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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A NON-LOCAL EQUATION WITH MONOSTABLE NONLINEARITY

Let J ∈ C(R), J ≥ 0, R J = 1 and consider the nonlocal diffusion operator M[u] = J ⋆ u -u. We study the equation

where f is a KPP type non-linearity, periodic in x. We show that the principal eigenvalue of the linearization around zero is well defined and a that a nontrivial solution of the nonlinear problem exists if and only if this eigenvalue is negative. We prove that if, additionally, J is symmetric then the non-trivial solution is unique.

Introduction

Reaction-diffusion equations have been used to describe a variety of phenomena in combustion theory, bacterial growth, nerve propagation, epidemiology, and spatial ecology [START_REF] Fisher | The Genetical Theory of Natural Selection. A Complete Variorum Edition[END_REF][START_REF] Fife | Mathematical Aspects of Reacting and Diffusing Systems[END_REF][START_REF] Kanel | Certain problems on equations in the theory of burning[END_REF][START_REF] Murray | Mathematical Biology. I. An Introduction[END_REF]. However, in many situations, such as in population ecology, dispersal is better described as a long range process rather than as a local one, and integral operators appear as a natural choice. Let us mention in particular the seminal work of Kolmogorov, Petrovsky, and Piskunov [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF], who in 1937 introduced a model for the dispersion of gene fractions involving a nonlocal linear operator and a nonlinearity of the form u(1 -u), which many authors now call a KPP-type nonlinearity.

Nonlocal dispersal operators usually take the form M[u] = R N k(x, y)u(y)dyu(x), where k ≥ 0 and R N k(y, x)dy = 1 for all x ∈ R N . They have been mainly used in discrete time models [START_REF] Kot | Dispersal data and the spread of invading organisms[END_REF], while continuous time versions have also been recently considered in population dynamics [START_REF] Hutson | The evolution of dispersal[END_REF][START_REF] Lutscher | The effect of dispersal patterns on stream populations[END_REF]. Steady state and travelling wave solutions for single equations have been studied in the case k(x, y) = J(x -y), with J even, for some specific reaction nonlinearities in [START_REF] Bates | Traveling waves in a convolution model for phase transitions[END_REF][START_REF] Coville | Propagation speed of travelling fronts in non local reactiondiffusion equations[END_REF][START_REF] Chmaj | Homoclinic solutions of an integral equation: Existence and stability[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF][START_REF] Carr | Uniqueness of travelling waves for nonlocal monostable equations[END_REF][START_REF] Schumacher | Travelling-front solutions for integro-differential equations. I[END_REF].

In this work we restrict ourselves to one dimension and take k(x, y) = J(x -y).

We are interested in the existence/nonexistence and uniqueness of solutions of the following problem:

M[u] + f (x, u) = 0 in R, (1.1)
where f (x, u) is a KPP-type nonlinearity, periodic in x, and M[u] := J ⋆ u -u. We assume that J satisfies J ∈ C(R), J ≥ 0, R J = 1, (1.3) there exist a < 0 < b such that J(a) > 0, J(b) > 0.

(1.4) On f we assume that

                   f ∈ C(R × [0, ∞))
and is differentiable with respect to u, for each u, f (•, u) is periodic with period 2R,

f u (•, 0) is Lipschitz,
f (•, 0) ≡ 0 and f (x, u)/u is decreasing with respect to u, there exists M > 0 such that f (x, u) ≤ 0 for all u ≥ M and all x.

(1.5)

The model example of such a nonlinearity is

f (x, u) = u(a(x) -u),
where a(x) is periodic and Lipschitz. In a recent work, Berestycki, Hamel, and Roques [START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF] studied the analogue of (1.1) with a divergence operator in a periodic setting. More precisely, they considered -∇ • (A(x)∇u) = f (x, u), x ∈ R N , u ≥ 0, (1.6) where A(x) is a symmetric matrix of class C 1,α , periodic with respect to all variables and uniformly elliptic, and f is C 1 and satisfies (1.5). They showed existence of nontrivial solutions provided the linearization of the equation around zero has a negative first periodic eigenvalue.

We prove the following result.

Theorem 1.1. Assume J satisfies (1.3), (1.4) and f satisfies (1.5). Then there exists a nontrivial, periodic solution of (1.1) if and only if

λ 1 (M + f u (x, 0)) < 0,
where λ 1 is the principal eigenvalue of the linear operator -(M + f u (x, 0)) in the set of 2R-periodic continuous functions. Moreover, if λ 1 ≥ 0, then any nonnegative bounded solution is identically zero.

To prove Theorem 1.1, we first need to show that the principal periodic eigenvalue of -(M + f u (x, 0)) is well defined. Let us introduce some notation:

C per (R) = {u : R → R | u is continuous and 2R-periodic}, C 0,1 per (R) = {u : R → R | u is Lipschitz and 2R-periodic}. Theorem 1.2. Suppose a(x) ∈ C 0,1 per (R). Then the operator -(M + a(x)) has a unique principal eigenvalue λ 1 in C per (R); that is, there is a unique λ 1 ∈ R such that M[φ 1 ] + a(x)φ 1 = -λ 1 φ 1 in R (1.7) admits a positive solution φ 1 ∈ C per (R). Moreover, λ 1 is simple, that is, the space of C per (R) solutions to (1.7) is one dimensional.
In [START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF] the authors proved that (1.6) has at most one nontrivial bounded solution, and that it has to be periodic. A similar result is true for the nonlocal problem (1.1), but this time we need J to be symmetric, that is,

J(x) = J(-x) for all x ∈ R. (1.8)
Note, however, that for the existence result, Theorem 1.1, we do not need this condition.

