)u = —Au
in the form
(2.1) Llu] + b(z)u = pu,

where
Llu] =Jxu, blx)=alx)+k, p=-A+1+Ek,

and k > 0 is a constant such that inf_g g b > 0.

Observe that £ : Cperr) — Cper(R) is compact (Cper(R) is endowed with
the norm ||ul|p~(—g,r))). Indeed, let u, € Cper(R) be a bounded sequence, say
llunll oo (—r,R)) < B. Let € > 0 and let A be large enough so that f\z\ZA‘] <e.
Since J is uniformly continuous in [—-R — 24, R + 2A] there is 6 > 0 such that
|[J(z1) — J(22)| < AR for 21,22 € [-R —2A, R+ 2A] with |21 — 22| < 4. Then
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for x1,z2 € [-R, R],
|[Llun](x1) = Llun](22)] < / [T (21 —y) = J(@2 — )| [ua(y)| dy
R

R+A

§2B6+B/ |J (21 —y) — J(22 — y)| dy
—R—A

< 3Be.

This shows that L[u,] is equicontinuous, and therefore by the Arzela—Ascoli theo-
rem, L[u,] is relatively compact.
Let us now establish some useful lemma.

Lemma 2.2. Suppose b(z) € CYL(R) is 2R-periodic, b(z) > 0, and let o =
max(_g g) b(x). Then there exist p € N,0 > 0, and u € Cper(R), u > 0, u # 0,
such that
LPu 4+ b(x)Pu > (oP + d)u.
Observe that the proof of Theorem 1.2 will then easily follow from the above
lemma. Indeed, if the lemma holds, then since v and b are nonnegative and L is a
positive operator, we easily see that

(L4 b(x))Pu] > LP[u] + b(x)Pu > (6P + I)u.

Using the compactness of the operator L, we have r.(L + b(z)) = r.(b(z))=0c, and
thus (Jp+5)% > r(L+b(x)) and Theorem 2.1 applies. Finally, we observe that the
principal eigenvalue is simple since the cone of positive 2R-periodic functions has
nonempty interior and, for a sufficiently large p, the operator (£ + b)P is strongly
positive.
O

Let us now turn our attention to the proof of the above lemma.

Proof of Lemma 2.2. Recall that for p € N\ {0}, J %P u := J % (J P71 u) is well
defined by induction and satisfies J ¥ u = J, x u with J,, defined as follows:

Tp = JxJx--xJxJ

p times

By (1.4) it follows that there exists p € N such that inf_or_12r+1) Jp > 0.
Using the definition of £, a short computation shows that

R ~
] = / Gy(eputy) dy

with J,(z,y) = > wez Jp(w 4 2kR — y). Following the idea of Hutson et al. [14],
consider now the following function:
(z) : —
o(z) = 4 PGy 0 = (@0 = 26,20 + 26),
0 elsewhere,

where g € (—R, R) is a point of maximum of b(z), € > 0 is chosen such that
(xo — 2€,29 + 2¢) C (—R, R), v is a positive constant that we will define later on,
5



and 7 is a smooth function such that 0 <n <1, n(z) =1 for |x —xg| <€, n(z) =0
for |x — xg| > 2¢. Let us compute LP[v] + bP(z)v — oPu:

xo+e

Ply P(x)v — oPo = T dy 7.(z,y)v
‘C [ ]+b ( ) / jp( 7y)bp(l'0)—bp(y)+’y+/92€\g jp( ay) (y)dy

xTrop—E€E

+ (VP (x) — bP(zo))v

Tote dy , ;
> /IU6 Jp(:c,y)bp(xo) ) 1o + (WP (z) — P (20))v
rote dy
§ /wo—e T T

Using that inf(_sg_12r41)Jp > 0, it follows that jp(z,y) >c >0 for z,y €
(=R, R). Hence

xo+e€ - d xo+e d
y y
Tp(z,y ZC/ _—,
/ ) oy @) 77 = Sy Hro -yl 57

where k is the Lipschitz constant for b”. Using this inequality in the above estimate
yields

xo+e dy
Ep[v]+bp(x)v—avac/ _ =
To—e€ k|.’L‘0—y|+’7

Therefore we have

2
ﬁp[v] + bp(x)v — (a'p + (5)’1} > —kc log (1 + _ke) —1—dv
Y

2¢ ke )
>—log(l+—)—-1——-.
k Y ¥

Choosing now ~ > 0 small so that % log (1+ %) —-1> % and § = I, we end up
with )
LP] + P (x)v — (o + §)v > 1> 0.

