
HAL Id: hal-00603466
https://hal.science/hal-00603466

Submitted on 25 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DEVSimPy: A Collaborative Python Software for
Modeling and Simulation of DEVS Systems

Laurent Capocchi, Jean-François Santucci, Bastien Poggi, Céline Nicolai

To cite this version:
Laurent Capocchi, Jean-François Santucci, Bastien Poggi, Céline Nicolai. DEVSimPy: A Collabo-
rative Python Software for Modeling and Simulation of DEVS Systems. 2nd International Track on
Collaborative Modeling & Simulation - CoMetS’11, Jun 2011, Paris, France. 6 p. �hal-00603466�

https://hal.science/hal-00603466
https://hal.archives-ouvertes.fr

DEVSimPy:A Collaborative Python Software for

Modeling and Simulation of DEVS Systems

L. Capocchi, J.F. Santucci, B. Poggi, C. Nicolai

University of Corsica, UMR CNRS 6134 SPE

Corte, France

{capocchi,santucci,bpoggi,cnicolai}@univ-corse.fr

Abstract—The Modeling and Simulation (M&S) of complex

systems leans on the collaboration between different actors

coming from specific domains. These actors have to communicate

through an efficient software in order to improve the M&S

process. We therefore propose in this article a collaborative M&S

software framework called DEVSimPY. We point out the use of

DEVSimPy through a concrete case study: hydraulic network

management.
Keywords-Modeling; Simulation; Collaborative softwares;

Discrete event systems; Hydraulic systems; Software libraries

I. INTRODUCTION

The design of models for the simulation of complex

systems is a task requiring a lot of time to be achieved. One

way to speed up this task is to develop methodologies for: (i)

deriving and using reusable design components; (ii)

developing collaborative modeling and simulation. Recently a

set of research work has been oriented towards this direction.

We can highlight that traditional modeling and simulation

approaches are mono-disciplinary in style, in that the

simulation software development concerns only one

application domain. However simulating complex systems, in

which the viability of the simulation software depends on the

close coupling between different disciplines, therefore calls for
a more multidisciplinary approach. In the same time, computer

simulations have been becoming increasingly complex and

require efficient system simulation framework. Furthermore

increasing size and geographical separation of design data and

teams has created a need for network-based design

environments [1,2,3]. Usually modeling and simulation tools

are associated with libraries of reusable modeling components

that will make the description of the models and also their

validation much easier [4,5,6]. Storing models in a common

generic library has several benefits. First, the genericity of this

storage service can be offered to various modeling and
simulation environments. Second, a common library allows

environments to share information so they can interact each

other, and third, several users can share modeling components.

This last point is the most important since it allows a

modelling and simulation team enabling an efficient

collaborative work. Modeling and Simulation applications of

today and tomorrow will be increasingly based on three

fundamental technologies: object orientation, Collaborative

Design and Internet (especially the World Wide Web):

 object orientation allows applications to be viewed in
terms of natural objects,

 collaborative testing help,

 and the Web allows to access resources located all

around the world. A Web-based access is a very

interesting perspective for a generic modeling and

simulation components library, since it allows a user-

friendly remote access using a simple web browser.

Three distinct levels of communication with a Computer

Modeling and Simulation framework have to be considered.

At the higher level of communication, a domain specialist

interacts with the Computer Modeling and Simulation

framework in order to define an environment contributing to
the solution of a certain class of problems related to a given

domain. We call this environment an application system and

the person who defines it an Application Builder. His role is to

define appropriate models for the class of applications, specify

appropriate processing tools and establish problem resolution

strategies adapt to his class of applications. At the lower, an

application system is activated by a user (called the Final User)

in order to solve a particular problem. The role of the Final

User is to supply the problem description and other relevant

information to the application system.

The remaining level correspond to the Framework Builder,
who: (i) is familiar with the internal software structures of the

Computer Aided Design framework and (ii) is in charge of the

creation and management of the different libraries involved in

application domains.

In this paper we propose to develop a Collaborative

Modeling and Simulation Framework based on DEVS

(Discrete Event Specification) simulations. The DEVS

formalism introduced by Zeigler [7] provides a means of

specifying the behavior of a given system. It provides a formal

representation of discrete event systems capable of

mathematical manipulation just as differential equations serve
this role. One of the main interests in DEVS formalism is the

fact that it allows an explicit separation between the modeling

and simulation part. This means that we can define the model

representing the behavior of a given system without having to

consider the simulation phase.