Theorem 1.3. Assume J satisfies (1.3), (1.4), (1.8) and f satisfies (1.5). Let u be a nonnegative, bounded solution to (1.1) and let λ 1 be the principal eigenvalue of the operator -(M + f u (x, 0)) with periodic boundary conditions.

(a) If λ 1 < 0, then either u ≡ 0 or u ≡ p, where p is the positive periodic solution of Theorem

1.1. (b) If λ 1 ≥ 0, then u ≡ 0.
Part (b) of the preceding theorem is already covered in Theorem 1.1 and does not depend on the symmetry of J.

When f is independent of x and satisfies (1.5), the principal eigenvalue of -(M + f ′ (0)) is given by λ 1 = -f ′ (0) and φ 1 is just a constant. Thus in this case Theorem 1.1 says that a bounded, nonnegative, nontrivial solution exists if and only if f ′ (0) > 0, and this solution is just the constant u 0 such that f (u 0 ) = 0. Assuming that J is symmetric, Theorem 1.3 then implies that the constant u 0 is the unique solution in the class of nonnegative, bounded functions.

Recently, considering a nonperiodic nonlinearity f , Berestycki, Hamel, and Rossi [START_REF] Berestycki | Liouville-type results for semilinear elliptic equations in unbounded domains[END_REF] analyzed the analogue of Theorem 1.3 for general elliptic operators in R N , finding sufficient conditions that ensure existence and uniqueness of a positive bounded solution. It is natural to ask whether the periodicity of f and the symmetry of J are crucial hypotheses in Theorem 1.3. We believe that this is the case, since a general nonlocal operator such as (1.2) may contain a transport term, and a standing wave connecting the steady states of the system could appear. We shall investigate further this issue in a forthcoming work.

Hypothesis (1.4) implies that the operator M satisfies the strong maximum principle. Suppose, for instance, that J satisfies (1.3), (1.4). If u ∈ C(R) satisfies M[u] ≥ 0 in R, then u cannot achieve a global maximum without being constant (see [START_REF] Coville | Maximum principles, sliding techniques and applications to nonlocal equations[END_REF]). However, we will need the following version.

Theorem 1.4. Assume J satisfies (1.3), (1.4) 

and let c ∈ L ∞ (R). If u ∈ L ∞ (R) satisfies u ≤ 0 a.e. and M[u] + c(x)u ≥ 0 a.e. in R, then ess sup K u < 0 for all compact K ⊂ R or u = 0 a.e. in R.
If f satisfies the stronger hypothesis that, for any x, f (x, u) is concave with respect to u, then actually the periodic solution p of Theorem 1.1 is continuous. To see this notice that from the strong maximum principle, Theorem 1.4, J ⋆p > 0 in R. The concavity of f with respect to u implies that for any x the map u → u -f (x, u) is strictly increasing whenever u -f (x, u) > 0. Then from the continuity of J ⋆ p and (1.1), which can be rewritten as in the form J ⋆ p = p -f (x, p), we deduce that p is continuous.

In section 2 we review some spectral theory and give the argument of Theorem 1.2. Then we prove Theorem 1.1 in section 3 and the uniqueness result, Theorem 1.3(a), in section 4. We leave for an appendix a proof of Theorem 1.4.

Some spectral theory

In this section we deal with the principal eigenvalue problem (1.7). Before stating our result, let us recall some basic spectral results for positive operators due to Edmunds, Potter, and Stuart [START_REF] Edmunds | Noncompact positive operators[END_REF] which are extensions of the Krein-Rutmann theorem for positive noncompact operators.

A cone in a real Banach space X is a nonempty closed set K such that for all x, y ∈ K and all α ≥ 0 one has x + αy ∈ K, and if x ∈ K, -x ∈ K, then

x = 0. A cone K is called reproducing if X = K -K. A cone K induces a partial ordering in X by the relation x ≤ y if and only if x -y ∈ K. A linear map or operator T : X → X is called positive if T (K) ⊆ K. The dual cone K * is the set of functionals x * ∈ X * which are positive, that is, such that x * (K) ⊂ [0, ∞).
If T : X → X is a bounded linear map on a complex Banach space X, its essential spectrum (according to Browder [START_REF] Browder | On the spectral theory of elliptic differential operators[END_REF]) consists of those λ in the spectrum of T such that at least one of the following conditions holds: (1) the range of λI -T is not closed, (2) λ is a limit point of the spectrum of T , (3) ∪ ∞ n=1 ker((λI -T ) n ) is infinite dimensional. The radius of the essential spectrum of T , denoted by r e (T ), is the largest value of |λ| with λ in the essential spectrum of T . For more properties of r e (T ) see [START_REF] Nussbaum | The radius of the essential spectrum[END_REF].