3. EXISTENCE OF SOLUTIONS

Proof of Theorem 1.1. We follow the argument developed by Berestycki, Hamel,
and Roques in [2].

First assume that A\; < 0. From Theorem 1.2 there exists a positive eigenfunction
¢1 such that
M¢1] + ful(r,0)p1 = —=A1¢1 > 0.

f(x,epr), it follows that

f(

x,epr) = f(x,€01) — fu(w,0)edr — Aiedy

= —X1€¢1 + o(ep1) > 0.

Therefore, for € > 0 small, e¢y is a periodic subsolution of (1.1). By definition
of f, any constant M sufficiently large is a periodic supersolution of the problem.
6
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Choosing M so large that e¢; < M and using a basic iterative scheme yields the
existence of a positive periodic solution u of (1.1).

Let us now turn our attention to the nonexistence setting and assume that
A1 > 0.
Let u be a bounded nonnegative solution of (1.1). Observe that v¢; is a periodic
supersolution for any positive . Indeed,

Myo1] + f(z,v¢1) < M[yd1] + fu(x,0) v
< =Aiyer <0.

Since ¢1 > 9 for some positive § we may define the following quantity:

v = 1inf{y > 0lu < v¢1 }.

We have the following claim.
Claim 3.1. v* = 0.

Observe that we end the proof of the theorem by proving the above claim.
Proof of the claim. Assume that v* > 0. Since v := u — y*¢; satisfies v < 0 in
R and
M) +e(x)v >0 inR,

where c(z) = [z =f@2791) }y the strong maximum principle, Theorem 1.4, we

have the following possibilities:
e cither u = "¢y, or
e there exists a sequence of points (x,)nen such that |z,| — +oo and
limy, 400 v b1(20) — u(zy) = 0.
In the first case we get the following contradiction:

0=M[M"¢1]+ f(@,7"¢1) < M[y"¢1] + fu(z,0)7"¢1 <O0.
Hence v* = 0.

In the second case we argue as follows. Let (yn)nen be a sequence of points
satisfying, for all n, y, € [-R,R] and z,, — y, € 2RZ. Up to extraction of a
subsequence, y, — y. Now consider the following sequence of functions wu, :=
u(. + ), ¢on = O1(. + xn), and w, = v*¢, — uy, so that w,, > 0 in R. Since M is
translation invariant and f is periodic, u, and ¢, > 0 satisfy

MY bu] + ful@ + Y, 07 dn <0 inR.
It follows that
JHwn < an(x)wna

where . 0
an(x) -1 i fu(x +yna*)¢n B f(.%' +ynaun).
YV n — Un
Since w, > 0 we see that a, is well defined and a,, > 0. Using that f(z,u)/u is
nonincreasing with respect to u we have f(x,v*¢,) < v* fu(z,0)d,. This implies

W*fu(x + Yns O)¢n - f($ + ynaun) f(.%' + yn,7*¢n) - f(.%' + Yn, un)
7*¢n — Unp ’Y*d)n — Unp

>

> —C.

Thus
0<a,<C+1 inR foralln,
7



with C' independent of n. Observe that
J xwy(0) = an(0)(v*¢1(zn) — u(xn)) — 0,
which implies

/ J(—y)wn(y)dy -0 asn — +oo.
R

Similarly,

T w10a(0) = T r0,)(0) = [ T=panln ) dy
but

[ T antswn@dy < laallie | Igwnw)dy 0.
Hence

T J % (0) = /(J*J)(—y)wn(y) dy—0 asmn— +oo.
Defining :

R Sy
k times

we see that for any fixed k € N,
/ Te(—)wn(y)dy — 0 as n — +oo.
R

By (1.4) the support of Ji increases to all of R as k — 4o00. Thus we may find
a new subsequence such that w, — 0 a.e. in R as n — 4o00. Since ¢ is periodic
and continuous, ¢, (r) — ¢(z) uniformly with respect to x, where ¢(z) = ¢(x + 7).
Hence @(x) = lim,_ 1 oo uy, () exists a.e. and is given by 4(z) = v*¢ . By dominated
convergence, 4 is a solution to

M{u] + f(z +g,u) =0,
while by uniform convergence
M@ + fulz +75,007"¢ <0 inR.