The definition of an efficient collaborative modeling and

simulation framework raises a set of problems. The first type

of problems concerns the manipulation of the basic elements

(atomic models, coupled models and test benches). It is a very

important part of simulation models Design. The elements are

normally defined in terms of concepts which are specific to

the class of applications for which the model is used. These

definitions are stored in a library. When an element occurs in a

model description, its definition is copied from the library and

placed in the context of the model. Thus an element once
defined and placed in the library, can be used as often as

required without having to be redefined. The second type of

problems to solve is to propose the management of software

design errors using a web based access. The idea is that the

final user could have the possibility to automatically refer to

the Application Builder when a model design error happens

and in the same way that the Application Builder could refer

the Framework Builder when a software framework error

happens. The last type of problems to be solved concerns the

ways to share both atomic models, coupled models and testing

developments.

We describe in this article an object-oriented framework
called DEVSimPy allowing to propose solution to the three

types of problem previously mentioned. Furthermore this

environment provides a user-friendly interface for creating

DEVS models. The simulation is performed by running the

PyDEVS simulator[8]. The originality of our approach lies in

the facts that it is based on a strong notion of genericity of use.

We have already validated the use of the proposed approach in

the framework of the simulation of a complex system: the

software simulation of the management of a hydraulic network.

The design of the software leans on the collaboration of

several specialists in charge of different part of the common
library of models to be defined : (i) a specialist of the

development of mathematical modelling in charge of the

simulation of the behaviour of dams, (ii) a specialist of spatial

data modelling in charge of the simulation of data related to

geographic information systems, (iii) a specialist of discrete

event modelling in charge of the simulation of the hydraulic

Engineer strategies and (iv) a specialist of learning based

models in charge of the simulation of predictive systems as

rainfall or water consumption. These four types of specialists

will be able to collaborate within the proposed software

framework as representing each of them an Application

Builder. We will point out how the DEVSimPY framework has
been used in order to define a software simulation of the

hydraulic network system.

The paper is organized as follows. Section 2 presents the

basics of our work: the DEVSimPy framework. Section 3 first

introduces the complex application case: the simulation of an

hydraulic network management. We then points out how the

DEVSimPy framework has been used in order to perform a

simulation model of such complex system.

Finally, section 4 concludes the paper and provides some

perspectives of work.

II. DEVSIMPY M&S SOFTWARE

A. Initial idea

In this section we present a software framework dedicated

to DEVS modeling and simulation. This framework is

being developed at University of Corsica using the Python

Language. The SPE (Sciences Pour l'Environnement)

laboratory of the University of Corsica is specialized in the

field of environmental systems modeling based on DEVS

formalism. DEVS is a mathematical formalism allowing

modeling and simulation of discrete event systems in

hierarchical and modular way [9]. In the DEVS formalism,
one must specify: 1) basic models from which larger ones

are built (they are called atomic models), and 2) how these

models are connected together in hierarchical fashion (to

obtain coupled models). The SPE team has published

several works on extensions of the DEVS formalism

responding to problems from different application areas as:

• the simulation of forest fires,

• the behavioral test of digital circuits,

• the behavioral simulation of hydraulic network,

• the simulation of sensor networks,

• the simulation of myths and legends,

• …
When a member of SPE team has to define a DEVS

model of a system, he always uses a generic and reusable

approach. The choice of the best programming language used

in order to implement the model depends on factors in relation

with the nature of the system. In recent years, the PyDEVS

library has been increasingly used in the SPE laboratory due to

its simplicity of use and also because it is coded in Python[10].

Python is an object-oriented programming language known to

be clear and readable, fast to learn, reusable and portable on

multiple platforms. PyDEVS provides an API allowing the

user to model and simulate DEVS models in Python code.

This API is used in the excellent multi-modeling GUI software
named ATOM3 [11] which allows to use several formalisms

without focusing on DEVS.