Theorem 2.1 (Edmunds, Potter, and Stuart [START_REF] Edmunds | Noncompact positive operators[END_REF]). Let K be a reproducing cone in a real Banach space X, and let T ∈ L(X) be a positive operator such that T p (u) ≥ cu for some u ∈ K with u = 1, some positive integer p, and some positive number c.

Then if c 1 p > r e (T ), T has an eigenvector v ∈ K with associated eigenvalue ρ ≥ c 1 p
and T * has an eigenvector v * ∈ K * corresponding to the eigenvalue ρ.

A proof of this theorem can be found in [START_REF] Edmunds | Noncompact positive operators[END_REF]. If the cone K has nonempty interior and T is strongly positive, i.e., u ≥ 0, u = 0 implies T u ∈ int(K), then ρ is the unique λ ∈ R for which there exists nontrivial v ∈ K such that T v = λv and ρ is simple; see [START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems[END_REF].

Proof of Theorem 1.2. For convenience, in this proof we write the eigenvalue problem

M[u] + a(x)u = -λu in the form L[u] + b(x)u = µu, (2.1)
where

L[u] = J ⋆ u, b(x) = a(x) + k, µ = -λ + 1 + k, and k > 0 is a constant such that inf [-R,R] b > 0. Observe that L : C per(R) → C per (R) is compact (C per (R) is endowed with the norm u L ∞ ([-R,R]) ). Indeed, let u n ∈ C per (R) be a bounded sequence, say u n L ∞ ([-R,R]) ≤ B. Let ǫ > 0 and let A be large enough so that |x|≥A J ≤ ǫ. Since J is uniformly continuous in [-R -2A, R + 2A] there is δ > 0 such that |J(z 1 ) -J(z 2 )| ≤ ǫ 2(A+R) for z 1 , z 2 ∈ [-R -2A, R + 2A] with |z 1 -z 2 | ≤ δ. Then for x 1 , x 2 ∈ [-R, R], |L[u n ](x 1 ) -L[u n ](x 2 )| ≤ R |J(x 1 -y) -J(x 2 -y)| |u n (y)| dy ≤ 2Bǫ + B R+A -R-A |J(x 1 -y) -J(x 2 -y)| dy ≤ 3Bǫ.
This shows that L[u n ] is equicontinuous, and therefore by the Arzelà-Ascoli theorem, L[u n ] is relatively compact.

Let us now establish some useful lemma.

Lemma 2.2. Suppose b(x) ∈ C 0,1 (R) is 2R-periodic, b(x) > 0, and let σ := max [-R,R] b(x).
Then there exist p ∈ N, δ > 0, and u ∈ C per (R), u ≥ 0, u ≡ 0, such that

L p u + b(x) p u ≥ (σ p + δ)u.
Observe that the proof of Theorem 1.2 will then easily follow from the above lemma. Indeed, if the lemma holds, then since u and b are nonnegative and L is a positive operator, we easily see that

(L + b(x)) p [u] ≥ L p [u] + b(x) p u ≥ (σ p + δ)u.
Using the compactness of the operator L, we have r e (L + b(x)) = r e (b(x))=σ, and thus (σ p + δ) 1 p > r e (L+ b(x)) and Theorem 2.1 applies. Finally, we observe that the principal eigenvalue is simple since the cone of positive 2R-periodic functions has nonempty interior and, for a sufficiently large p, the operator (L + b) p is strongly positive.

Let us now turn our attention to the proof of the above lemma. Proof of Lemma 2.2. Recall that for p ∈ N \ {0}, J ⋆ p u := J ⋆ (J ⋆ p-1 u) is well defined by induction and satisfies J ⋆ p u = J p ⋆ u with J p defined as follows:

J p := J ⋆ J ⋆ • • • ⋆ J ⋆ J p times .
By (1.4) it follows that there exists p ∈ N such that inf (-2R-1,2R+1) J p > 0. Using the definition of L, a short computation shows that

L p [u] := R -R J p (x, y)u(y) dy with J p (x, y) = k∈Z J p (x + 2kR -y).
Following the idea of Hutson et al. [START_REF] Hutson | The evolution of dispersal[END_REF], consider now the following function:

v(x) := η(x) b p (x0)-b p (x)+γ in Ω 2ǫ := (x 0 -2ǫ, x 0 + 2ǫ), 0 elsewhere, where x 0 ∈ (-R, R) is a point of maximum of b(x), ǫ > 0 is chosen such that (x 0 -2ǫ, x 0 + 2ǫ) ⊂ (-R, R)
, γ is a positive constant that we will define later on, and η is a smooth function such that 0

≤ η ≤ 1, η(x) = 1 for |x -x 0 | ≤ ǫ, η(x) = 0 for |x -x 0 | ≥ 2ǫ. Let us compute L p [v] + b p (x)v -σ p v: L p [v] + b p (x)v -σ p v = x0+ǫ x0-ǫ J p (x, y) dy b p (x 0 ) -b p (y) + γ + Ω2ǫ\Ωǫ J p (x, y)v(y) dy + (b p (x) -b p (x 0 ))v ≥ x0+ǫ x0-ǫ J p (x, y) dy b p (x 0 ) -b p (y) + γ + (b p (x) -b p (x 0 ))v ≥ x0+ǫ x0-ǫ J p (x, y) dy b p (x 0 ) -b p (y) + γ -1. Using that inf (-2R-1,2R+1) J p > 0, it follows that J p (x, y) ≥ c > 0 for x, y ∈ (-R, R). Hence x0+ǫ x0-ǫ J p (x, y) dy b p (x 0 ) -b p (y) + γ ≥ c x0+ǫ x0-ǫ dy k|x 0 -y| + γ ,
where k is the Lipschitz constant for b p . Using this inequality in the above estimate yields