Since % = v*¢ it follows that f(x +7,7*®) = fu(x +7,0)7*¢. This contradicts the
fact that f(x,u)/u is decreasing in w. Hence, v* = 0.
O

4. UNIQUENESS WHEN J IS SYMMETRIC

Throughout this section we assume that J is symmetric. For the proof of Theo-
rem 1.3 we follow the ideas in [2].

Proof of Theorem 1.3. Part (b) of this theorem is contained in Theorem 1.1 so
we concentrate on part (a).

Let p denote the positive periodic solution to (1.1) constructed in Theorem 1.1
and let u > 0, u #Z 0 be a bounded solution. We will prove that u = p.

We show first that u < p. Set

v i=1inf{y > 0| u < yp}.

Note that v* is well defined because u is bounded and p is bounded below by a
positive constant. We claim that

8
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Suppose that v* > 1 and note that v < v*p. By Theorem 1.4 either u = ~v*p
or ess infr(y*p —u) > 0 for all compact K C R. The first possibility leads to
flx,v*p) = v*f(x,p) for all x € R, which is not possible if v* > 1. In the second
case there exists a sequence (2, )nen such that |z,| — 400 and lim,,— oo v*p(2,) —
u(x,) = 0. Let (yn)nen be a sequence satisfying y,, € [-R, R] and z,, — y, = k,2R
for some k,, € Z. We may assume that y,, — 7. Let u,, := u(. + 2, ), which satisfies

Let w, = v*p(. + yn) — up, > 0. Then w,, > 0 in R and
J K Wy, = an (X)W,

where
Y@+ yn, 2+ yn)) — [+ Yn, un (@)
Y*p(T + yn) — un(z)
Since wy,, > 0 we deduce that a,, is well defined and a,, > 0. Using that f(x,u)/u
is nonincreasing with respect to u and the fact that v* > 1, we have f(x,v*p) <
~v* f(z,p). This implies
Y f(xap) —f(ZE,U) > f(-T,'Y p) —f(ZC,U) > —C.
VP —u VP —u

an(x)=1-—

Thus
0<a,<C+1 inR foralln,

with C' independent of n. Observe that
Jxwy (0) = an(0)(vp(yn) — u(@n)) = an(0)(v"p(zn) — w(zn)) — 0,
which implies

/ J(—y)wnp(y)dy -0 asn — +oo.
R

Similarly,

T n0) = T an0,)0) = [ Tg)an(0)n(v)do
but

/RJ(—y)an(y)wn(y) dy < |lan|[L= /RJ(—y)wn(y) dy — 0.
Hence

T J % 1wy (0) = /(J*J)(—y)wn(y) dy—0 asn— +oo.
Defining :

T =Jx-*xJ,
k times

we see that for all £ € N,

/ Ti(—y)wn(y)dy — 0 as n — +oc.
R

Hypothesis (1.4) implies that the support of Jj converges to all of R as k — +o0.
Therefore, for a subsequence, w,, — 0 a.e. in R as n — +o00. Since p is periodic, for
possibly a new subsequence p(z+y,) — p(z+7) a.e. Hence, 4(x) = lim,,— 4 oo un ()
exists a.e. and by dominated convergence, u is a solution to

(4.1) M{a] + f(z +7,a) = 0.

9



But since w,, — 0 a.e. we have @ = v*p(- + 7). Thus v*p(- 4+ g) is a solution to
(4.1), which is impossible for v* > 1 as argued before.

The proof that p < w is analogous, but a key point is to prove first that under the
conditions of Theorem 1.3 any nontrivial, nonnegative solution is bounded below
by a positive constant. This is the content of Proposition 4.1.

O

Proposition 4.1. Assume that J satisfies (1.3), (1.4), and (1.8), f satisfies (1.5),
and that the operator —(M — f,(z,0)) has a negative principal periodic eigenvalue.
Suppose that u is a nonnegative, bounded solution to (1.1). Then u = 0 or there
exists a constant ¢ > 0 such that

u(z) > ¢ for all x € R.

The basic tool to prove Proposition 4.1, following an idea in [2], is to study the
principal eigenvalue of the linearized operator in bounded domains. More precisely,
let @ = (—r,+r) and a: Q — R be Lipschitz. We consider the eigenvalue problem
in 2 with “Dirichlet boundary condition” in the following sense:

Mol +a(z)p = —Ap in Q,
(4.2) o) =0 forallx ¢&Q,

¢|q is continuous.

We show that the principal eigenvalue for (4.2) exists and converges to the princi-
pal periodic eigenvalue as r — 4-oc0. The first step is to establish variational charac-

terizations of these eigenvalues, which is the argument that requires the symmetry
of J.