The initial idea of DEVSimPy (Python Simulator for

DEVS models) project is to provide a GUI based on PyDEVS

API in order to facilitate both the coupling and the reusability

of PyDEVS models. It is a user-friendly interface for

collaborative modeling and simulation of DEVS systems

implemented in Python. With DEVSimPy the modeler can:

 model a DEVS system and save it into a library,

 edit the DEVS model during the simulation,

 import existing library of models,

 automatically simulate/analyze the system,

 …

DEVSimPy is an open source project under GPL V3

license and the SPE research laboratory team supports its

development. It uses the wxPython graphic library, the Python

Language and the PyDEVS API (Fig. 1). It can be

downloaded from http://code.google.com/p/devsimpy/.

Figure 1. DEVSimPy Layer View

http://code.google.com/p/devsimpy/

B. DEVSimPY features

DEVSimPy has been built to facilitate collaboration of

researchers during the DEVS modeling. Indeed, DEVSimPy

final users (Fig. 2) can develop and maintain libraries of

generic components. The libraries can be stored on the hard

disk or network to improve sharing. In addition, the

components belonging to dynamic libraries are compressed

files that contain the behavior and graphic of the models. This

approach keeps the separation between the behavior and the

view of the models. So DEVSimPy framework builder

improves the sharing of component libraries making an easy

manipulation. The M&S kernel has been build by the
DEVSimPy application builder in order to make possible the

simulation of models based on the components.

Figure 2. DEVSimPy actors and collaborations

When a final user debugs its models, an error can occurs.

The framework and application builders have developed two

error managers (Fig. 2). These modules provide to the final

users an easy way to correct their models or to send emails to
the authors of the models. If the error occurs in the kernel, the

GUI error reporter sends emails to DEVSimPy developers.

1) Sharing Component Dynamic Libraries

In DEVSimPy, libraries are directories that contain

components represented by files. Users can create libraries

which can be stored on a local hard disk or on an external http

server. Thus, there is two ways to share components: read-only

when the shared library is stored on an http server and

read/write when the shared library is stored on the hard disk.

This mode of sharing allows to create two collaborative
approaches depending on the nature of DEVSimPy users:

developer for the read/write access or single user for read-only

access. DEVSimPy has a library manager with a specific

interface that offers several features (import, activation,

deactivation,...). All imports of new libraries in DEVSimPy

are done through this interface. The user can also view the

libraries already imported with their information such as size,

location and file name.

2) Handling components and diagrams

A library is composed by files used in order to instanciate

components. These components must be portable and easily
usable in DEVSimPy. That is why they are constructed from

compressed files that contain: a behavioral/structural file for

atomic/coupled DEVS model and a graphic file. In this way,

there is a separation between behavior (structure) and

representation of models.

DEVSimPy has two file extensions depending on the

nature of the described components:

• .amd for atomic models: This compressed file

consists of a behavior (devs transition functions) and a graphic

file (color, shape ,...).

• .cmd for coupled models: This file consists of a file

defining a structure (list of DEVS models, coupling between
DEVS models,...) and a graphic file. The behavioral or

structural files have a file extension ".py" and the graphic files

a ".dat".

DEVSimPy was built to facilitate files handling and

sharing implemented in PyDEVS. Therefore, a component can

be an uncompressed python file. In this case, its representation

is automatic in DEVSimPy. However, the user can export it

in .amd or .cmd file in order to customize and save its graphic.

To facilitate the use of components, DEVSimPy allows

automatic documentation templates. A management system

can automatically generate model documentation from python
source code. DEVSimPy also offers the debugging of models

before the simulation with the possibility of modifying the

source code using an embedded code editor.

An error manager is implemented in DEVSimPy in order

to inform (mainly by email) developers of an error in the

software kernel. This module manages also errors coming

from the simulation of models by sending an email to the

authors. Its also possible to edit the code source in order to

correct the errors.

Another way to have a good collaboration between all

actors of the modeling is to use a plugins approach. In fact,

each specialist of the domain can in an easy way make a code
extension (usually called plugin) that can help the final user in

the manipulation of the models. For example, developers can

write plugins that show the simulation results in graphs.

DEVSimPy is based on a powerful plugin architecture

managed by a specific interface allowing

activation/desactivation and setting of all installed plugins.

When the user manipulates several components it builds a

diagram. These sets of interconnected components can be

stored in a compressed file with the .dsp (for DESVSimPy)

file extension. Collaboration for a modeling project can be

effected through the exchange of such files.
In summary, using DEVSimPy the developer can share

components in an efficient way. It can also ask a user to test

the simulation models sending both the http link of the

component library (or compressed libraries) used by the

models and the .dsp file representing the full model.