L p [v] + b p (x)v -σ p v ≥ c x0+ǫ x0-ǫ dy k|x 0 -y| + γ -1.
Therefore we have

L p [v] + b p (x)v -(σ p + δ)v ≥ 2c k log 1 + kǫ γ -1 -δv ≥ 2c k log 1 + kǫ γ -1 - δ γ .
Choosing now γ > 0 small so that 2c k log (1 + kǫ γ ) -1 > 1 2 and δ = γ 4 , we end up with

L p [v] + b p (x)v -(σ p + δ)v ≥ 1 4 > 0.

Existence of solutions

Proof of Theorem 1.1. We follow the argument developed by Berestycki, Hamel, and Roques in [START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF].

First assume that λ 1 < 0. From Theorem 1.2 there exists a positive eigenfunction

φ 1 such that M[φ 1 ] + f u (x, 0)φ 1 = -λ 1 φ 1 ≥ 0. Computing M[ǫφ 1 ] + f (x, ǫφ 1 ), it follows that M[ǫφ 1 ] + f (x, ǫφ 1 ) = f (x, ǫφ 1 ) -f u (x, 0)ǫφ 1 -λ 1 ǫφ 1 = -λ 1 ǫφ 1 + o(ǫφ 1 ) > 0.
Therefore, for ǫ > 0 small, ǫφ 1 is a periodic subsolution of (1.1). By definition of f , any constant M sufficiently large is a periodic supersolution of the problem.

Choosing M so large that ǫφ 1 ≤ M and using a basic iterative scheme yields the existence of a positive periodic solution u of (1.1).

Let us now turn our attention to the nonexistence setting and assume that λ 1 ≥ 0. Let u be a bounded nonnegative solution of (1.1). Observe that γφ 1 is a periodic supersolution for any positive γ. Indeed,

M[γφ 1 ] + f (x, γφ 1 ) < M[γφ 1 ] + f u (x, 0)γφ 1 ≤ -λ 1 γφ 1 ≤ 0.
Since φ 1 ≥ δ for some positive δ we may define the following quantity:

γ * := inf{γ > 0|u ≤ γφ 1 }.
We have the following claim.

Claim 3.1. γ * = 0.
Observe that we end the proof of the theorem by proving the above claim. Proof of the claim. Assume that γ * > 0. Since

v := u -γ * φ 1 satisfies v ≤ 0 in R and M[v] + c(x)v ≥ 0 in R, where c(x) = f (x,u)-f (x,γ * φ1) v
by the strong maximum principle, Theorem 1.4, we have the following possibilities:

• either u ≡ γ * φ 1 , or • there exists a sequence of points (x n ) n∈N such that |x n | → +∞ and lim n→+∞ γ * φ 1 (x n ) -u(x n ) = 0.
In the first case we get the following contradiction:

0 = M[γ * φ 1 ] + f (x, γ * φ 1 ) < M[γ * φ 1 ] + f u (x, 0)γ * φ 1 ≤ 0.
Hence γ * = 0.

In the second case we argue as follows. Let (y n ) n∈N be a sequence of points satisfying, for all n, y n ∈ [-R, R] and x n -y n ∈ 2RZ. Up to extraction of a subsequence, y n → ȳ. Now consider the following sequence of functions u n := u(. + x n ), φ n := φ 1 (. + x n ), and w n := γ * φ n -u n so that w n > 0 in R. Since M is translation invariant and f is periodic, u n and φ n > 0 satisfy

M[u n ] + f (x + y n , u n ) = 0 in R, M[γ * φ n ] + f u (x + y n , 0)γ * φ n ≤ 0 in R.

It follows that

J ⋆ w n ≤ a n (x)w n , where

a n (x) = 1 - γ * f u (x + y n , 0)φ n -f (x + y n , u n ) γ * φ n -u n .
Since w n > 0 we see that a n is well defined and a n ≥ 0. Using that f (x, u)/u is nonincreasing with respect to u we have f (x, γ * φ n ) ≤ γ * f u (x, 0)φ n . This implies

γ * f u (x + y n , 0)φ n -f (x + y n , u n ) γ * φ n -u n ≥ f (x + y n , γ * φ n ) -f (x + y n , u n ) γ * φ n -u n ≥ -C. Thus 0 ≤ a n ≤ C + 1 in R for all n,
with C independent of n. Observe that

J ⋆ w n (0) = a n (0)(γ * φ 1 (x n ) -u(x n )) → 0, which implies R J(-y)w n (y) dy → 0 as n → +∞.
Similarly,

J ⋆ J ⋆ w n (0) = J ⋆ (a n w n )(0) = R J(-y)a n (y)w n (y) dy, but R J(-y)a n (y)w n (y) dy ≤ a n L ∞ R J(-y)w n (y) dy → 0. Hence J ⋆ J ⋆ w n (0) = R (J ⋆ J)(-y)w n (y) dy → 0 as n → +∞. Defining J k := J ⋆ • • • ⋆ J k times ,
we see that for any fixed k ∈ N, R J k (-y)w n (y) dy → 0 as n → +∞.