Lemma 4.2. Let  C R be a bounded open interval. Assume that J satisfies
(1.3), (1.4), and (1.8), and let a: Q — R be Lipschitz. Then there exists a smallest
A1 such that (4.2) has a nontrivial solution. This eigenvalue is simple and the
eigenfunctions are of constant sign in ). Moreover,

pEC(9) Jo#®

where @ denotes the extension by 0 of © to R and the minimum is attained.

The statement and the proof are analogous to those of Theorem 3.1 in [14] except
that here we do not assume that J(0) > 0. A different formula for the principal
eigenvalue with a Dirichlet boundary condition appears in [7], where it is used to
characterize the rate of decay of solutions to a linear evolution equation.

Proof. Define the operator X[p] = [, J(z — y)¢(y)dy for ¢ € C(€). Then X :
C(Q) — C(Q) is compact. Let ¢y > 0 be such that infq a(z) + ¢y > 0 and define

@ = a+ cop. The eigenvalue problem (4.2) is equivalent to the following: find
v € C(2) and X € R such that

Xlpl+ap=(=A+1+co)p in Q.

A calculation similar to Lemma 2.2 shows that there exists an integer p, u € C(Q),
and 0 > 0 such that

(4.4) (X +a@)Pu > <<maxa)p + 5> u in Q.

Q
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Using Theorem 2.1 we deduce that the operator X + a has a unique principal
eigenvalue p > 0 and a principal eigenvector ¢1 € C'(2). Let A = 1+ ¢o — p so that
X[e1] 4+ a(z)pr = (1 — N)p1. From (4.4) we deduce that o defined by

Jo(X[#] + a(@)p)e

(4.5) oy = sup

peC(Q) fg ©?
satisfies
(4.6) o4 > 1—X>maxa.

Q
Now, using the same argument as in [14] we deduce that the supremum in (4.5)
is achieved. Indeed, it is standard [4] that the spectrum of X + a(x) is to the left
of o4 and that there exists a sequence ¢,, € C(€2) such that ||¢n|12(q) = 1 and
[(X +a(z) — o4)¢nllL2() — 0 as n — +o00. By compactness of X : L*(Q) — C(Q)
for a subsequence, lim,, , 1o X[pn] exists in C(Q). Then, using (4.6), we see that
©n — @ in L2(Q) for some ¢ and (X +a)p = o4 p. This equation implies ¢ € C(Q),
and hence o is a principal eigenvalue for the operator X and by uniqueness of this
eigenvalue we have 0, =1 — . (]

Lemma 4.3. Assume that J satisfies (1.3), (1.4), and (1.8) and that a: R — R
is a 2R-periodic, Lipschitz function. Then the principal eigenvalue of the operator
—(M +a(z)) in Cper(R) is given by

(47) M= f - i+ ataple
R
(4.8) = ?in(R) - f—R(M[i] + ;l(x)sﬁ)sa.
PECrer f—R‘P

Proof. By Theorem 1.2 we know that there exists a unique principal eigenvalue
A1(a) of the operator —(M + a) in Cper(R). Let ¢1 € Cper(R) denote a positive
eigenfunction associated with Aj(a). We normalize ¢; such that

(4.9) / #3 = 2R.
On the other hand, the quantity

A(a)= inf _ffR(M[SﬁHa(x)sa)sa
PECper(R) f—RR 502

is also an eigenvalue of —(M + a) on Cp.r(R) with a positive eigenfunction. By
uniqueness of the principal eigenvalue, A1 (a) = A1 (a).
We claim that

i~ [ (Ml +ale)e)e < (@)
||<P||L2(R):1 R
Indeed, for r > 0 let 7, € C§°(R) be such that 0 < 5, <1, n.(z) =1 for |z| < r,
ny(x) =0 for |z| > r 4+ 1. It will be sufficient to show that

f]R ¢1777‘ + a¢1nr)¢1777"
7‘—>+OO I]R ¢1777‘
11

(4.10)

= —)\1 (a)



By (4.9) we have

(4.11) /(¢177r)2 =2r+0(1) asr— +oc.
R

Let 0 <0 < 1. Then

IMIé1)(z) — Migan,]| < [1d]l~ / ()] d

o=z >r

< ||¢1||Loo/ |J(2)|dz for all |z| < Or
|z[=(1-6)r

(4.12) =o0(1) uniformly for all |z| < 6r.