3) Facilitating the simulation process

Like with DEVS, DEVSimPy simulation algorithms are

is automatically generated. Once the model has been built,
simulation can be start by clicking on a simple button. A

dialog appears giving access to several options like the

verbose simulation, the choice of simulation algorithm, the

choice of profiling simulation and the final simulation time.

The simulation process is build with a threading approach.

Each simulation is generated from a model and several

simulations can be performed in parallel. This parallel

simulation engine embedded in DEVSimPy is an advantage

because user can simulate several behaviors from a single

model. Moreover, several simulations can be performed in a

concurrent way from several different models. In this way,

sharing data is possible between each model.
DEVSimPy allows to go further by using the dynamic

simulation property allowing the change of the model

behavior during the simulation. Whichever the simulation

time, the user can suspend the simulation and edit the code of

models in order to modify their behaviors. An another way to

do it, is to replace the python file describing the model

behavior. In both case, the simulation process can then restart

with the new behaviors without any alterations. This aspect is

one of the most important aspects because the user can interact

with the behavior of models without waiting the end of the

simulation.

Another simulation tool proposed by DEVSimPy is the

profiling. The modeler can perform the simulation with a

profiling option for measuring where models consume

resources, including CPU time and memory. Each diagram can

be profiled and DEVSimPy save their profiling results in

separate files. Profiling can be painfully slow and the user

should use it with precautions.

Two types of errors manager are proposed in DEVSimPy.

The first one is dedicated to the errors coming from

DEVsimPy kernel code. The second manages the errors

coming from the code of the models. The latter is interesting
from the standpoint of user because the user is informed when

a syntax error occurs in the code. The error checking is

possible in many case: before the simulation, during the

coding of models and during the importation of libraries.

When an error is detected, DEVSimPy offers a specific dialog

asking to the user if he wants to correct this error.

Finaly, DEVSimpy is composed by several models that

are dedicated to the view of events and states (QuickScope,

MessageViewer, EventViewer). These models are stored in

library and can be used by the user irrespective of the study

domain. Their main goal is to help the developer to validate
models or to analyze the intermediate signals and events under

the modeling process.

III. CASE STUDY: HYDRAULIC NETYWORK M &S

A. Description

The members of the SPE team from University of Corsica

are collaborating on a modeling and simulation tool. Our goal

is to improve the hydraulic network located in the south of the

Corsica Island. Our work comes within the scope of a

European cross-border project. The main difficulty is to make

an easy collaboration between different specialists in different
fields. This scientific sphere can be: computing, mathematics,

physics, hydrology and management. The application builders

need to communicate and to study the hydraulic network to

get realistic behavioral specifications (inputs of the system).

With these specifications they can build a determinist model.

This one can be simulated to propose an optimization of

hydraulic network management (output of the system).

Figure 3. Scheme of the Hydraulic network under study

 On Fig. 3 we can see a global system view to model.

Outcome of analysis is this plan which represents the general

network behavior. Some component like dams, intakes, water

link are clearly identifiable and are essential to find

optimization at the end of simulation. We have defined three

simulation scenarios:

 Maximize water-generated electricity: As you can see

on Fig. 3 the network has a power station. This
electrical production represents a loss of water but it

saves a considerable amount of money.

 Minimize pumping between dams: The water demand

increases faster during the tourist season. This brings

about water pumping to carry out supplying

customers with water.

 Improve the floodgates management (minimal

pressure, stock distribution): A minimal pressure

needs to be supported over the hydraulic network. It

depends on the water stock and floodgate turning on.

Our goal is to allow simulation of complex scenarios and
help the decision-maker to take the best choice according to

collected data (weather, consumption, stocks).

The system modeling is complex and includes some type of

sub-systems:

 Data system based on statistic tools like neuronal

networks or data mining.

 Behavioral system based on literal or oral description

from the expert.

 Mathematical system based on equation and

mathematical formula like differential equation or

final state automata.

All these sub-systems are complementary and we would
like to use them to build a global system that is coherent with

the real hydraulic network functioning as we describe. The

collaboration on this project is the key of success and the

software DEVSimpy is collaboration oriented.

B. Collaborative M&S Process

The development of a discrete-event modeling and
simulation software requires the collaboration of different

actors at the main following three steps [12]: (i) Specification

task, (ii) Model Design and (iii) simulation and validation.

In this sub-section we point out how the DEVSimPy software

framework has been used in order to deal with the case study

presented above.

1) Specification Task
The specification task concerns the definition of modeling

objectives and requirements analysis. We have performed this

first step without any help of the DEVSimPy framework since

this task has to elaborate the modeling objectives and

requirements without any link with the DEVS formalism. The
result of this first step has been obtained after a set of

meetings with the Hydrologic Engineers. The result consists in

a list of literal descriptions of basic behavior of the different

parts composing the overall system under study and presented

in section III.A.

2) Model Design Task
This task concerns the design of the set of DEVS models

which will be integrated under an overall coupled model. We

have to define which models have to be created and how they

have to be interconnected. This resulting interconnection is

then simulated. The implementation has been performed using

the DEVSimpy framework. We have used the framework in

order to facilitate the design of the basic models and their
interconnection when dealing with the DEVS simulation of

the Hydraulic Network described in sub-section III.A. The

implementation has been facilitated by the following three

features of the DEVSimPy framework: (i) automatic

documentation of the code, (ii) the development of libraries

and (iii) the automatic generation of code.

The self-documentation of the code is performed during

code creation of the models. The application builders have the

possibility to add comments by respecting Epytext markup

language formalism [13]. These comments can be parsed by

the Epydoc engine and are used to generate a fulfilled
centralized and structured documentation.

The development of libraries allows the Application Builder

to offer a set out-context of atomic or coupled models that can

easily be inserted in a global simulation models. In the case of

the considered application (simulation of an hydraulic

network), four different specialists are required in order to

define the basic elements : (i) a specialist of the development

of mathematical modelling describing the behaviour of dams,

(ii) a specialist of spatial data modelling related to geographic

information systems, (iii) a specialist of discrete event

modelling concerning the hydraulic Engineer strategies and

(iv) a specialist of learning based models associated with

predictive systems as rainfall or water consumption. Each of

them has defined a set of basic atomic models (saved as .amd
files) and coupled models (saved as .cmd) that are going to be

interconnected in an overall coupled model: (i) the first

specialist has defined 6 atomic models (stored as .amd in the

library) - pumping atomic model, electrical Power Station

atomic model, dam behaviour atomic model, water releases

atomic model, pipeline atomic model, valve behaviour atomic

model; (ii) the second one has defined three atomic models -

point atomic model, line atomic model and polygon atomic

model; the third one has defined three atomic models

corresponding to the different scenarios involved by the

management of an hydraulic network – turbine management

atomic model, pumping management atomic model and valve
management atomic model; and finally the last specialist has

defined two atomic models – rainfall prevision atomic model,

water consumption atomic model.

In order to facilitate the use of these atomic models we have

defined a set of coupled models stored in the library under the

.cmd format. These coupled models have been obtained by

interconnection of some of the previously mentioned atomic

models: dam location coupled model, and dam behaviour

coupled model.

A third kind of element can be stored in the library: the .dsp

models. They correspond to validation scenarios that the
different specialists can defined in order to test their respective

models. Furthermore the final user can also defined a .dsp

model corresponding to the actual water network he has to

simulate in order to obtained information concerning its

management. The part 3 of section III.B will detail this

simulation and validation process

The last feature offered by DEVSimPy in order to help the

Application Builder to design the models to be stored in the

library is the automatic code generation tool. DEVSimPy

offers the possibility to automatically generate a set of parts of

code corresponding to repetitive coding. For example the code

corresponding to the checking of arrival of an event is
automatically generated on demand of the Application

Builder.

3) Simulation and Validation Task
In this part we show the simulation results through the

QuickScope atomic model in three points: (1) Asinao water

flow output, Electrical Power station output and the dam

output.

The use of the QuickScope atomic model allows to validate

the signal form of the water flow in the system. The simulation

time step is the week and the context of the simulation is as

follows (Fig. 4): the water flow of catchment basin 'Asinao'

decreases between the week 1 and 30 and increases between
the week 30 and 52. The electrical Power atomic model is

operational if the level of water flow coming from Asiano is

bottom at 50000 m3/week. In the other case the dam retains

the water.

The three following figures (Fig. 4, Fig. 5, Fig. 6) show the

operations of the system and validate its behavior. Fig. 4

represents the variation of water coming from the catchment

basin 'Asinao'. Fig. 5 represents the Hydropower generate by

the electrical power station depending on the data of the

Asinao water flow (Fig. 4). Fig. 6 represents the filling up of
the dam. When the dam is stable, the electrical micro-central is

indeed operational.

Figure 4. Asinao water flow [m3/week]

Figure 5. Electrical Power Station [Watt/week]

Figure 6: Dam filling up [m3/week]

IV. CONCLUSIONS AND FUTURE WORK

We introduced in this paper our approach for the definition

of a collaborative modeling and simulation framework:

DEVSimPY. This tool enables the reusability and sharing of

modeling components, an efficient management of different

kinds of errors and a friendly test process of the designed

models. The proposed framework allows the model designer

to perform its model design very quickly, once models have

been introduced in a library. We provided also this user with a

set of APIs allowing him to process his models through some

web-based APIs and graphical interfaces accessible using the

DEVSimPy framework.

Our approach has been validated in the framework of a
concrete and complex domain: the simulation of an hydraulic

network management.

We have three main perspectives of work. The next step

will be to develop the possibility to associate several kinds of

simulation associated with the library stored models. The

second perspective is to define a meta-language in order to

help the models design. Finally, we want to study how to

manage and maintain with the most efficiency a distribution of

simulation models over a network and over multiple hosts.

REFERENCES

[1] H. Praehofer, J. Sametinger, and A. Stritzinger, "Building Reusable
Simulation Components," presented at WebSIM2000, Web-Based

Modelling and Simulation, San Diego, CA, USA, 2000.

[2] Filho, W. A., Hirata, C. M. and Yano, E. T. (2004). GroupSim: A
collaborative environment for discrete event simulation software

development for the World Wide Web, SIMULATION, Vol. 80, No. 6,
257-272.

[3] D.J. van der Zee, ―Developing participative simulation models: framing
decomposition principles for joint understanding‖, Journal of

Simulation, vol. 1, pp. 187--202, 2007.

[4] O. Balci, A. I. Bertelrud, C. M. Esterbrook, and R. E. Nance,
"Developing a Library of Reusable Model Components by Using the

Visual Simulation Environment," presented at the 1997 Summer
Simulation Conference, 1997.

[5] A. P. J. Breunese, J. L. Top, J. F. Broenink, and J. M. Akkermans,

"Libraries of Reusable Models: Theory and Application," Simulation,
vol. 71, 1998.

[6] B. Meyer, ―Reusable Software - The Base Object-Oriented Component

Libraries‖, Prentice Hall Professional Technical Reference, 1997.

[7] B.P. Zeigler, ―Theory of Modeling and Simulation”, New York: Wiley,
1996.

[8] J.S. Bolduc, H. Vangheluwe, ―The modeling and simulation package

PythonDEVS for classical hierarchical DEVS”, Technical report
MDSL-TR-2001-01, McGill University, Montréal, Canada, 2001.

[9] B. P. Zeigler, T. G. Kim, and H. Praehofer, ―Theory of Modeling and
Simulation.‖, Orlando, FL, USA: Academic Press, Inc., 2000.

[10] M. F Sanner, ―Python: a programming language for software integration

and development,‖ J. Mol. Graphics Mod 17, pp. 57–61 , 1999.

[11] J. de Lara and H. Vangheluwe, ―AToM3: A Tool for Multi-formalism
and Meta-modelling.‖, In Proceedings of the 5th International

Conference on Fundamental Approaches to Software Engineering
(FASE '02), Ralf-Detlef Kutsche and Herbert Weber (Eds.). Springer-

Verlag, London, UK, UK, pp. 174--188, 2001.

[12] Chang Ho Sung, Il-Chul Moon, Tag Gon Kim, "Collaborative Work in
Domain-Specific Discrete Event Simulation Software Development:

Fleet Anti-air Defense Simulation Software," wetice, pp.160--165, 2010
19th IEEE International Workshops on Enabling Technologies:

Infrastructures for Collaborative Enterprises, 2010.

[13] E. Loper, ―Epydoc: API documentation extraction in Python,‖ URL:
http://epydoc. sourceforge. net/pycon-epydoc. ps. Accessed 13

(2008).

http://epydoc/