By (1.4) the support of J k increases to all of R as k → +∞. Thus we may find a new subsequence such that w n → 0 a.e. in R as n → +∞. Since φ 1 is periodic and continuous, φ n (x) → φ(x) uniformly with respect to x, where φ(x) = φ(x + ȳ). Hence ū(x) = lim n→+∞ u n (x) exists a.e. and is given by ū(x) = γ * φ . By dominated convergence, ū is a solution to

M[ū] + f (x + ȳ, ū) = 0,
while by uniform convergence

M[γ * φ] + f u (x + ȳ, 0)γ * φ ≤ 0 in R.
Since ū = γ * φ it follows that f (x + ȳ, γ * φ) ≡ f u (x + ȳ, 0)γ * φ. This contradicts the fact that f (x, u)/u is decreasing in u. Hence, γ * = 0.

Uniqueness when J is symmetric

Throughout this section we assume that J is symmetric. For the proof of Theorem 1.3 we follow the ideas in [START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF].

Proof of Theorem 1.3. Part (b) of this theorem is contained in Theorem 1.1 so we concentrate on part (a).

Let p denote the positive periodic solution to (1.1) constructed in Theorem 1.1 and let u ≥ 0, u ≡ 0 be a bounded solution. We will prove that u ≡ p.

We show first that u ≤ p. Set

γ * := inf{γ > 0 | u ≤ γp}.
Note that γ * is well defined because u is bounded and p is bounded below by a positive constant. We claim that γ * ≤ 1.

Suppose that γ * > 1 and note that u ≤ γ * p. By Theorem 1.4 either u ≡ γ * p or ess inf K (γ * p -u) > 0 for all compact K ⊂ R. The first possibility leads to f (x, γ * p) = γ * f (x, p) for all x ∈ R, which is not possible if γ * > 1. In the second case there exists a sequence (x n ) n∈N such that |x n | → +∞ and lim n→+∞ γ * p(x n )u(x n ) = 0. Let (y n ) n∈N be a sequence satisfying y n ∈ [-R, R] and x n -y n = k n 2R for some k n ∈ Z. We may assume that y n → ȳ. Let u n := u(. + x n ), which satisfies

M[u n ] + f (x + y n , u n ) = 0. Let w n = γ * p(. + y n ) -u n ≥ 0. Then w n > 0 in R and J ⋆ w n = a n (x)w n ,
where

a n (x) = 1 - γ * f (x + y n , p(x + y n )) -f (x + y n , u n (x)) γ * p(x + y n ) -u n (x) .
Since w n > 0 we deduce that a n is well defined and a n ≥ 0. Using that f (x, u)/u is nonincreasing with respect to u and the fact that γ * > 1, we have f (x, γ * p) ≤ γ * f (x, p). This implies

γ * f (x, p) -f (x, u) γ * p -u ≥ f (x, γ * p) -f (x, u) γ * p -u ≥ -C. Thus 0 ≤ a n ≤ C + 1 in R for all n, with C independent of n. Observe that J ⋆ w n (0) = a n (0)(γ * p(y n ) -u(x n )) = a n (0)(γ * p(x n ) -u(x n )) → 0, which implies R J(-y)w n (y) dy → 0 as n → +∞. Similarly, J ⋆ J ⋆ w n (0) = J ⋆ (a n w n )(0) = R J(-y)a n (y)w n (y) dy, but R J(-y)a n (y)w n (y) dy ≤ a n L ∞ R J(-y)w n (y) dy → 0. Hence J ⋆ J ⋆ w n (0) = R (J ⋆ J)(-y)w n (y) dy → 0 as n → +∞. Defining J k := J ⋆ • • • ⋆ J k times , we see that for all k ∈ N, R J k (-y)w n (y) dy → 0 as n → +∞.
Hypothesis (1.4) implies that the support of J k converges to all of R as k → +∞. Therefore, for a subsequence, w n → 0 a.e. in R as n → +∞. Since p is periodic, for possibly a new subsequence p(x+y n ) → p(x+ ȳ) a.e. Hence, ū(x) = lim n→+∞ u n (x) exists a.e. and by dominated convergence, ū is a solution to

M[ū] + f (x + ȳ, ū) = 0. (4.1)
But since w n → 0 a.e. we have ū = γ * p(• + ȳ). Thus γ * p(• + ȳ) is a solution to (4.1), which is impossible for γ * > 1 as argued before.

The proof that p ≤ u is analogous, but a key point is to prove first that under the conditions of Theorem 1.3 any nontrivial, nonnegative solution is bounded below by a positive constant. This is the content of Proposition 4.1.