We split the integral

(4.13) /R(M[¢177r] + ap1ny)p1nr = /|z|§9r coodr + /|z|29r ...dzx.

Using () = 1 for |z| < Or and (4.12) we see that

/ (Mp1ne] + adin,)p1n, = / (M[p1nr] + ad1) 1
|z|<Or |z|<Or

- / M09+ 0 +o(1)6

= =20\ (a)r +o(r) asr— +oo.

The second integral in (4.13) is bounded by

(4.14) |/ 6 (Mlp1n,] + agrny)grne| < C(1 —0)r.

Thus from (4.11)—(4.14) we conclude that

fR(M [¢1777‘] + a¢1nr)¢177r
fR(¢1nr)2

+ A(a)| <C(1—=0)+o(1),

which proves (4.10).
12



To establish (4.7) it remains to verify that

_ JsWMe] + a(@)p)p

Je¥®
By uniqueness of the principal eigenvalue we have

(4.16) M@ = it JmeMIEla@)e)
. PECper () ffkRR SDQ ’

(4.15) A(a) < for all ¢ € C.(R).

where
Oy = (kR,kR) fork>1
and Cper () is the set of continuous 2k R-periodic functions on R.
Fix ¢ € C.(R) and consider k large enough so that supp(¢) C Q. Consider now
¢k, the 4k R-periodic extension of ¢. Since i € Cper(Q21), (4.16) yields

2kR
(4.17) M(a) < — _QkR(M[f:I];r (Z($><Pk)90k _ fR(M[gD}] +2a($)<p)<p.
—2kR Pk R ¥

For |z| < kR we have

Mipil(@) = MA@ < ol [ = pldy < llel= [ 19|

ly|>2kR [2|>kR
Hence
(418) Jim [ (Ml + a@ele = [ (Mle]+ a@ele.
—+oo Jr R
Thanks to (4.17) and (4.18), we conclude the validity of (4.15). O

Lemma 4.4. Assume J satisfies (1.3), (1.4), and (1.8) and that a: R — R is a
2R-periodic, Lipschitz function. Let ), be the principal eigenvalue of (4.2) for
Qr,y =B, (y)
and let Ai(a) denote the principal eigenvalue of —(M + a(x)) in Cper(R). Then
lim )\r,y = )\1 (a)

r—400

Moreover, the applications y — X and y — o, are periodic. The periodicity of
the application y — ¢, is understood as follows:

(lpr,y+2R (:E) = (lpr,y ((E - 2R)
Proof. For convenience we write

Ar = Ary

and let ¢, be a positive eigenfunction of (4.2) in Q,.
By the variational characterization (4.3) we see that r — A, is nonincreasing,
and hence lim, ;o A, exists. Moreover, using (4.7) we have

(4.19) Ar > Ai(a) forall r > 0.
Let ¢1 € Cper(R) be a positive eigenfunction of —(M +a(z)) with eigenvalue A;(a)

normalized such that
R
/ #7 = 2R.
-R
13



Let 1, € C§°(R) be such that 0 <7 <1,
ne(z) =1for |z —y| <r—1, ne(z) =0for |z —y| >r

and such that [[7,||c2@) < C with C independent of r. Arguing in the same way
as in the proof of Lemma 4.3 we obtain

. JgWMe1ne] + agine)diny
1
P [ACTSE

= —)\1 (a)

Since

f]R(M [d)lnr] + a¢1nr)¢1nr
fR(¢1UT)2

>\T§7

we conclude that
lim )\r S )\1 (a)

r—400
This and (4.19) prove the desired result.
Let us now show the periodicity of the applications y — A, and y — ¢, ,. Re-
place y by y+2R in the above problem (4.2) and let us denote by A\ .., and¢,_ ..
the corresponding principal eigenvalue and the associated positive eigenfunction:

Mo, yian] Fa@)p, o = =Xy anPryion 10 Bry +2R).
We take the following normalization:

/ goiwm(x)dx:l.
Q

m™y+2R

Let us defined ¢(x) := ¢
shows that

x + 2R) for any x € B,(y). A short computation

r,y+2R(

M[Yl(z) = Mlgl, , 1on (z + 2R).

Therefore, using the periodicity of a(x), we have

M[l(z) +a(z +2R)Y(x) = A, .50 in Br(y),

MY](z) + a(x)p() = A, Lp? 0 Br(y).