Proposition 4.1. Assume that J satisfies (1.3), (1.4), and (1.8), f satisfies (1.5), and that the operator -(M -f u (x, 0)) has a negative principal periodic eigenvalue. Suppose that u is a nonnegative, bounded solution to (1.1). Then u ≡ 0 or there exists a constant c > 0 such that u(x) ≥ c for all x ∈ R. The basic tool to prove Proposition 4.1, following an idea in [START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF], is to study the principal eigenvalue of the linearized operator in bounded domains. More precisely, let Ω = (-r, +r) and a : Ω → R be Lipschitz. We consider the eigenvalue problem in Ω with "Dirichlet boundary condition" in the following sense:

       M[ϕ] + a(x)ϕ = -λϕ in Ω, ϕ(x) = 0 for all x ∈ Ω, ϕ| Ω is continuous. (4.2)
We show that the principal eigenvalue for (4.2) exists and converges to the principal periodic eigenvalue as r → +∞. The first step is to establish variational characterizations of these eigenvalues, which is the argument that requires the symmetry of J. Lemma 4.2. Let Ω ⊂ R be a bounded open interval. Assume that J satisfies (1.3), (1.4), and (1.8), and let a : Ω → R be Lipschitz. Then there exists a smallest λ 1 such that (4.2) has a nontrivial solution. This eigenvalue is simple and the eigenfunctions are of constant sign in Ω. Moreover,

λ 1 = min ϕ∈C(Ω) -Ω (M[ ϕ] + a(x)ϕ)ϕ Ω ϕ 2 , (4.3)
where ϕ denotes the extension by 0 of ϕ to R and the minimum is attained.

The statement and the proof are analogous to those of Theorem 3.1 in [START_REF] Hutson | The evolution of dispersal[END_REF] except that here we do not assume that J(0) > 0. A different formula for the principal eigenvalue with a Dirichlet boundary condition appears in [START_REF] Chasseigne | Asymptotic behavior for nonlocal diffusion equations[END_REF], where it is used to characterize the rate of decay of solutions to a linear evolution equation.

Proof. Define the operator X

[ϕ] = Ω J(x -y) ϕ(y) dy for ϕ ∈ C(Ω). Then X : C(Ω) → C(Ω) is compact. Let c 0 > 0 be such that inf Ω a(x) + c 0 > 0 and define a = a + c 0 . The eigenvalue problem (4.2) is equivalent to the following: find ϕ ∈ C(Ω) and λ ∈ R such that X[ϕ] + aϕ = (-λ + 1 + c 0 )ϕ in Ω.
A calculation similar to Lemma 2.2 shows that there exists an integer p, u ∈ C(Ω), and δ > 0 such that

(X + a) p u ≥ max Ω a p + δ u in Ω. (4.4)
Using Theorem 2.1 we deduce that the operator X + a has a unique principal eigenvalue ρ > 0 and a principal eigenvector

ϕ 1 ∈ C(Ω). Let λ = 1 + c 0 -ρ so that X[ϕ 1 ] + a(x)ϕ 1 = (1 -λ)ϕ 1 .
From (4.4) we deduce that σ + defined by

σ + = sup ϕ∈C(Ω) Ω (X[ϕ] + a(x)ϕ)ϕ Ω ϕ 2 (4.5) 
satisfies

σ + ≥ 1 -λ > max Ω a. (4.6)
Now, using the same argument as in [START_REF] Hutson | The evolution of dispersal[END_REF] we deduce that the supremum in (4.5) is achieved. Indeed, it is standard [START_REF] Brezis | Analyse Fonctionnelle. Théorie et Applications[END_REF] that the spectrum of X + a(x) is to the left of σ + and that there exists a sequence ϕ n ∈ C(Ω) such that ϕ n L 2 (Ω) = 1 and (X + a(x) -σ + )ϕ n L 2 (Ω) → 0 as n → +∞. By compactness of X : L 2 (Ω) → C(Ω) for a subsequence, lim n→+∞ X[ϕ n ] exists in C(Ω). Then, using (4.6), we see that ϕ n → ϕ in L 2 (Ω) for some ϕ and (X +a)ϕ = σ + ϕ. This equation implies ϕ ∈ C(Ω), and hence σ + is a principal eigenvalue for the operator X and by uniqueness of this eigenvalue we have σ + = 1 -λ. Lemma 4.3. Assume that J satisfies (1.3), (1.4), and (1.8) and that a : R → R is a 2R-periodic, Lipschitz function. Then the principal eigenvalue of the operator We claim that inf

-(M + a(x)) in C per (R) is given by λ 1 (a) = inf ϕ L 2 (R) =1 - R (M[ϕ] + a(x)ϕ)ϕ (4.7) = min ϕ∈Cper(R) - R -R (M[ϕ] + a(x)ϕ)ϕ R -R ϕ 2 . ( 4 
ϕ L 2 (R) =1 - R (M[ϕ] + a(x)ϕ)ϕ ≤ λ 1 (a).
Indeed, for r > 0 let η r ∈ C ∞ 0 (R) be such that 0 ≤ η r ≤ 1, η r (x) = 1 for |x| ≤ r, η r (x) = 0 for |x| ≥ r + 1. It will be sufficient to show that 

lim r→+∞ R (M[φ 1 η r ] + aφ 1 η r )φ 1 η r R (φ 1 η r ) 2 = -λ 1 (a).
|M[φ 1 ](x) -M[φ 1 η r ]| ≤ φ 1 L ∞ |x-z|≥r |J(z)| dz ≤ φ 1 L ∞ |z|≥(1-θ)r
R (M[φ 1 η r ] + aφ 1 η r )φ 1 η r R (φ 1 η r ) 2 + λ 1 (a) ≤ C(1 -θ) + o(1),
which proves (4.10).

To establish (4.7) it remains to verify that

λ 1 (a) ≤ -R (M[ϕ] + a(x)ϕ)ϕ R ϕ 2
for all ϕ ∈ C c (R). 

λ 1 (a) ≤ - 2kR -2kR (M[ϕ k ] + a(x)ϕ k )ϕ k 2kR -2kR ϕ 2 k = -R (M[ϕ k ] + a(x)ϕ)ϕ R ϕ 2 . (4.17)
For |x| ≤ kR we have

|M[ϕ k ](x) -M[ϕ](x)| ≤ ϕ L ∞ |y|≥2kR |J(x -y)| dy ≤ ϕ L ∞ |z|≥kR |J(z)| dz. Hence lim k→+∞ R (M[ϕ k ] + a(x)ϕ)ϕ = R (M[ϕ] + a(x)ϕ)ϕ. (4.18)
Thanks to (4.17) and (4.18), we conclude the validity of (4.15). Moreover, the applications y → λ r,y and y → ϕ r,y are periodic. The periodicity of the application y → ϕ r,y is understood as follows: ϕ r,y+2R (x) = ϕ r,y (x -2R). Proof. For convenience we write λ r = λ r,y and let ϕ r be a positive eigenfunction of (4.2) in Ω r .

By the variational characterization (4.3) we see that r → λ r is nonincreasing, and hence lim r→+∞ λ r exists. Moreover, using (4.7) we have

λ r ≥ λ 1 (a) for all r > 0. (4.19) Let φ 1 ∈ C per (R) be a positive eigenfunction of -(M + a(x)) with eigenvalue λ 1 (a) normalized such that R -R φ 2 1 = 2R. Let η r ∈ C ∞ 0 (R) be such that 0 ≤ η ≤ 1, η r (x) = 1 for |x -y| ≤ r -1, η r (x) = 0 for |x -y| ≥ r
and such that η r C 2 (R) ≤ C with C independent of r. Arguing in the same way as in the proof of Lemma 4.3 we obtain

lim r→+∞ R (M[φ 1 η r ] + aφ 1 η r )φ 1 η r R (φ 1 η r ) 2 = -λ 1 (a). Since λ r ≤ -R (M[φ 1 η r ] + aφ 1 η r )φ 1 η r R (φ 1 η r ) 2 we conclude that lim r→+∞ λ r ≤ λ 1 (a).
This and (4.19) prove the desired result.

Let us now show the periodicity of the applications y → λ r,y and y → ϕ r,y . Replace y by y+2R in the above problem (4.2) and let us denote by λ r,y+2R and ϕ r,y+2R the corresponding principal eigenvalue and the associated positive eigenfunction: M[ϕ r,y+2R ] + a(x)ϕ r,y+2R = -λ r,y+2R ϕ r,y+2R in B r (y + 2R).

We take the following normalization: Thus, λ r,y+2R is a principal eigenvalue of the problem (4.2) with Ω r,y = B r (y). Hence, by uniqueness of the principal eigenvalue we have λ r,y = λ r,y+2R and ψ = γϕ r,y for some positive γ. Using the normalization, it follows that γ = 1. Therefore, ϕ r,y (x) = ϕ r,y+2R (x + 2R); in other words ϕ r,y+2R (x) = ϕ r,y (x -2R). is uniform with respect to y ∈ R, since λ r,y is continuous in y.

Proof of Proposition 4.1. Let u ≥ 0 be a bounded solution to (1.1) such that u ≡ 0. By the strong maximum principle (Theorem 1.4) we must have inf K u > 0 for compact sets K ⊂ R.

(1) for any closed interval I one has lim sup ǫ→0 sup I u ǫ < 0, or (2) for some closed interval I one has lim sup ǫ→0 sup I u ǫ = 0. If case (1) occurs, we see that for all closed intervals I we have ess sup I u < 0. Assume case (2) holds. Let I be a closed interval and ǫ n → 0 be such that lim n→+∞ u ǫn (x n ) = 0, where x n ∈ I is such that sup I u ǫn = u ǫn (x n ). Integrating (A.1) from x n -ǫ n to x n + ǫ n and dividing by 2ǫ n , we have This shows that u = 0 a.e. in x -supp(J). Now, for any x 1 in the interior of x -supp(J) we have J ⋆ u(x 1 ) ≥ 0, which shows that u = 0 a.e. in x -2supp(J), where 2supp(J) = supp(J) + supp(J). Note that assumption (1.4) implies that k supp(J) covers all of R as k → +∞, where k supp(J) is defined inductively as (k -1) supp(J) + supp(J). Repeating the previous argument we deduce that u = 0 a.e. in R.

(1. 2 )
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 1 
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 8 Proof. By Theorem 1.2 we know that there exists a unique principal eigenvalue λ 1 (a) of the operator -(M + a) in C per (R). Let φ 1 ∈ C per (R) denote a positive eigenfunction associated with λ 1 (a). We normalize φ 1 such thatR M[ϕ] + a(x)ϕ)ϕ R -R ϕ 2is also an eigenvalue of -(M + a) on C per (R) with a positive eigenfunction. By uniqueness of the principal eigenvalue, λ 1 (a) = λ 1 (a).