Thus, A, ,,, is a principal eigenvalue of the problem (4.2) with ., = B.(y).
Hence, by uniqueness of the principal eigenvalue we have A, = A .,, and ¢ =
v¢.,., for some positive . Using the normalization, it follows that v = 1. Therefore,

@, (@) =¢,  .n(x+2R); in other words
Pryt2r (:L') =Py (1' - 2R>
O

Remark 4.5. The proof of Lemma 4.4 yields the slightly stronger conclusion that
the convergence

lim )\r,y = )\1 (a)

r——+o0

is uniform with respect to y € R, since A, , is continuous in y.

Proof of Proposition 4.1. Let u > 0 be a bounded solution to (1.1) such that
u # 0. By the strong maximum principle (Theorem 1.4) we must have infx u > 0
for compact sets K C R.
14



Given y € R and r > 0 we write ,.,, = (y—r,y+7r), A, the principal eigenvalue
of —=(M + f,(2,0)) with Dirichlet boundary condition in €2, , as in (4.2), and ¢, ,
a positive Dirichlet eigenfunction normalized so that

/ ory =1
Qr.y

Since the principal eigenvalue \; := \;(fu(x,0)) of —(M + f.(z,0)) with periodic
boundary conditions is negative by hypothesis, by Lemma 4.4 and Remark 4.5 we
may fix r > 0 large enough so that

Ary < A1/2 forall y € R.
Note that for z € €2, 4,
M[V@T,y] + f(xa ’7T,y) = _)\r,y’wphy — fu (x’ 0)7907"7?/ + f(x’ ’Y‘Pr,y)

Y

_)‘1/27907",3/ - fu(xa O)V(Pr,y + f(xa W@T,y)
>0

if 0 < < o with ~ fixed suitably small. For z ¢ Q, , we have ¢, ,(z) = 0 and
Mpyry] > 0. Thus

(4.20) Mvery) + f,very) >0 inR

for all 0 < v < 7p.
We claim that

(4.21) Yory <u inR foralyeR.

This proves the proposition because there is a positive constant ¢ such that ¢, (y) >
c for all y € R since the application y — ¢, , is periodic and ¢, ,(y) > 0 for any
y € [-2R,2R].

Now, to prove (4.21) fix y € R and set

v =sup{y>0/vpry <uinR}.
Since infx v > 0 for compact sets K C R and ¢, , has compact support we see that
~* > 0. Assume that v* < 79. Then by (4.20), v*¢,.,, is a subsolution of (1.1) while
u is a solution. By the strong maximum principle (Theorem 1.4) either v*¢, , = u
in R or inf g (u—~*p, ) > 0 for compact sets K C R. The former case is impossible
because u is strictly positive, while the latter case yields a contradiction with the

definition of y*. It follows that v* > ~y as desired.
O

APPENDIX

In this appendix we give a short proof of Theorem 1.4. We assume that J satisfies
(1.3), (1.4), c € L*°(R), and u € L*>®(R) satisfies

u <0 a.e. inRR,

(A1) Mlu]+cu>0 ae. inR.
For € > 0 define
1 xr+e
ue(x) = 2_6/:5—6 u.

Then u, is continuous in R, u. < 0, and u. — u a.e. as € — 0. There are two cases:
15



(1) for any closed interval I one has limsup,_,, sup; u. < 0, or

(2) for some closed interval I one has limsup,_,, sup; u = 0.

If case (1) occurs, we see that for all closed intervals I we have ess sup;u <
0. Assume case (2) holds. Let I be a closed interval and €, — 0 be such that
limy, 4 oo U, () = 0, where x,, € I is such that sup; u., = u,, (x5,). Integrating
(A.1) from x,, — €, to 2, + €, and dividing by 2¢,, we have

1 Tnteén
I * e, (xn) > e, (Tn) — f/ cu.
n Jx

n—€n

But, since u < 0 a.e.,

1 A
f/ cu| < —||¢|l petie, () — 0.
n Jx

n—€n

Hence

liminf J x ue, (x,) > 0.

n—-+oo

We may assume that z,, — x € I. Then by dominated convergence,
Tt ) = [ I =)y~ [ I =gt dy.

This shows that u = 0 a.e. in 2 — supp(J). Now, for any z; in the interior of
x — supp(J) we have J * u(x1) > 0, which shows that u = 0 a.e. in x — 2supp(J),
where 2supp(J) = supp(J) + supp(J). Note that assumption (1.4) implies that
ksupp(J) covers all of R as k — 400, where ksupp(J) is defined inductively as
(k— 1) supp(J) +supp(J). Repeating the previous argument we deduce that u =0
a.e. in R.

O
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