  η r ) 2 = 2r + O(1) as r → +∞. (4.11) Let 0 < θ < 1. Then

1 =

 1 |J(z)| dz for all |x| ≤ θr = o(1) uniformly for all |x| ≤ θr. (4.12) We split the integral R (M[φ 1 η r ] + aφ 1 η r )φ 1 η r = |x|≤θr . . . dx + |x|≥θr . . . dx. (4.13) Using η r (x) = 1 for |x| ≤ θr and (4.12) we see that |x|≤θr (M[φ 1 η r ] + aφ 1 η r )φ 1 η r = |x|≤θr (M[φ 1 η r ] + aφ 1 )φ 1 = |x|≤θr (M[φ 1 ] + aφ 1 + o(1))φ -2θλ 1 (a)r + o(r) as r → +∞. The second integral in (4.13) is bounded by |x|≥θr(M[φ 1 η r ] + aφ 1 η r )φ 1 η r ≤ C(1 -θ)r.(4.14) Thus from (4.11)-(4.14) we conclude that

(4. 15 )-kR ϕ 2 ,

 152 By uniqueness of the principal eigenvalue we haveλ 1 (a) = inf ϕ∈Cper(Ω k ) -kR -kR (M[ϕ] + a(x)ϕ)ϕ kR (4.16)whereΩ k = (-kR, kR) for k ≥ 1and C per (Ω k ) is the set of continuous 2kR-periodic functions on R. Fix ϕ ∈ C c (R) and consider k large enough so that supp(ϕ) ⊆ Ω k . Consider now ϕ k the 4kR-periodic extension of ϕ. Since ϕ k ∈ C per (Ω 2k ), (4.16) yields

Lemma 4 . 4 .

 44 Assume J satisfies (1.3), (1.4), and (1.8) and that a : R → R is a 2R-periodic, Lipschitz function. Let λ r,y be the principal eigenvalue of (4.2) for Ω r,y = B r (y) and let λ 1 (a) denote the principal eigenvalue of -(M + a(x)) in C per (R). Then lim r→+∞ λ r,y = λ 1 (a).

Ω r,y+2R ϕ 2 r

 2 ,y+2R (x) dx = 1.Let us defined ψ(x) := ϕ r,y+2R (x + 2R) for any x ∈ B r (y). A short computation shows thatM[ψ](x) = M[ϕ] r,y+2R (x + 2R).Therefore, using the periodicity of a(x), we haveM[ψ](x) + a(x + 2R)ψ(x) = λ r,y+2R ψ in B r (y),M[ψ](x) + a(x)ψ(x) = λ r,y+2R ψ in B r (y).

Remark 4 . 5 .

 45 The proof of Lemma 4.4 yields the slightly stronger conclusion that the convergence lim r→+∞ λ r,y = λ 1 (a)

J

  ⋆ u ǫn (x n ) ≥ u ǫn (x n )cu ≤ -c L ∞ u ǫn (x n ) → 0. Hence lim inf n→+∞ J ⋆ u ǫn (x n ) ≥ 0.We may assume that x n → x ∈ I. Then by dominated convergence,J ⋆ u ǫn (x n ) = R J(x n -y)u ǫn (y) dy → R J(x -y)u(y) dy.
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Given y ∈ R and r > 0 we write Ω r,y = (y -r, y +r), λ r,y the principal eigenvalue of -(M + f u (x, 0)) with Dirichlet boundary condition in Ω r,y as in (4.2), and ϕ r,y a positive Dirichlet eigenfunction normalized so that Ωr,y ϕ 2 r,y = 1.

Since the principal eigenvalue λ 1 := λ 1 (f u (x, 0)) of -(M + f u (x, 0)) with periodic boundary conditions is negative by hypothesis, by Lemma 4.4 and Remark 4.5 we may fix r > 0 large enough so that λ r,y < λ 1 /2 for all y ∈ R.

Note that for x ∈ Ω r,y ,

We claim that

This proves the proposition because there is a positive constant c such that ϕ r,y (y) ≥ c for all y ∈ R since the application y → ϕ r,y is periodic and ϕ r,y (y) > 0 for any y ∈ [-2R, 2R]. Now, to prove (4.21) fix y ∈ R and set γ * = sup{ γ > 0 / γϕ r,y ≤ u in R}.

Since inf K u > 0 for compact sets K ⊂ R and ϕ r,y has compact support we see that γ * > 0. Assume that γ * < γ 0 . Then by (4.20), γ * ϕ r,y is a subsolution of (1.1) while u is a solution. By the strong maximum principle (Theorem 1.4) either γ * ϕ r,y ≡ u in R or inf K (u-γ * ϕ r,y ) > 0 for compact sets K ⊂ R. The former case is impossible because u is strictly positive, while the latter case yields a contradiction with the definition of γ * . It follows that γ * ≥ γ 0 as desired.

Appendix

In this appendix we give a short proof of Theorem 1.4. We assume that J satisfies (1. Then u ǫ is continuous in R, u ǫ ≤ 0, and u ǫ → u a.e. as ǫ → 0. There are two cases: