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Three different topics in phase-field modelling of solidification are discussed, with particu-
lar emphasis on the limitations of the currently available modelling approaches. First, thin-
interface limits of two-sided phase-field models are examined, and it is shown that the an-
titrapping current is in general not sufficient to remove all thin-interface effects. Second,
orientation-field models for polycrystalline solidification are analysed, and it is shown that
the standard relaxational equation of motion for the orientation field is incorrect in coherent
polycrystalline matter. Third, it is pointed out that the standard procedure to incorporate
fluctuations into the phase-field approach cannot be used in a straightforward way for a
quantitative description of nucleation.

Keywords: solidification; phase-field models; polycrystals; grain boundary motion;
nucleation.

1. Introduction

The phase-field method has become the method of choice for simulating microstruc-
ture formation during solidification. It owes its popularity mainly to its algorithmic
simplicity: the cumbersome problem of tracking moving solid-liquid interfaces or
grain boundaries is avoided by describing the geometry in terms of one or several
phase fields. The phase fields obey simple partial differential equations that can be
easily coded by standard numerical methods.

The foundations of the phase-field method and its application to solidification
have been the subject of several recent review articles [1–7], and it seems of lit-
tle use to repeat similar information here. Instead, in this paper several topics
are discussed where robust phase-field modelling tools are not yet available be-
cause some fundamental questions remain open. In Sec. 2, the thin-interface limit
of two-sided phase-field models is examined, and it is shown that the currently
available approaches cannot in general eliminate all effects linked to the finite in-
terface thickness. In Sec. 3, orientation-field models for polycrystalline solidification
are discussed, and it is shown that the standard equation of motion usually writ-
ten down for the orientation field is not appropriate for the evolution of coherent
crystalline matter. Finally, in Sec. 4, the inclusion of microscopic fluctuations in
the phase-field equations is reviewed, and it is shown that the standard approach
cannot be used in a straightforward way to investigate the process of nucleation.

The common point of these topics is that they pose challenges or limitations for
straightforward computations. Indeed, a characteristic feature of the phase-field
method is that its equations can often be written down following simple rules or
intuition, but that their detailed properties (which have to be known if quantitative
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simulations are desired) become only apparent through a mathematical analysis
that can be quite involved. Therefore, it is not always easy to perceive the limits
of applicability of the method. It is hoped that the present contribution will be
helpful to point out some pitfalls and to stimulate further discussions that will
facilitate the solution of these issues.

2. Thin-interface limits: antitrapping current and the Kapitza resistance

The precision and performance of phase-field models have been greatly enhanced
in the last decade by a detailed control of their properties. Phase-field models are
rooted in the mean-field description of spatially diffuse interfaces by order param-
eters. However, to be useful for simulating microstructure formation in solidifica-
tion, phase-field models need to bridge the scale gap between the thickness of the
physical solid-liquid interfaces and the typical scale of the microstructures. This
is achieved by increasing the interface width in the model, sometimes by several
orders of magnitude. Obviously, this procedure magnifies any physical effect that is
due to the diffuseness of the interface. Therefore, to guarantee precise simulations,
all these effects have to be controlled and, if possible, eliminated. The privileged
tool to achieve this is the so-called thin-interface limit: the equations of the phase-
field model are analysed under the assumption that the interface thickness is much
smaller than any other physical length scale present in the problem, but otherwise
arbitrary. The procedure of matched asymptotic expansions then yields the effec-
tive boundary conditions valid at the macroscale, which contain all effects of the
finite interface thickness up to the order to which the expansions are carried out.

This procedure was pioneered by Karma and Rappel, who analysed the symmet-
ric model of solidification (equal diffusion constants in the solid and the liquid) and
obtained a thin-interface correction to the expression of the kinetic coefficient [8].
The use of this result has made it possible to carry out quantitative simulations
of free dendritic growth of a pure substance, both at high and low undercoolings
[9–12]. It turned out, however, that the generalisation of this method to a model
with arbitrary diffusivities is far from trivial [13], since several new thin-interface
effects appear, which cannot all be eliminated simultaneously. A solution to this
problem was found later for the case of the one-sided model (zero diffusivity in
the solid) with the introduction of the so-called antitrapping current [14], and it
was shown that quantitative simulations of alloy solidification are possible with
this model [15], including multi-phase [16, 17] and multi-component alloys [18].
Recently, several extensions of the antitrapping current were put forward to gen-
eralise the approach to the case of finite diffusivity in the solid [6, 19–21], and
simulations were presented which show that the approach works well for the in-
stability of a steady-state planar interface [19] and for free dendritic growth [20].
However, as will be shown below, this is only a partial solution to the problem
of developing a general quantitative model, since there is a second, independent
thin-interface effect that cannot be removed by an antitrapping current, namely,
the Kapitza resistance.

For the sake of concreteness, consider the standard phase-field model for the so-
lidification of a pure substance as discussed in Refs. [9, 13]. The evolution equation
for the phase field reads

τ∂tφ = W 2~∇2φ + φ − φ3 − λu(1 − φ2)2, (1)

where φ is the phase field, with φ = 1 and φ = −1 corresponding to solid and
liquid, respectively, τ is the relaxation time of the phase field, W is the interface
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thickness, and λ is a dimensionless coupling constant. The field u is a dimensionless
temperature defined by u = (T − Tm)/(L/cp), where Tm, L and cp are the melting
temperature, latent heat, and specific heat, respectively. It is assumed for simplicity
that cp is the same in both phases. The temperature is governed by a diffusion
equation with a source term,

∂tu = ~∇
[

D(φ)~∇u
]

+
1

2
∂th(φ). (2)

Here, h(φ), which satisfies h(±1) = ±1, is a function that describes the release
or consumption of latent heat during the phase transition, and D(φ) interpolates
between the thermal diffusivities of the liquid and the solid, Dl and Ds,

D(φ) = Dlq(φ), (3)

where the interpolation function q(φ) satisfies q(1) = Ds/Dl and q(−1) = 1. For
simplicity, crystalline anisotropy has not been included in the above model because
it is not necessary for the present discussion. Furthermore, the equations have been
stated in the language of a two-sided thermal model, but with some modifications
(as detailed in Refs. [15, 20]), they also apply to the isothermal solidification of a
binary alloy. In this case, u is a dimensionless chemical potential (conjugate to the
concentration of one of the alloy components), and D(φ) is the chemical diffusivity.

In the following, two simple one-dimensional solutions of these equations will be
analysed. The first is a steady-state planar front that propagates with constant
velocity V in the positive x direction into a liquid of undercooling ∆ (u → −∆
for x → ∞), and leaves behind a constant temperature. This solution only exists
if the liquid is undercooled beyond the hypercooling limit, that is, ∆ > 1. The
sharp-interface solution to this problem is readily obtained and reads

u = const. = u|
−

in the solid (x < 0) (4)

u = −∆ +
(

u|+ + ∆
)

exp(−xV/Dl) in the liquid (x > 0) (5)

for an interface located at x = 0 (in the frame moving with the interface). Here, u|
−

and u|+ are the limit values of the temperature when the interface is approached
from the solid and the liquid side, respectively. In the standard formulation of
the free boundary problem of solidification, it is assumed that the temperature is
the same on the two sides of the interface, u|

−
= u|+. Then, the use of the two

boundary conditions u|+ = −βV , where β is the linear kinetic coefficient, and
V = −Dl ∂xu|+ (the Stefan boundary condition) determines the solution, u|+ =
u|

−
= −∆ + 1 (a simple consequence of heat conservation), and V = (∆ − 1)/β.

The phase-field equations can be analysed and related to this sharp-interface
solution by the method of matched asymptotic expansions in the limit where the
interface thickness W is much smaller than the diffusion length Dl/V . This calcu-
lation has been presented in detail in Refs. [9, 13, 15, 20] and will not be repeated
here. The essential outcome is that, in general, the two asymptotes of the bulk
phases do not correspond to the same temperature. The difference is given, to the
lowest order, by

u|
−
− u|+ =

V

2

[
∫

−∞

0

h(φ0) − 1

D(φ0)
dx −

∫

∞

0

(

h(φ0) − 1

D(φ0)
+

2

Dl

)

dx

]

, (6)

where φ0(x) is the equilibrium profile of the phase field. The physical interpretation
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of this temperature jump is trapping: when the diffusivity decreases upon solidi-
fication, the heat generated at the rear of the interface gets trapped. In the alloy
version of the model, this is nothing but the well-known solute trapping effect. In-
deed, in sharp-interface models of alloy solidification the chemical potential exhibits
a jump at the interface when solute trapping occurs. In the phase-field model, the
temperature profile through the interface is determined by the interplay between
the rejection of latent heat and the diffusion away from the interface; therefore,
it is natural that the heat source function h(φ) and the diffusivity function D(φ)
appear in Eq. (6).

Whereas, thus, this discontinuity is physically correct, it generates problems for
simulations. To see this, is is sufficient to rewrite Eq. (6) in order to make the
relevant scales apparent. Since the only length scale in Eq. (1) is the interface
thickness W , the equilibrium solution φ0 is a function only of the reduced variable
η = x/W . Using this together with the interpolation of D(φ) given by Eq. (3),
Eq. (6) becomes

u|
−
− u|+ =

V W

2Dl

(F− − F+) , with (7)

F± =

∫

±∞

0
[p(φ0(η)) − p(±1)] dη and (8)

p(φ) =
h(φ) − 1

q(φ)
. (9)

The temperature jump is thus proportional to the velocity, the interface thickness,
and the difference of the two integrals; the latter depends only on the choice of the
interpolation functions. If W is the physical interface thickness (a few Angstroms),
this effect is negligibly small, but if the interface thickness is increased by a large
factor to make simulations feasible, this leads to potentially large errors in the
simulations.

As discussed in detail in Refs. [13–15], it is not possible to eliminate this macro-
scopic discontinuity simply by the choice of appropriate interpolation functions,
due to other constraints not discussed here. The solution put forward in Ref. [14]
and further developed in Ref. [15] is the introduction of an antitrapping current:
Eq. (2) is replaced by

∂tu = ~∇
(

D(φ)~∇u −~jat

)

, (10)

where the antitrapping current ~jat is given by

~jat = a(φ)Wφ̇n̂, (11)

where φ̇ is a shorthand for the time derivative ∂tφ, n̂ = −~∇φ/|~∇φ| is the unit
normal vector to the interface, and a(φ) is a new interpolation function. This term
induces a current which is directed from the solid to the liquid, and proportional
to the interface velocity (through the factor φ̇). It thus “pushes” heat from the
solid to the liquid side of the interface when the interface moves, and can be used
to adjust the temperature jump at the interface. For the one-sided model (Ds = 0)
with the standard choices h(φ) = φ and q(φ) = (1 − φ)/2, it was shown that a
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constant a(φ) ≡ 1/(2
√

2) leads to a vanishing jump in u, because it modifies the
function p(φ) in Eq. (8) such that F+ = F−. Thus, continuity of the temperature
between the two sides of the interface (local equilibrium) is restored for arbitrary
W and V , as long as the asymptotic analysis remains valid.

Recently, several authors have put forward generalisations of this approach [6,
20, 21] for arbitrary ratio of the diffusivities. For the case analysed above (that is,
the current far inside the solid vanishes), they reduce to the simple prescription
that the same expression for the antitrapping current can be used, but with an
additional prefactor that can be written as (1 − Ds/Dl),

~jat = a

(

1 − Ds

Dl

)

Wφ̇n̂. (12)

Indeed, the asymptotic analysis shows [19–21] that in this way the temperature
jump can be eliminated.

However, this is not the only thin-interface effect that can arise in the two-sided
case. To see this, consider now a different situation, namely an immobile interface in
a temperature gradient. Such an interface can be easily obtained in experiments by
maintaining a pure substance between two walls which are held below and above the
melting temperature, respectively. When the interface is stationary, ∂tφ = ∂tu = 0
by definition, and Eq. (2) implies that the system is crossed by a constant heat
current flowing from the liquid into the solid,

−D(φ)∂xu = −j, (13)

with j a positive constant. As before, the centre of the interface is located at x = 0,
and the solid is located in the domain x < 0. This situation can be analysed without
performing a perturbation expansion, since it is sufficient to integrate Eq. (13) to
obtain a solution for u,

u(x) = ū +

∫ x

0

j

D(φ(x))
dx, (14)

where ū is the temperature at x = 0. The sharp-interface solution for this case is
simply given by

u(x) = u|
−

+ (j/Ds) x in the solid (15)

u(x) = u|+ + (j/Dl) x in the liquid. (16)

Matching the asymptotes of the phase-field and sharp-interface expressions, it is
straightforward to show that there is again a temperature jump given by

u|+ − u|
−

= j

[
∫

∞

0

(

1

D(φ(x))
− 1

Dl

)

dx −
∫

−∞

0

(

1

D(φ(x))
− 1

Ds

)

dx

]

, (17)

this time proportional to the current. If the phase-field profile is replaced by its
equilibrium shape, this can be rewritten as

u|+ − u|
−

=
jW

Dl

(G+ − G−) (18)
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with

G± =

∫

±∞

0

(

1

q(φ0(η))
− 1

q(±1)

)

dη. (19)

This temperature jump corresponds to a surface thermal resistance, also called
Kapitza resistance, first found for an interface between liquid helium and metal
[22]. Indeed, in a sharp-interface picture it is generally necessary to assign a sur-
face resistance to an interface for a complete description of heat transfer, because
transport through an interface can be decomposed into three elementary steps:
transport in one bulk phase, crossing of the interface, and transport in the other
phase. The surface resistance describes the kinetics associated with the crossing
of the interface (its inverse is sometimes referred to as the interfacial transfer co-
efficient). It is characterised either by the value of the resistance, (u|+ − u|

−
)/j,

or by a length that is obtained by dividing this resistance by the conductivity of
the liquid phase. Here, this characteristic length is simply W (G+ − G−), which is
of the order of the interface thickness. Since this quantity is actually an interface
excess of the inverse diffusivity (in complete analogy to the interface excesses for
equilibrium quantities obtained by the well-known Gibbs construction), it can also
be negative – this does not violate the laws of thermodynamics because the local

transport coefficients are strictly positive. If the surface resistance is finite, the
temperature in the sharp-interface model is not continuous at the interface, but
exhibits a jump that is proportional to the current crossing the interface. In the
alloy version of the model, this corresponds to a jump in chemical potential that is
proportional to the solute flux [23]. Such discontinuities have been thoroughly in-
vestigated [24], and can be measured in experiments [25] and detected in molecular
dynamics simulations [26, 27] for solid-liquid interfaces.

Thus, like the trapping effect, the surface resistance is a natural effect that is
proportional to the interface thickness. If the interface thickness is to be upscaled,
it should therefore also be eliminated. However, is is immediately clear that this
effect cannot be eliminated by any antitrapping current proportional to φ̇ as given
by Eq. (12): since the interface does not move, φ̇ = 0 and the antitrapping current
vanishes, independently of the current j that crosses the interface.

The authors of both Refs. [20, 21] have recognised the importance of the current
j. They have developed generalised expressions for the antitrapping current with
coefficients that depend on the value of j. As long as the interface velocity remains
non-zero, the formal asymptotic analysis shows that it is still possible to eliminate
the temperature jump. However, for a fixed current j, the expressions of the coeffi-
cients diverge when V tends to zero, such that the asymptotic analysis is not valid
in this limit. Thus, it seems unlikely that this approach can be used as a robust
method for simulations.

In summary, there exist two independent thin-interface effects, one proportional
to V , and one proportional to j. On a very fundamental level, this is just the
consequence of the fact that the interface motion is driven by a diffusion equa-
tion, which has two independent boundary conditions. The corresponding physical
quantities are the currents on the two sides of the interface, or one current and
the velocity. A general solution to eliminate both thin-interface effects (which are
linearly independent) does not seem to exist at this moment, but the above con-
siderations can at least be used to obtain simple criteria when the prescription of
Eq. (12) can be used. Indeed, Eqs. (7) and (18) show that if j � V (note that,
since u is dimensionless, j has the dimension of a velocity), the Kapitza effect is
much smaller than the trapping effect, and can thus be neglected. This is generally
the case for equiaxed dendritic growth, in which the gradients outside the growing
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dendrite, which determine the growth speed, are much larger than the gradients
inside the solid. Indeed, it was shown in Ref. [20] that Eq. (12) works well in this
case. However, problems might arise in the case of alloy solidification in a tempera-
ture gradient or for multicomponent alloys with widely different solute diffusivities,
since in this case large currents of heat or certain solutes may cross an interface
whose velocity is controlled by a different diffusion field. Such cases have to be
critically examined before simulation results can be trusted.

3. Polycrystalline solidification

The size and shape of the crystalline grains formed upon solidification is one of the
most important factors that determine materials properties. Therefore, phase-field
models that are to be helpful for materials design must be capable of dealing with
the evolution of polycrystals, both during solidification of individual columnar or
equiaxed grains from the melt and during the subsequent evolution of the grain
structure after impingement. This can be achieved using the multi-phase-field ap-
proach [28–33], in which each grain is represented by a different phase field, even
if they are of the same thermodynamic phase. The properties of each individual
grain boundary or interface can then be specified separately [31], and it has been
demonstrated that good quantitative control of the grain boundary properties can
be achieved [32]. The problem of handling several hundreds or even thousands of
phase fields simultaneously can be solved by recognising that only a small number
of fields are important at any given point of space (see for example [34]).

An alternative approach is the orientation-field method. Its starting point is the
remark that it would be desirable, both for efficiency and simplicity, to formulate
a model that works only with a small number of field variables. Indeed, the ori-
entation of a crystal can be described by one scalar quantity (an angle) in two
dimensions, and three scalars in three dimension (for instance, the Euler angles).
Orientation-field models for pure substances in two dimensions that work with a
single phase field, an orientation field (the local angle of the crystalline structure
with respect to a fixed coordinate system), and the temperature field were put
forward in Refs. [35, 36], and generalised for alloy solidification [3] and to three
dimensions [37, 38]. While these models are elegant and simple in their formulation
and therefore hugely appealing, it is pointed out here that the evolution equation
of the angle field, which takes the form of a simple relaxation equation, does not
correctly describe the microscopic evolution of the orientation field since it does
not take into account the connectivity of matter and the resulting geometrical
conservation laws.

For simplicity, anisotropy and crystallographic effects will again be neglected,
and it is sufficient to consider a two-dimensional system. The dimensionless free
energy of the orientation-field model is [36]

F =

∫
[

W 2

2

(

~∇φ
)2

+ sg̃(φ)
∣

∣

∣

~∇θ
∣

∣

∣
+

ε2

2
h̃(φ)

(

~∇θ
)2

+ f(φ, u)

]

d~r, (20)

where now φ = 0 and φ = 1 in the liquid and the solid, respectively, s and ε are
positive constants, g̃(φ) and h̃(φ) are monotonous functions that satisfy g̃(0) =
h̃(0) = 0 and g̃(1) = h̃(1) = 1, and f(φ, u) is the local free energy density, with
u the same dimensionless temperature field as previously; the standard choice is
f(φ, u) = φ2(1− φ)2 + λu(10φ3 − 15φ4 + 6φ5). Recently, an alternative model was
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developed [39],

F =

∫
[

W 2

2

(

~∇φ
)2

+ ν
7φ3 − 6φ4

(1 − φ)2

(

~∇θ
)2

+ f(φ, u)

]

d~r, (21)

where ν is a constant. In the following, these models will be called model I and
model II. They both have some features that distinguish them from standard phase-
field models. Model I contains a term proportional to |~∇θ|, which has a singular

derivative at |~∇θ| = 0. Model II has only a regular square gradient term in ~∇θ, but
it is multiplied by a singular function of the phase field φ, which diverges in the
limit φ → 1 (the solid). These singular features are needed to create stable grain
boundary solutions, that is, localised spatial regions where the phase field departs
from its solid value and the angle field exhibits rapid variations.

Both models have a variational structure for the dynamics of the phase field and
the angle field, that is

∂tφ = −Mφ

δF
δφ

, (22)

∂tθ = −Mθ

δF
δθ

, (23)

which means that both φ and θ evolve such as to follow the gradient of the free
energy, with Mφ and Mθ being the corresponding mobilities (which may be func-
tions of the fields). In the following, it will be shown that Eq. (23) is incorrect for
coherent crystalline matter.

To illustrate the problems with this equation of motion, it is again useful to anal-
yse a simple one-dimensional situation, which is a tricrystal. A slab of crystalline
orientation θ0 is sandwiched between two crystals of identical orientation θ = 0,
as shown in the left side of Fig. 1. The two crystals on the sides of the system
are assumed to be clamped to a substrate, that is, θ = 0 for all times. In both
models, this initial condition evolves with time: the orientation of the central slab
remains homogeneous, but changes with time to approach the orientation of the
outer crystals. The final state is a uniform solid of orientation θ = 0: the central
slab has disappeared.

Of course, this process can take place since it corresponds to a minimisation of
the free energy: the two grain boundaries with their positive grain boundary energy
are eliminated. However, the pathway of this dynamics is not appropriate for the
evolution of a coherent crystal. In fact, Eq. (23) corresponds to the dynamics of
matter which has orientational, but no positional order, such as a liquid crystal.
Indeed, if in model I the term proportional to |~∇θ| is omitted or in model II the
singular coupling function is replaced by a regular one, the resulting model can be
mapped to the standard Landau-de Gennes model for nematic liquid crystals in
two dimensions [40]. The free energies in Eqs. (20) and (21) have been designed
to stabilise grain boundaries, which do not exist in a nematic liquid crystal. The
energetics of the models are thus quite different from liquid crystals. In contrast,
the type of the dynamics has stayed the same.

To understand where is the difference in dynamics between liquid crystals and
crystals, consider the elongated molecules of a nematic liquid crystal characterised
by a director field of a certain orientation θ0. Since the molecules have no bonds, it
is possible to change the local orientation while keeping the centres of mass fixed,
by just making each molecule rotate around its centre of mass (of course, in a dense
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Figure 1. Evolution of a tricrystal in the orientation-field models. The crystalline slab in the centre rotates,
and eventually the grain boundaries disappear.

liquid crystal, this exact procedure is not possible because of steric exclusion, but
the director can still be changed with only short-range displacements of the centres
of the molecules). The system is thus free to locally change orientation in order to
lower its free energy, and thus follows Eq. (23). This is obviously not the case
in crystalline matter: it is not possible to rotate a unit cell without displacing the
surrounding neighbours, because bonds (or, more generally, the positional ordering
of elements) define a connectivity. It is easy to grasp that the evolution depicted
in Fig.1 is impossible if the connectivity of the central slab is preserved.

Thus, a consistent evolution equation for θ has to take into account this con-
nectivity, or, in other words, the evolution of the positions. This is, in general, a
complicated undertaking. Two elementary situations where it easy to obtain an
equation are (i) rigid body rotation, in which case the (advected) time derivative
of the local angle is given by the curl of the local velocity field, or (ii) purely elas-
tic deformations of the solid, in which case the orientation is not an independent
quantity but can be deduced from the elastic displacement field.

Here, a third possibility will be briefly discussed, namely, plastic deformation.
This corresponds precisely to a change in the connectivity of matter. If the matter
in question can be considered reasonably crystalline (as opposed to, for example, an
amorphous material), its geometry can formally always be described by a density of
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Figure 2. Sketch of the elementary process that generates a rotation of the central crystal slab by the
motion of a single edge dislocation. Only the crystal planes close to the vertical direction are shown.

dislocations, which are singularities of the displacement field if a perfect crystal is
taken as the reference state. If, furthermore, grain boundaries remain coherent (that
is, no grain boundary sliding takes place), the evolution of the local orientation can
be linked to the motion of dislocations. A complete description is far outside of
the scope of this article; the interested reader is referred to Ref. [41] for a detailed
introduction to the continuum theory of defects. Here, only two simple examples
will be qualitatively treated for illustration.

Consider again the tricrystal configuration. In the sketch shown in Fig. 2, only
one set of crystal planes is shown for clarity, and the central slab has a small
misorientation with respect to the outer crystals. In this situation, the two low-
angle grain boundaries consist of individual edge dislocations. The inner crystal
can now rotate by an elementary process: take one of the edge dislocations of
the left grain boundary (marked by a circle) and make it glide towards the other
grain boundary. This process involves only local reconnection events. When the
dislocation arrives at the right grain boundary, it can annihilate with a dislocation
of the opposite sign. As a result, one dislocation has disappeared from each grain
boundary. Of course, this process can repeat itself until no dislocation is left, and
the grain boundaries have disappeared. It should be stressed that this pathway for
rearrangement exhibits large energy barriers, since the elastic energy of a single
dislocation is much higher in the centre of the slab than at its original position
within the grain boundary. Therefore, if only thermal fluctuations are driving this
process (no external strains), it will be extremely slow.

On a more quantitative level, the misorientation through a grain boundary is
linked to the density of dislocations by simple geometrical arguments. Therefore,
it is natural that the misorientation is lowered when the dislocation density in the

Page 10 of 40

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

April 9, 2010 8:39 Philosophical Magazine Plapp

The Philosophical Magazine 11

grain boundaries decreases. Furthermore, it is obvious that the rotation rate of
the central slab is proportional to the current of dislocations crossing the crystal.
Thus, a consistent equation of motion for the orientation should be based on the
evolution of the dislocation density. However, the development of such an equation
is a difficult task, because the motion of dislocations is determined by their compli-
cated elastic interactions, as well as by external strain and interactions with other
defects. Despite intense activity on the phase-field modelling of defects, elasticity,
and plasticity (see [42] for a recent overview), such an equation seems at present
out of reach.

Let us now come back to the outcome of the simulations for the tricrystal con-
figuration. The functional derivative of the gradient term in Eq. (20) of model I
generates a non-local diffusion equation for the angle field, which has to be regu-
larised as described in Ref. [36]. For a constant mobility, the nonlocal interaction
between the grain boundaries leads to a rotation rate that is almost independent of
the distance between the grain boundaries. In model II, the rotation rate of the cen-
tral crystal decreases exponentially with the distance between the grain boundaries
[43]. In both cases, the central slab eventually disappears. While, quantitatively,
neither of these evolutions is likely to be accurate, qualitatively the result is the
same as the one achieved by dislocation motion.

To see that there can be qualitative differences between the two dynamics, con-
sider now a circular grain of orientation θg inserted in an infinite monocrystal of
orientation θ = 0. Suppose that the misorientation (which is equal to θg) is small,
such that the grain boundary is made of individual dislocations separated by a typ-
ical distance d which is much larger than the lattice spacing. Furthermore, suppose
that the grain radius R is large, R � d, such that on the scale of the grain the
boundary can still be described as a continuous line. For simplicity, disregard any
anisotropy in the grain boundary energy or mobility. Then, the grain will shrink
by standard motion by curvature, and the dislocations will simply move towards
the centre of the grain. Note that the motion of the dislocations might not be
strictly radial due to their coupling to the crystal structure; however, this does
not change the present discussion, as long as no annihilation of dislocations takes
place. Indeed, in this case, the total number of dislocations is conserved, and the
dislocation density is simply proportional to 1/R, which increases with time as the
grain shrinks. This means that the misorientation also increases with time, and
if the outer crystal is fixed, the circular inner grain has to perform a rigid body
rotation away from the orientation of the outer crystal. This seems surprising at
first, since for low-angle grain boundaries the grain boundary energy is an increas-
ing function of the misorientation. However, this process is perfectly possible if it
leads to a decrease of the total energy of the grain boundary, which is given by
Egb = 2πγ(θg)R, with γ(θg) the misorientation-dependent grain boundary energy.
Its time derivative is

dEgb

dt
= 2π

[

γ(θg)
dR

dt
+ Rγ′(θg)

dθg

dt

]

, (24)

where γ′ > 0 is the derivative of γ with respect to the misorientation. The evolution
can thus take place if the first term, which is always negative since dR/dt < 0, is
large enough to outweigh the second one, which is positive. In that case, the geo-
metrical constraints thus predict an increase of θg with time. The orientation-field
models make exactly the opposite prediction: since the angle field evolves locally

such as to lower the energy, the misorientation of the inner grain should decrease

with time. Recently, this situation was investigated by numerical simulations [44]
using the phase-field crystal model [45], which gives a faithful microscopic picture of
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dislocations. An increase of the misorientation with time was observed, consistent
with the geometrical constraints. A previous study that had compared phase-field
and molecular dynamics simulations [46] and had reached different conclusions was
limited to high misorientations, such that the above hypotheses were not satisfied.

In conclusion, the simple relaxation equation for the angle field, Eq. (23) is not
consistent with the coherent crystalline structure of matter, and can sometimes
lead to predictions that are even qualitatively wrong. For practical purposes, the
quantitative importance of the committed errors might be small when the evolution
of a large-scale grain structure is considered, but this has to be confirmed for each
case at hand. It is worth mentioning that orientation-field models have been used
to investigate the interplay between the positional and orientational degrees of
freedom during the solidification of spherulites [47] or in the presence of foreign-
phase particles [48]. These studies were performed with a vanishing orientational
mobility Mθ in the solid, and are thus not affected by the problem pointed out
here. Indeed, in the interfacial region where the structure of the solid in not yet
fully established, the concept of a rotational mobility is valid.

4. Fluctuations and nucleation

Many phase-field simulations include fluctuations, which are often introduced in
a purely qualitative way to trigger instabilities or to create some disorder in
the geometry of the microstructures. The role of fluctuations has been investi-
gated more quantitatively in connection with the formation of sidebranches in
free dendritic growth [10, 49, 50]. The standard approach is to include fluctua-
tions as Langevin terms in the field equations, with coefficients deduced from the
fluctuation-dissipation theorem. Before proceeding further, this procedure will be
summarised.

After inclusion of noise, Eqs. (1) and (2) for the solidification of a pure substance
become (see Ref. [49] for details)

∂tφ = ~∇2φ + φ − φ3 − λu(1 − φ2)2 + ξ(~r, t), (25)

∂tu = D~∇2u +
1

2
∂th(φ) − ~∇ · ~q(~r, t), (26)

where D(φ) ≡ D is assumed (symmetric model), and lengths and times have been
scaled by the interface thickness W and the phase-field relaxation time τ , respec-
tively. Here, ξ(~r, t) and ~q(~r, t) are random fluctuations of the phase field and ran-
dom microscopic heat currents, respectively. They are assumed to be δ-correlated
in space and time,

〈

ξ(~r, t)ξ(~r′, t)
〉

= 2Fφδ(~r − ~r′)δ(t − t′), (27)

〈

qm(~r, t)qn(~r′, t)
〉

= 2DFuδnmδ(~r − ~r′)δ(t − t′), (28)

with dimensionless amplitudes Fφ and Fu given by

Fu =

(

d0

W

)d

Fexpt, (29)
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Fφ =
2
√

2

3

(

d0

W

)d−1

Fexpt, (30)

where d is the spatial dimension, and the quantity Fexpt is determined by materials
properties only,

Fexpt =
kBT 2

mcp

L2dd
0

, (31)

where kB , Tm, cp, L, and d0 are Boltzmann’s constant, the melting temperature,
the specific heat, the latent heat, and the capillary length, respectively. The latter
is given by d0 = γTmcp/L

2, where γ is the surface free energy. With the help of this

expression for the capillary length, Fexpt can be rewritten as Fexpt = kBTm/(γdd−1
0 ),

which makes its physical meaning more transparent: it is the ratio of the thermal
energy and a capillary energy scale, and can thus be seen as a non-dimensional
temperature.

In a finite-difference discretization of timestep ∆t and grid spacing ∆x, the noise
terms are implemented by drawing, at each grid point i and for each time step t,
independent Gaussian random variables of correlation

〈

ξt
iξ

t′

i′

〉

=
2Fφ

(∆x)d∆t
δii′δtt′ , (32)

where δii′ and δtt′ are now Kronecker symbols, and similarly for ~q. This procedure
was shown to yield the correct interface fluctuations at equilibrium in numerical
simulations [49].

An obvious question then arises, namely, can this method also be used to explore
nucleation ? Phase-field methods have been used recently to investigate homoge-
neous and heterogeneous nucleation, both in single-phase and multi-phase systems
(see, for example, [51–55]). In particular, it was found that for high undercoolings,
diffuse-interface models yield better agreement with experiments than classical nu-
cleation theory, since the size of the nuclei is not much larger than the thickness
of the diffuse interfaces; therefore, the free energy barriers calculated in phase-
field models can differ significantly from classical nucleation theory. Is it sufficient,
then, to add thermal noise as described above to obtain quantitative simulations
of nucleation processes ?

The answer to this question is negative. The reason is that, for strong noise, field
equations like the phase-field model are renormalized by the fluctuations. This is a
well-known fact in statistical field theory, but its implications do not yet seem to
have been fully appreciated in the phase-field community. Therefore, it is useful to
briefly sketch a few calculations that can be found in textbooks (see, for example,
[56]). They are, therefore, neither new nor complete; however, they will prepare
the ground for understanding the conclusions on the phase-field method at the end
of this section.

Instead of the full phase-field model, consider a single equation for a scalar field
φ that reads

∂tφ = −δH
δφ

+ ξ(~r, t), (33)

where ξ is a non-conserved noise that is δ-correlated,

〈

ξ(~r, t)ξ(~r′, t′)
〉

= 2Tδ(~r − ~r′)δ(t − t′), (34)
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with T a suitably non-dimensionalized temperature (such as Fexpt, see the discus-
sion after Eq. (31)), and the deterministic part of the equation derives from the
functional

H =

∫
[

1

2
(∇φ)2 + V (φ)

]

d~r, (35)

where V (φ) is a local potential of the field φ (lengths, times, and energies are
dimensionless). It is important to stress that H is not a free energy functional, but
the Hamiltonian of the field theory. Eq. (33) generates an evolution in which each
microscopic field configuration appears with probability

P = Z−1 exp(−H/T ) (36)

in the limit of infinite evolution time. Here, Z is the partition function,

Z =

∫

Dφ exp(−H/T ), (37)

and Dφ denotes a functional integration over the field φ. The free energy is then
obtained by the standard formula F = −T ln Z.

The free energy can be calculated exactly for the case of a quadratic potential,
V (φ) = m2φ2/2, where m is a constant. To carry out the calculations, it is useful to
consider a discrete version of the model. For simplicity, consider as the domain of
integration V a d-dimensional torus of size Ld with periodic boundary conditions.
When this system is discretized with the usual finite difference formulae using N
grid points in each direction and hence a grid spacing ∆x = L/N , the integral in
Eq. (35) becomes a sum over a finite number of variables. In one dimension,

H =
1

2
∆x

N−1
∑

n=0

[

(

φn+1 − φn

∆x

)2

+ m2φ2
n

]

, (38)

with the convention that φN ≡ φ0. For the discretized system, the functional
integration in Eq. (37) is replaced by a simple integration over the field variables
at each grid point,

Z =

∫

exp (−H/T )
N−1
∏

n=0

dφn . (39)

Since the Hamiltonian of Eq. (38) is a quadratic form in the φn’s, this is a N -
dimensional Gaussian integral which can be evaluated using standard formulae. The
most convenient way is to use a discrete Fourier transform to find the eigenvalues
of the quadratic form. The final result for the free energy is (up to a constant that
can be dropped)

F =
T

2

N−1
∑

l=0

ln

(

m2 +
4

(∆x)2
sin2 πl

N

)

. (40)

For dimensions d > 1, the same calculation can be repeated without difficulties,

Page 14 of 40

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

April 9, 2010 8:39 Philosophical Magazine Plapp

The Philosophical Magazine 15

and the result is

F =
T

2

∑

li

ln

(

m2 +
4

(∆x)2

d
∑

i=1

sin2 πli
N

)

, (41)

where the sum is now over an independent index li for each dimension (i = 1 . . . d),
and is normally taken over the first Brillouin zone, li ∈ {−N/2 + 1,N/2}.

For an arbitrary potential V (φ), an exact calculation is generally impossible.
Statistical field theory has developed sophisticated approximation methods, in
particular perturbation expansions. Formally, every potential can be written as
a perturbation of a quadratic potential. The perturbation expansion (where the
expansion parameter is the temperature, which sets the fluctuation strength) is
cumbersome and usually visualised in terms of diagrams [56]. Fortunately, the first
order result can be understood in a relatively simple manner if we are interested
in homogeneous systems. More precisely, consider the spatial average of the field,

φ̄(t) =
1

Ld

∫

φ(~r, t) d~r, (42)

which is a fluctuating quantity. The probability distribution of φ̄ can be written as

P (φ̄) ∼ exp
(

−Ldf(φ̄)/T
)

, (43)

where f(φ̄) is the free energy density. To first order in the perturbation expansion,

f(φ̄) = V (φ̄) +
T

2Ld

∑

li

ln

(

V ′′(φ̄) +
4

(∆x)2

d
∑

i=1

sin2 πli
N

)

, (44)

where the correction to the original (“bare”) potential V (φ̄) is identical to the
exact result for the quadratic potential, with the constant m2 replaced by the
second derivative of the bare potential, taken at φ̄. This results from a quadratic
approximation (second-order Taylor expansion) of the bare potential around φ̄.
The result f(φ̄) is a renormalized potential for φ̄.

These calculations can be readily verified numerically. As an example, the stan-
dard double-well potential was used, V (φ) = −φ2/2 + φ4/4 (usually called φ4-
potential in the field-theory literature), and simulated in a two-dimensional system
of size L = 32 with a grid spacing of ∆x = 0.5 and T = 0.05, using the standard
discretization method described above with a timestep ∆t = 0.005, and an initial
condition φ(~r, 0) = 1. In time intervals of 10, φ̄ was calculated, and in total 1000
points were sampled. Then, the free energy can be obtained by making a histogram
of the values of φ̄, and taking the logarithm of the counts (the normalisation con-
tributes only a constant to f and can be disregarded). The comparison between
the simulation and the prediction of Eq. (44) in Fig. 3 shows excellent agreement.

It can be seen that the minimum of the free energy density is shifted with respect
to its “bare” value φ̄ = 1. This can be understood intuitively by the following
reasoning. The system starts in the well of the “bare” potential, at φ̄ = 1. The
random fluctuations push the system in both directions with equal probability,
but since the potential is asymmetric, the restoring force is larger for fluctuations
towards φ̄ > 1 than towards φ̄ < 1; therefore, smaller values are more likely to
occur. In the example chosen here, the shift is small (the minimum is close to 1),
but for increasing temperature, the correction becomes larger and larger (for an
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Figure 3. Renormalized free energy density of the standard double-well potential as calculated from
Eq. (44) and from numerical simulations, for T = 0.05, ∆x = 0.5, ∆t = 0.005. Only the part close to one
of the potential wells is shown. The zero of f was chosen at the minimum of the renormalized potential.
The bin size for the histograms was ∆φ̄ = 0.01.

example of such simulations, see [57]), and eventually a phase transition occurs
(the double well disappears); in this regime, of course the first-order perturbation
result is inaccurate.

The correction also depends on the discretization. This is physically sound: a finer
discretization introduces more degrees of freedom per unit volume in the discretized
system, and hence allows for more fluctuation modes that contribute to the free
energy. With a slight change of perspective, this can also be seen as the natural
result of a coarse-graining procedure. Indeed, if the free energy is calculated from a
given microscopic model by coarse-graining (averaging) over cells with a certain size
∆x larger than the size of the microscopic elements, both the free energy density
and the amplitude of the fluctuations that remain after the averaging (which thus
have a wavelength larger than ∆x) depend on the choice of ∆x, as was recently
demonstrated explicitly for a simple lattice gas model [58].

However, a problem arises in the continuum picture: it is easy to verify that, when
the grid spacing ∆x tends to zero, the sum in Eq. (44) diverges for d ≥ 2. This is
a classical example of an ultraviolet divergence. Thus, Eq. (33) has no continuum
limit, and if it is written down in continuum language, it is implicitly understood
that an ultraviolet cutoff must be specified. A reasonable physical value for a cutoff
in condensed-matter systems is the size of an atom.

Let us now discuss the implications of these facts for phase-field modelling. Even
though the above calculation have not been carried out for the full model (φ and
u), it is clear that renormalization occurs. If a phase-field model is seen as a sim-
ulation tool for a problem that is defined in terms of macroscopic parameters, the
relevant quantities that need to be adjusted in the model are the renormalized ones.
For instance, thermophysical properties are usually interpolated assuming that the
phase field takes fixed values in the bulk phases (φ = ±1). If, on average, this is
no longer the case, such as in the example of Fig. 3, these interpolations become
incorrect.

An obvious idea to cure this problem is to choose the “bare” potential such that
the renormalized potential has the desired properties. For the φ4-potential, which
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is renormalizable, one may choose

V = −1 + ε2

2
φ2 +

1 + ε4

4
φ4, (45)

and determine the constants ε2 and ε4 by the two conditions f ′(1) = 0 and f ′′(1) =
2 using Eq. (44). For the example shown above, the values ε2 = 0.0693524 and ε4 =
0.0208810 indeed restore the correct bulk properties. However, in a quantitative
phase-field model, the macroscopic properties not only of the bulk phases, but
also of the interfaces need to be controlled. It is far from obvious that the above
procedure, designed for homogeneous systems, will work. This is even more so for
the critical nucleus needed to evaluate the nucleation barrier.

It is instructive to examine some orders of magnitude. In Nickel, the value of
Fexpt is 0.234 [10], of order unity; it can be expected that this value is of similar
order of magnitude for other substances with microscopically rough interfaces. An
inspection of Eqs. (27–29) reveals that if phase-field simulations are carried out
with the “natural” interface thickness, which is of the order of the capillary length
d0, the fluctuations are of order unity (recall that Fφ and Fu are equivalent to
T in the numerical example), and renormalization cannot be neglected. This is a
natural consequence of the fact that real solid-liquid interfaces do indeed exhibit
very strong fluctuations, as evidenced from molecular dynamics simulations [59];
therefore, a mean-field approximation (such as the phase-field model without noise)
is not accurate. In contrast, if (as in Refs. [10, 49]) a much larger interface thickness
is used, the fluctuation strength is greatly reduced, and the difference between
“bare” and renormalized free energy is small. Note, however, that even in this limit
a sufficient refinement of the grid would create noticeable fluctuation corrections.
We are thus faced with the conclusion (opposite to the usual point of view in phase-
field modelling) that the use of the simple prescription of Ref. [49] is more precise for
larger interface thickness and coarser grids. It is noted in passing that the concept
of the sharp-interface limit, central for the asymptotic analysis in the deterministic
case, has to be reexamined because a new length scale (the microscopic cutoff for
the fluctuations) has been introduced.

In conclusion, it is clear that the use of the phase-field method with fluctuations is
subject to caution, at least on small length scales. To gain a better understanding,
the fluctuation effects on the couplings of the phase-field variables need to be
investigated. Furthermore, a good control of the discretization effects needs to be
achieved; the introduction of a simple cutoff will most likely be insufficient, since
the renormalized free energy of Eq. (44) also depends on the grid structure. While
a large body of results on these topics can certainly be found in the field-theory
literature, the development of quantitative models for specific materials remains a
challenging task.

5. Conclusions

In this paper, some open questions concerning various aspects of phase-field mod-
elling of solidification have been discussed, and potential future directions of re-
search have been outlined. The selection of topics is necessarily incomplete, both
concerning the problems and the potential solutions. For instance, the rapid de-
velopment of the phase-field crystal approach [45] and related methods currently
opens up interesting new perspectives for the modelling of polycrystals, which are
not discussed further here.

The common point of the topics treated here is that they illustrate the dual
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nature of the phase-field method. On the one hand, it is a genuine representation
of condensed-matter systems and their evolution in terms of order parameters on
a mesoscopic scale. On the other hand, with the help of mathematical analysis, it
can be turned into an efficient simulation tool for the solution of free boundary
problems. As in the past, the development of more efficient and robust models for
materials modelling will most likely benefit from the pursuit and confrontation of
both of these two complementary viewpoints. Therefore, the further development
of the phase-field method remains an exciting research topic at the frontiers of
physics, mathematics, and materials science.
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2 (2003) p.92–96.
[49] A. Karma and W.J. Rappel, Phys. Rev. E 60 (1999) p.3614–3625.
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Remarks on some open problems in phase-field modelling of

solidification
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Three different topics in phase-field modelling of solidification are discussed, with particu-
lar emphasis on the limitations of the currently available modelling approaches. First, thin-
interface limits of two-sided phase-field models are examined, and it is shown that the an-
titrapping current is in general not sufficient to remove all thin-interface effects. Second,
orientation-field models for polycrystalline solidification are analysed, and it is shown that
the standard relaxational equation of motion for the orientation field is incorrect in coherent
polycrystalline matter. Third, it is pointed out that the standard procedure to incorporate
fluctuations into the phase-field approach cannot be used in a straightforward way for a
quantitative description of nucleation.

Keywords: solidification; phase-field models; polycrystals; grain boundary motion;
nucleation.

1. Introduction

The phase-field method has become the method of choice for simulating microstruc-
ture formation during solidification. It owes its popularity mainly to its algorithmic
simplicity: the cumbersome problem of tracking moving solid-liquid interfaces or
grain boundaries is avoided by describing the geometry in terms of one or several
phase fields. The phase fields obey simple partial differential equations that can be
easily coded by standard numerical methods.
The foundations of the phase-field method and its application to solidification

have been the subject of several recent review articles [1–7], and it seems of lit-
tle use to repeat similar information here. Instead, in this paper several topics
are discussed where robust phase-field modelling tools are not yet available be-
cause some fundamental questions remain open. In Sec. 2, the thin-interface limit
of two-sided phase-field models is examined, and it is shown that the currently
available approaches cannot in general eliminate all effects linked to the finite in-
terface thickness. In Sec. 3, orientation-field models for polycrystalline solidification
are discussed, and it is shown that the standard equation of motion usually writ-
ten down for the orientation field is not appropriate for the evolution of coherent
crystalline matter. Finally, in Sec. 4, the inclusion of microscopic fluctuations in
the phase-field equations is reviewed, and it is shown that the standard approach
cannot be used in a straightforward way to investigate the process of nucleation.
The common point of these topics is that they pose challenges or limitations for

straightforward computations. Indeed, a characteristic feature of the phase-field
method is that its equations can often be written down following simple rules or
intuition, but that their detailed properties (which have to be known if quantitative
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simulations are desired) become only apparent through a mathematical analysis
that can be quite involved. Therefore, it is not always easy to perceive the limits
of applicability of the method. It is hoped that the present contribution will be
helpful to point out some pitfalls and to stimulate further discussions that will
facilitate the solution of these issues.

2. Thin-interface limits: antitrapping current and the Kapitza resistance

The precision and performance of phase-field models have been greatly enhanced
in the last decade by a detailed control of their properties. Phase-field models are
rooted in the mean-field description of spatially diffuse interfaces by order param-
eters. However, to be useful for simulating microstructure formation in solidifica-
tion, phase-field models need to bridge the scale gap between the thickness of the
physical solid-liquid interfaces and the typical scale of the microstructures. This
is achieved by increasing the interface width in the model, sometimes by several
orders of magnitude. Obviously, this procedure magnifies any physical effect that is
due to the diffuseness of the interface. Therefore, to guarantee precise simulations,
all these effects have to be controlled and, if possible, eliminated. The privileged
tool to achieve this is the so-called thin-interface limit: the equations of the phase-
field model are analysed under the assumption that the interface thickness is much
smaller than any other physical length scale present in the problem, but otherwise
arbitrary. The procedure of matched asymptotic expansions then yields the effec-
tive boundary conditions valid at the macroscale, which contain all effects of the
finite interface thickness up to the order to which the expansions are carried out.
This procedure was pioneered by Karma and Rappel, who analysed the symmet-

ric model of solidification (equal diffusion constants in the solid and the liquid) and
obtained a thin-interface correction to the expression of the kinetic coefficient [8].
The use of this result has made it possible to carry out quantitative simulations
of free dendritic growth of a pure substance, both at high and low undercoolings
[9–12]. It turned out, however, that the generalisation of this method to a model
with arbitrary diffusivities is far from trivial [13], since several new thin-interface
effects appear, which cannot all be eliminated simultaneously. A solution to this
problem was found later for the case of the one-sided model (zero diffusivity in
the solid) with the introduction of the so-called antitrapping current [14], and it
was shown that quantitative simulations of alloy solidification are possible with
this model [15], including multi-phase [16, 17] and multi-component alloys [18].
Recently, several extensions of the antitrapping current were put forward to gen-
eralise the approach to the case of finite diffusivity in the solid [6, 19–21], and
simulations were presented which show that the approach works well for the in-
stability of a steady-state planar interface [19] and for free dendritic growth [20].
However, as will be shown below, this is only a partial solution to the problem
of developing a general quantitative model, since there is a second, independent
thin-interface effect that cannot be removed by an antitrapping current, namely,
the Kapitza resistance.
For the sake of concreteness, consider the standard phase-field model for the so-

lidification of a pure substance as discussed in Refs. [9, 13]. The evolution equation
for the phase field reads

τ∂tφ = W 2~∇2φ+ φ− φ3 − λu(1− φ2)2, (1)

where φ is the phase field, with φ = 1 and φ = −1 corresponding to solid and
liquid, respectively, τ is the relaxation time of the phase field, W is the interface
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thickness, and λ is a dimensionless coupling constant. The field u is a dimensionless
temperature defined by u = (T − Tm)/(L/cp), where Tm, L and cp are the melting
temperature, latent heat, and specific heat, respectively. It is assumed for simplicity
that cp is the same in both phases. The temperature is governed by a diffusion
equation with a source term,

∂tu = ~∇
[

D(φ)~∇u
]

+
1

2
∂th(φ). (2)

Here, h(φ), which satisfies h(±1) = ±1, is a function that describes the release
or consumption of latent heat during the phase transition, and D(φ) interpolates
between the thermal diffusivities of the liquid and the solid, Dl and Ds,

D(φ) = Dlq(φ), (3)

where the interpolation function q(φ) satisfies q(1) = Ds/Dl and q(−1) = 1. For
simplicity, crystalline anisotropy has not been included in the above model because
it is not necessary for the present discussion. Furthermore, the equations have been
stated in the language of a two-sided thermal model, but with some modifications
(as detailed in Refs. [15, 20]), they also apply to the isothermal solidification of a
binary alloy. In this case, u is a dimensionless chemical potential (conjugate to the
concentration of one of the alloy components), and D(φ) is the chemical diffusivity.
In the following, two simple one-dimensional solutions of these equations will be

analysed. The first is a steady-state planar front that propagates with constant
velocity V in the positive x direction into a liquid of undercooling ∆ (u → −∆
for x → ∞), and leaves behind a constant temperature. This solution only exists
if the liquid is undercooled beyond the hypercooling limit, that is, ∆ > 1. The
sharp-interface solution to this problem is readily obtained and reads

u = const. = u|
−

in the solid (x < 0) (4)

u = −∆+
(

u|+ +∆
)

exp(−xV/Dl) in the liquid (x > 0) (5)

for an interface located at x = 0 (in the frame moving with the interface). Here, u|
−

and u|+ are the limit values of the temperature when the interface is approached
from the solid and the liquid side, respectively. In the standard formulation of
the free boundary problem of solidification, it is assumed that the temperature is
the same on the two sides of the interface, u|

−
= u|+. Then, the use of the two

boundary conditions u|+ = −βV , where β is the linear kinetic coefficient, and
V = −Dl ∂xu|+ (the Stefan boundary condition) determines the solution, u|+ =
u|

−
= −∆+ 1 (a simple consequence of heat conservation), and V = (∆− 1)/β.

The phase-field equations can be analysed and related to this sharp-interface
solution by the method of matched asymptotic expansions in the limit where the
interface thickness W is much smaller than the diffusion length Dl/V . This calcu-
lation has been presented in detail in Refs. [9, 13, 15, 20] and will not be repeated
here. The essential outcome is that, in general, the two asymptotes of the bulk
phases do not correspond to the same temperature. The difference is given, to the
lowest order, by

u|
−
− u|+ =

V

2

[
∫

−∞

0

h(φ0)− 1

D(φ0)
dx−

∫

∞

0

(

h(φ0)− 1

D(φ0)
+

2

Dl

)

dx

]

, (6)

where φ0(x) is the equilibrium profile of the phase field. The physical interpretation
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of this temperature jump is trapping: when the diffusivity decreases upon solidi-
fication, the heat generated at the rear of the interface gets trapped. In the alloy
version of the model, this is nothing but the well-known solute trapping effect. In-
deed, in sharp-interface models of alloy solidification the chemical potential exhibits
a jump at the interface when solute trapping occurs. In the phase-field model, the
temperature profile through the interface is determined by the interplay between
the rejection of latent heat and the diffusion away from the interface; therefore,
it is natural that the heat source function h(φ) and the diffusivity function D(φ)
appear in Eq. (6).
Whereas, thus, this discontinuity is physically correct, it generates problems for

simulations. To see this, is is sufficient to rewrite Eq. (6) in order to make the
relevant scales apparent. Since the only length scale in Eq. (1) is the interface
thickness W , the equilibrium solution φ0 is a function only of the reduced variable
η = x/W . Using this together with the interpolation of D(φ) given by Eq. (3),
Eq. (6) becomes

u|
−
− u|+ =

V W

2Dl

(F− − F+) , with (7)

F± =

∫

±∞

0
[p(φ0(η)) − p(±1)] dη and (8)

p(φ) =
h(φ) − 1

q(φ)
. (9)

The temperature jump is thus proportional to the velocity, the interface thickness,
and the difference of the two integrals; the latter depends only on the choice of the
interpolation functions. If W is the physical interface thickness (a few Angstroms),
this effect is negligibly small, but if the interface thickness is increased by a large
factor to make simulations feasible, this leads to potentially large errors in the
simulations.
As discussed in detail in Refs. [13–15], it is not possible to eliminate this macro-

scopic discontinuity simply by the choice of appropriate interpolation functions,
due to other constraints not discussed here. The solution put forward in Ref. [14]
and further developed in Ref. [15] is the introduction of an antitrapping current:
Eq. (2) is replaced by

∂tu = ~∇
(

D(φ)~∇u−~jat

)

, (10)

where the antitrapping current ~jat is given by

~jat = a(φ)Wφ̇n̂, (11)

where φ̇ is a shorthand for the time derivative ∂tφ, n̂ = −~∇φ/|~∇φ| is the unit
normal vector to the interface, and a(φ) is a new interpolation function. This term
induces a current which is directed from the solid to the liquid, and proportional
to the interface velocity (through the factor φ̇). It thus “pushes” heat from the
solid to the liquid side of the interface when the interface moves, and can be used
to adjust the temperature jump at the interface. For the one-sided model (Ds = 0)
with the standard choices h(φ) = φ and q(φ) = (1 − φ)/2, it was shown that a
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constant a(φ) ≡ 1/(2
√
2) leads to a vanishing jump in u, because it modifies the

function p(φ) in Eq. (8) such that F+ = F−. Thus, continuity of the temperature
between the two sides of the interface (local equilibrium) is restored for arbitrary
W and V , as long as the asymptotic analysis remains valid.
Recently, several authors have put forward generalisations of this approach [6,

20, 21] for arbitrary ratio of the diffusivities. For the case analysed above (that is,
the current far inside the solid vanishes), they reduce to the simple prescription
that the same expression for the antitrapping current can be used, but with an
additional prefactor that can be written as (1−Ds/Dl),

~jat = a

(

1− Ds

Dl

)

Wφ̇n̂. (12)

Indeed, the asymptotic analysis shows [19–21] that in this way the temperature
jump can be eliminated.
However, this is not the only thin-interface effect that can arise in the two-sided

case. To see this, consider now a different situation, namely an immobile interface in
a temperature gradient. Such an interface can be easily obtained in experiments by
maintaining a pure substance between two walls which are held below and above the
melting temperature, respectively. When the interface is stationary, ∂tφ = ∂tu = 0
by definition, and Eq. (2) implies that the system is crossed by a constant heat
current flowing from the liquid into the solid,

−D(φ)∂xu = −j, (13)

with j a positive constant. As before, the centre of the interface is located at x = 0,
and the solid is located in the domain x < 0. This situation can be analysed without
performing a perturbation expansion, since it is sufficient to integrate Eq. (13) to
obtain a solution for u,

u(x) = ū+

∫ x

0

j

D(φ(x))
dx, (14)

where ū is the temperature at x = 0. The sharp-interface solution for this case is
simply given by

u(x) = u|
−
+ (j/Ds) x in the solid (15)

u(x) = u|+ + (j/Dl) x in the liquid. (16)

Matching the asymptotes of the phase-field and sharp-interface expressions, it is
straightforward to show that there is again a temperature jump given by

u|+ − u|
−
= j

[
∫

∞

0

(

1

D(φ(x))
− 1

Dl

)

dx−
∫

−∞

0

(

1

D(φ(x))
− 1

Ds

)

dx

]

, (17)

this time proportional to the current. If the phase-field profile is replaced by its
equilibrium shape, this can be rewritten as

u|+ − u|
−
=

jW

Dl

(G+ −G−) (18)
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with

G± =

∫

±∞

0

(

1

q(φ0(η))
− 1

q(±1)

)

dη. (19)

This temperature jump corresponds to a surface thermal resistance, also called
Kapitza resistance, first found for an interface between liquid helium and metal
[22]. Indeed, in a sharp-interface picture it is generally necessary to assign a sur-
face resistance to an interface for a complete description of heat transfer, because
transport through an interface can be decomposed into three elementary steps:
transport in one bulk phase, crossing of the interface, and transport in the other
phase. The surface resistance describes the kinetics associated with the crossing
of the interface (its inverse is sometimes referred to as the interfacial transfer co-
efficient). It is characterised either by the value of the resistance, (u|+ − u|

−
)/j,

or by a length that is obtained by dividing this resistance by the conductivity of
the liquid phase. Here, this characteristic length is simply W (G+ −G−), which is
of the order of the interface thickness. Since this quantity is actually an interface
excess of the inverse diffusivity (in complete analogy to the interface excesses for
equilibrium quantities obtained by the well-known Gibbs construction), it can also
be negative – this does not violate the laws of thermodynamics because the local

transport coefficients are strictly positive. If the surface resistance is finite, the
temperature in the sharp-interface model is not continuous at the interface, but
exhibits a jump that is proportional to the current crossing the interface. In the
alloy version of the model, this corresponds to a jump in chemical potential that is
proportional to the solute flux [23]. Such discontinuities have been thoroughly in-
vestigated [24], and can be measured in experiments [25] and detected in molecular
dynamics simulations [26, 27] for solid-liquid interfaces.
Thus, like the trapping effect, the surface resistance is a natural effect that is

proportional to the interface thickness. If the interface thickness is to be upscaled,
it should therefore also be eliminated. However, is is immediately clear that this
effect cannot be eliminated by any antitrapping current proportional to φ̇ as given
by Eq. (12): since the interface does not move, φ̇ = 0 and the antitrapping current
vanishes, independently of the current j that crosses the interface.
The authors of both Refs. [20, 21] have recognised the importance of the current

j. They have developed generalised expressions for the antitrapping current with
coefficients that depend on the value of j. As long as the interface velocity remains
non-zero, the formal asymptotic analysis shows that it is still possible to eliminate
the temperature jump. However, for a fixed current j, the expressions of the coeffi-
cients diverge when V tends to zero, such that the asymptotic analysis is not valid
in this limit. Thus, it seems unlikely that this approach can be used as a robust
method for simulations.
In summary, there exist two independent thin-interface effects, one proportional

to V , and one proportional to j. On a very fundamental level, this is just the
consequence of the fact that the interface motion is driven by a diffusion equa-
tion, which has two independent boundary conditions. The corresponding physical
quantities are the currents on the two sides of the interface, or one current and
the velocity. A general solution to eliminate both thin-interface effects (which are
linearly independent) does not seem to exist at this moment, but the above con-
siderations can at least be used to obtain simple criteria when the prescription of
Eq. (12) can be used. Indeed, Eqs. (7) and (18) show that if j ≪ V (note that,
since u is dimensionless, j has the dimension of a velocity), the Kapitza effect is
much smaller than the trapping effect, and can thus be neglected. This is generally
the case for equiaxed dendritic growth, in which the gradients outside the growing
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dendrite, which determine the growth speed, are much larger than the gradients
inside the solid. Indeed, it was shown in Ref. [20] that Eq. (12) works well in this
case. However, problems might arise in the case of alloy solidification in a tempera-
ture gradient or for multicomponent alloys with widely different solute diffusivities,
since in this case large currents of heat or certain solutes may cross an interface
whose velocity is controlled by a different diffusion field. Such cases have to be
critically examined before simulation results can be trusted.

3. Polycrystalline solidification

The size and shape of the crystalline grains formed upon solidification is one of the
most important factors that determine materials properties. Therefore, phase-field
models that are to be helpful for materials design must be capable of dealing with
the evolution of polycrystals, both during solidification of individual columnar or
equiaxed grains from the melt and during the subsequent evolution of the grain
structure after impingement. This can be achieved using the multi-phase-field ap-
proach [28–33], in which each grain is represented by a different phase field, even
if they are of the same thermodynamic phase. The properties of each individual
grain boundary or interface can then be specified separately [31], and it has been
demonstrated that good quantitative control of the grain boundary properties can
be achieved [32]. The problem of handling several hundreds or even thousands of
phase fields simultaneously can be solved by recognising that only a small number
of fields are important at any given point of space (see for example [34]).
An alternative approach is the orientation-field method. Its starting point is the

remark that it would be desirable, both for efficiency and simplicity, to formulate
a model that works only with a small number of field variables. Indeed, the ori-
entation of a crystal can be described by one scalar quantity (an angle) in two
dimensions, and three scalars in three dimension (for instance, the Euler angles).
Orientation-field models for pure substances in two dimensions that work with a
single phase field, an orientation field (the local angle of the crystalline structure
with respect to a fixed coordinate system), and the temperature field were put
forward in Refs. [35, 36], and generalised for alloy solidification [3] and to three
dimensions [37, 38]. While these models are elegant and simple in their formulation
and therefore hugely appealing, it is pointed out here that the evolution equation
of the angle field, which takes the form of a simple relaxation equation, does not
correctly describe the microscopic evolution of the orientation field since it does
not take into account the connectivity of matter and the resulting geometrical
conservation laws.
For simplicity, anisotropy and crystallographic effects will again be neglected,

and it is sufficient to consider a two-dimensional system. The dimensionless free
energy of the orientation-field model is [36]

F =

∫
[

W 2

2

(

~∇φ
)2

+ sg̃(φ)
∣

∣

∣

~∇θ
∣

∣

∣
+

ǫ2

2
h̃(φ)

(

~∇θ
)2

+ f(φ, u)

]

d~r, (20)

where now φ = 0 and φ = 1 in the liquid and the solid, respectively, s and ǫ are
positive constants, g̃(φ) and h̃(φ) are monotonous functions that satisfy g̃(0) =
h̃(0) = 0 and g̃(1) = h̃(1) = 1, and f(φ, u) is the local free energy density, with
u the same dimensionless temperature field as previously; the standard choice is
f(φ, u) = φ2(1− φ)2 + λu(10φ3 − 15φ4 + 6φ5). Recently, an alternative model was
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Figure 1. Evolution of a tricrystal in the orientation-field models. The crystalline slab in the centre rotates,
and eventually the grain boundaries disappear.

developed [39],

F =

∫
[

W 2

2

(

~∇φ
)2

+ ν
7φ3 − 6φ4

(1− φ)2

(

~∇θ
)2

+ f(φ, u)

]

d~r, (21)

where ν is a constant. In the following, these models will be called model I and
model II. They both have some features that distinguish them from standard phase-
field models. Model I contains a term proportional to |~∇θ|, which has a singular

derivative at |~∇θ| = 0. Model II has only a regular square gradient term in ~∇θ, but
it is multiplied by a singular function of the phase field φ, which diverges in the
limit φ → 1 (the solid). These singular features are needed to create stable grain
boundary solutions, that is, localised spatial regions where the phase field departs
from its solid value and the angle field exhibits rapid variations.
Both models have a variational structure for the dynamics of the phase field and

the angle field, that is

∂tφ = −Mφ

δF
δφ

, (22)

∂tθ = −Mθ

δF
δθ

, (23)

which means that both φ and θ evolve such as to follow the gradient of the free
energy, with Mφ and Mθ being the corresponding mobilities (which may be func-
tions of the fields). In the following, it will be shown that Eq. (23) is incorrect for
coherent crystalline matter.
To illustrate the problems with this equation of motion, it is again useful to anal-

yse a simple one-dimensional situation, which is a tricrystal. A slab of crystalline
orientation θ0 is sandwiched between two crystals of identical orientation θ = 0,
as shown in the left side of Fig. 1. The two crystals on the sides of the system
are assumed to be clamped to a substrate, that is, θ = 0 for all times. In both
models, this initial condition evolves with time: the orientation of the central slab
remains homogeneous, but changes with time to approach the orientation of the
outer crystals. The final state is a uniform solid of orientation θ = 0: the central
slab has disappeared.
Of course, this process can take place since it corresponds to a minimisation of

the free energy: the two grain boundaries with their positive grain boundary energy
are eliminated. However, the pathway of this dynamics is not appropriate for the
evolution of a coherent crystal. In fact, Eq. (23) corresponds to the dynamics of
matter which has orientational, but no positional order, such as a liquid crystal.
Indeed, if in model I the term proportional to |~∇θ| is omitted or in model II the
singular coupling function is replaced by a regular one, the resulting model can be
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Figure 2. Sketch of the elementary process that generates a rotation of the central crystal slab by the
motion of a single edge dislocation. Only the crystal planes close to the vertical direction are shown.

mapped to the standard Landau-de Gennes model for nematic liquid crystals in
two dimensions [40]. The free energies in Eqs. (20) and (21) have been designed
to stabilise grain boundaries, which do not exist in a nematic liquid crystal. The
energetics of the models are thus quite different from liquid crystals. In contrast,
the type of the dynamics has stayed the same.
To understand where is the difference in dynamics between liquid crystals and

crystals, consider the elongated molecules of a nematic liquid crystal characterised
by a director field of a certain orientation θ0. Since the molecules have no bonds, it
is possible to change the local orientation while keeping the centres of mass fixed,
by just making each molecule rotate around its centre of mass (of course, in a dense
liquid crystal, this exact procedure is not possible because of steric exclusion, but
the director can still be changed with only short-range displacements of the centres
of the molecules). The system is thus free to locally change orientation in order to
lower its free energy, and thus follows Eq. (23). This is obviously not the case
in crystalline matter: it is not possible to rotate a unit cell without displacing the
surrounding neighbours, because bonds (or, more generally, the positional ordering
of elements) define a connectivity. It is easy to grasp that the evolution depicted
in Fig.1 is impossible if the connectivity of the central slab is preserved.
Thus, a consistent evolution equation for θ has to take into account this con-

nectivity, or, in other words, the evolution of the positions. This is, in general, a
complicated undertaking. Two elementary situations where it easy to obtain an
equation are (i) rigid body rotation, in which case the (advected) time derivative
of the local angle is given by the curl of the local velocity field, or (ii) purely elas-
tic deformations of the solid, in which case the orientation is not an independent
quantity but can be deduced from the elastic displacement field.
Here, a third possibility will be briefly discussed, namely, plastic deformation.

This corresponds precisely to a change in the connectivity of matter. If the matter
in question can be considered reasonably crystalline (as opposed to, for example, an
amorphous material), its geometry can formally always be described by a density of
dislocations, which are singularities of the displacement field if a perfect crystal is
taken as the reference state. If, furthermore, grain boundaries remain coherent (that
is, no grain boundary sliding takes place), the evolution of the local orientation can
be linked to the motion of dislocations. A complete description is far outside of
the scope of this article; the interested reader is referred to Ref. [41] for a detailed
introduction to the continuum theory of defects. Here, only two simple examples
will be qualitatively treated for illustration.
Consider again the tricrystal configuration. In the sketch shown in Fig. 2, only

one set of crystal planes is shown for clarity, and the central slab has a small
misorientation with respect to the outer crystals. In this situation, the two low-
angle grain boundaries consist of individual edge dislocations. The inner crystal
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can now rotate by an elementary process: take one of the edge dislocations of
the left grain boundary (marked by a circle) and make it glide towards the other
grain boundary. This process involves only local reconnection events. When the
dislocation arrives at the right grain boundary, it can annihilate with a dislocation
of the opposite sign. As a result, one dislocation has disappeared from each grain
boundary. Of course, this process can repeat itself until no dislocation is left, and
the grain boundaries have disappeared. It should be stressed that this pathway for
rearrangement exhibits large energy barriers, since the elastic energy of a single
dislocation is much higher in the centre of the slab than at its original position
within the grain boundary. Therefore, if only thermal fluctuations are driving this
process (no external strains), it will be extremely slow.
On a more quantitative level, the misorientation through a grain boundary is

linked to the density of dislocations by simple geometrical arguments. Therefore,
it is natural that the misorientation is lowered when the dislocation density in the
grain boundaries decreases. Furthermore, it is obvious that the rotation rate of
the central slab is proportional to the current of dislocations crossing the crystal.
Thus, a consistent equation of motion for the orientation should be based on the
evolution of the dislocation density. However, the development of such an equation
is a difficult task, because the motion of dislocations is determined by their compli-
cated elastic interactions, as well as by external strain and interactions with other
defects. Despite intense activity on the phase-field modelling of defects, elasticity,
and plasticity (see [42] for a recent overview), such an equation seems at present
out of reach.
Let us now come back to the outcome of the simulations for the tricrystal con-

figuration. The functional derivative of the gradient term in Eq. (20) of model I
generates a non-local diffusion equation for the angle field, which has to be regu-
larised as described in Ref. [36]. For a constant mobility, the nonlocal interaction
between the grain boundaries leads to a rotation rate that is almost independent of
the distance between the grain boundaries. In model II, the rotation rate of the cen-
tral crystal decreases exponentially with the distance between the grain boundaries
[43]. In both cases, the central slab eventually disappears. While, quantitatively,
neither of these evolutions is likely to be accurate, qualitatively the result is the
same as the one achieved by dislocation motion.
To see that there can be qualitative differences between the two dynamics, con-

sider now a circular grain of orientation θg inserted in an infinite monocrystal of
orientation θ = 0. Suppose that the misorientation (which is equal to θg) is small,
such that the grain boundary is made of individual dislocations separated by a typ-
ical distance d which is much larger than the lattice spacing. Furthermore, suppose
that the grain radius R is large, R ≫ d, such that on the scale of the grain the
boundary can still be described as a continuous line. For simplicity, disregard any
anisotropy in the grain boundary energy or mobility. Then, the grain will shrink
by standard motion by curvature, and the dislocations will simply move towards
the centre of the grain. Note that the motion of the dislocations might not be
strictly radial due to their coupling to the crystal structure; however, this does
not change the present discussion, as long as no annihilation of dislocations takes
place. Indeed, in this case, the total number of dislocations is conserved, and the
dislocation density is simply proportional to 1/R, which increases with time as the
grain shrinks. This means that the misorientation also increases with time, and
if the outer crystal is fixed, the circular inner grain has to perform a rigid body
rotation away from the orientation of the outer crystal. This seems surprising at
first, since for low-angle grain boundaries the grain boundary energy is an increas-
ing function of the misorientation. However, this process is perfectly possible if it
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leads to a decrease of the total energy of the grain boundary, which is given by
Egb = 2πγ(θg)R, with γ(θg) the misorientation-dependent grain boundary energy.
Its time derivative is

dEgb

dt
= 2π

[

γ(θg)
dR

dt
+Rγ′(θg)

dθg
dt

]

, (24)

where γ′ > 0 is the derivative of γ with respect to the misorientation. The evolution
can thus take place if the first term, which is always negative since dR/dt < 0, is
large enough to outweigh the second one, which is positive. In that case, the geo-
metrical constraints thus predict an increase of θg with time. The orientation-field
models make exactly the opposite prediction: since the angle field evolves locally

such as to lower the energy, the misorientation of the inner grain should decrease

with time. Recently, this situation was investigated by numerical simulations [44]
using the phase-field crystal model [45], which gives a faithful microscopic picture of
dislocations. An increase of the misorientation with time was observed, consistent
with the geometrical constraints. A previous study that had compared phase-field
and molecular dynamics simulations [46] and had reached different conclusions was
limited to high misorientations, such that the above hypotheses were not satisfied.
In conclusion, the simple relaxation equation for the angle field, Eq. (23) is not

consistent with the coherent crystalline structure of matter, and can sometimes
lead to predictions that are even qualitatively wrong. For practical purposes, the
quantitative importance of the committed errors might be small when the evolution
of a large-scale grain structure is considered, but this has to be confirmed for each
case at hand. It is worth mentioning that orientation-field models have been used
to investigate the interplay between the positional and orientational degrees of
freedom during the solidification of spherulites [47] or in the presence of foreign-
phase particles [48]. These studies were performed with a vanishing orientational
mobility Mθ in the solid, and are thus not affected by the problem pointed out
here. Indeed, in the interfacial region where the structure of the solid in not yet
fully established, the concept of a rotational mobility is valid.

4. Fluctuations and nucleation

Many phase-field simulations include fluctuations, which are often introduced in
a purely qualitative way to trigger instabilities or to create some disorder in
the geometry of the microstructures. The role of fluctuations has been investi-
gated more quantitatively in connection with the formation of sidebranches in
free dendritic growth [10, 49, 50]. The standard approach is to include fluctua-
tions as Langevin terms in the field equations, with coefficients deduced from the
fluctuation-dissipation theorem. Before proceeding further, this procedure will be
summarised.
After inclusion of noise, Eqs. (1) and (2) for the solidification of a pure substance

become (see Ref. [49] for details)

∂tφ = ~∇2φ+ φ− φ3 − λu(1− φ2)2 + ξ(~r, t), (25)

∂tu = D~∇2u+
1

2
∂th(φ)− ~∇ · ~q(~r, t), (26)

where D(φ) ≡ D is assumed (symmetric model), and lengths and times have been
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scaled by the interface thickness W and the phase-field relaxation time τ , respec-
tively. Here, ξ(~r, t) and ~q(~r, t) are random fluctuations of the phase field and ran-
dom microscopic heat currents, respectively. They are assumed to be δ-correlated
in space and time,

〈

ξ(~r, t)ξ(~r′, t)
〉

= 2Fφδ(~r − ~r′)δ(t − t′), (27)

〈

qm(~r, t)qn(~r
′, t)
〉

= 2DFuδnmδ(~r − ~r′)δ(t − t′), (28)

with dimensionless amplitudes Fφ and Fu given by

Fu =

(

d0
W

)d

Fexpt, (29)

Fφ =
2
√
2

3

(

d0
W

)d−1

Fexpt, (30)

where d is the spatial dimension, and the quantity Fexpt is determined by materials
properties only,

Fexpt =
kBT

2
mcp

L2dd0
, (31)

where kB , Tm, cp, L, and d0 are Boltzmann’s constant, the melting temperature,
the specific heat, the latent heat, and the capillary length, respectively. The latter
is given by d0 = γTmcp/L

2, where γ is the surface free energy. With the help of this

expression for the capillary length, Fexpt can be rewritten as Fexpt = kBTm/(γdd−1
0 ),

which makes its physical meaning more transparent: it is the ratio of the thermal
energy and a capillary energy scale, and can thus be seen as a non-dimensional
temperature.
In a finite-difference discretization of timestep ∆t and grid spacing ∆x, the noise

terms are implemented by drawing, at each grid point i and for each time step t,
independent Gaussian random variables of correlation

〈

ξtiξ
t′

i′

〉

=
2Fφ

(∆x)d∆t
δii′δtt′ , (32)

where δii′ and δtt′ are now Kronecker symbols, and similarly for ~q. This procedure
was shown to yield the correct interface fluctuations at equilibrium in numerical
simulations [49].
An obvious question then arises, namely, can this method also be used to explore

nucleation ? Phase-field methods have been used recently to investigate homoge-
neous and heterogeneous nucleation, both in single-phase and multi-phase systems
(see, for example, [51–55]). In particular, it was found that for high undercoolings,
diffuse-interface models yield better agreement with experiments than classical nu-
cleation theory, since the size of the nuclei is not much larger than the thickness
of the diffuse interfaces; therefore, the free energy barriers calculated in phase-
field models can differ significantly from classical nucleation theory. Is it sufficient,
then, to add thermal noise as described above to obtain quantitative simulations
of nucleation processes ?
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The answer to this question is negative. The reason is that, for strong noise, field
equations like the phase-field model are renormalized by the fluctuations. This is a
well-known fact in statistical field theory, but its implications do not yet seem to
have been fully appreciated in the phase-field community. Therefore, it is useful to
briefly sketch a few calculations that can be found in textbooks (see, for example,
[56]). They are, therefore, neither new nor complete; however, they will prepare
the ground for understanding the conclusions on the phase-field method at the end
of this section.
Instead of the full phase-field model, consider a single equation for a scalar field

φ that reads

∂tφ = −δH
δφ

+ ξ(~r, t), (33)

where ξ is a non-conserved noise that is δ-correlated,

〈

ξ(~r, t)ξ(~r′, t′)
〉

= 2Tδ(~r − ~r′)δ(t− t′), (34)

with T a suitably non-dimensionalized temperature (such as Fexpt, see the discus-
sion after Eq. (31)), and the deterministic part of the equation derives from the
functional

H =

∫
[

1

2
(∇φ)2 + V (φ)

]

d~r, (35)

where V (φ) is a local potential of the field φ (lengths, times, and energies are
dimensionless). It is important to stress that H is not a free energy functional, but
the Hamiltonian of the field theory. Eq. (33) generates an evolution in which each
microscopic field configuration appears with probability

P = Z−1 exp(−H/T ) (36)

in the limit of infinite evolution time. Here, Z is the partition function,

Z =

∫

Dφ exp(−H/T ), (37)

and Dφ denotes a functional integration over the field φ. The free energy is then
obtained by the standard formula F = −T lnZ.
The free energy can be calculated exactly for the case of a quadratic potential,

V (φ) = m2φ2/2, wherem is a constant. To carry out the calculations, it is useful to
consider a discrete version of the model. For simplicity, consider as the domain of
integration V a d-dimensional torus of size Ld with periodic boundary conditions.
When this system is discretized with the usual finite difference formulae using N
grid points in each direction and hence a grid spacing ∆x = L/N , the integral in
Eq. (35) becomes a sum over a finite number of variables. In one dimension,

H =
1

2
∆x

N−1
∑

n=0

[

(

φn+1 − φn

∆x

)2

+m2φ2
n

]

, (38)

with the convention that φN ≡ φ0. For the discretized system, the functional
integration in Eq. (37) is replaced by a simple integration over the field variables
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at each grid point,

Z =

∫

exp (−H/T )

N−1
∏

n=0

dφn . (39)

Since the Hamiltonian of Eq. (38) is a quadratic form in the φn’s, this is a N -
dimensional Gaussian integral which can be evaluated using standard formulae. The
most convenient way is to use a discrete Fourier transform to find the eigenvalues
of the quadratic form. The final result for the free energy is (up to a constant that
can be dropped)

F =
T

2

N−1
∑

l=0

ln

(

m2 +
4

(∆x)2
sin2

πl

N

)

. (40)

For dimensions d > 1, the same calculation can be repeated without difficulties,
and the result is

F =
T

2

∑

li

ln

(

m2 +
4

(∆x)2

d
∑

i=1

sin2
πli
N

)

, (41)

where the sum is now over an independent index li for each dimension (i = 1 . . . d),
and is normally taken over the first Brillouin zone, li ∈ {−N/2 + 1, N/2}.
For an arbitrary potential V (φ), an exact calculation is generally impossible.

Statistical field theory has developed sophisticated approximation methods, in
particular perturbation expansions. Formally, every potential can be written as
a perturbation of a quadratic potential. The perturbation expansion (where the
expansion parameter is the temperature, which sets the fluctuation strength) is
cumbersome and usually visualised in terms of diagrams [56]. Fortunately, the first
order result can be understood in a relatively simple manner if we are interested
in homogeneous systems. More precisely, consider the spatial average of the field,

φ̄(t) =
1

Ld

∫

φ(~r, t) d~r, (42)

which is a fluctuating quantity. The probability distribution of φ̄ can be written as

P (φ̄) ∼ exp
(

−Ldf(φ̄)/T
)

, (43)

where f(φ̄) is the free energy density. To first order in the perturbation expansion,

f(φ̄) = V (φ̄) +
T

2Ld

∑

li

ln

(

V ′′(φ̄) +
4

(∆x)2

d
∑

i=1

sin2
πli
N

)

, (44)

where the correction to the original (“bare”) potential V (φ̄) is identical to the
exact result for the quadratic potential, with the constant m2 replaced by the
second derivative of the bare potential, taken at φ̄. This results from a quadratic
approximation (second-order Taylor expansion) of the bare potential around φ̄.
The result f(φ̄) is a renormalized potential for φ̄.
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Figure 3. Renormalized free energy density of the standard double-well potential as calculated from
Eq. (44) and from numerical simulations, for T = 0.05, ∆x = 0.5, ∆t = 0.005. Only the part close to one
of the potential wells is shown. The zero of f was chosen at the minimum of the renormalized potential.
The bin size for the histograms was ∆φ̄ = 0.01.

These calculations can be readily verified numerically. As an example, the stan-
dard double-well potential was used, V (φ) = −φ2/2 + φ4/4 (usually called φ4-
potential in the field-theory literature), and simulated in a two-dimensional system
of size L = 32 with a grid spacing of ∆x = 0.5 and T = 0.05, using the standard
discretization method described above with a timestep ∆t = 0.005, and an initial
condition φ(~r, 0) = 1. In time intervals of 10, φ̄ was calculated, and in total 1000
points were sampled. Then, the free energy can be obtained by making a histogram
of the values of φ̄, and taking the logarithm of the counts (the normalisation con-
tributes only a constant to f and can be disregarded). The comparison between
the simulation and the prediction of Eq. (44) in Fig. 3 shows excellent agreement.
It can be seen that the minimum of the free energy density is shifted with respect

to its “bare” value φ̄ = 1. This can be understood intuitively by the following
reasoning. The system starts in the well of the “bare” potential, at φ̄ = 1. The
random fluctuations push the system in both directions with equal probability,
but since the potential is asymmetric, the restoring force is larger for fluctuations
towards φ̄ > 1 than towards φ̄ < 1; therefore, smaller values are more likely to
occur. In the example chosen here, the shift is small (the minimum is close to 1),
but for increasing temperature, the correction becomes larger and larger (for an
example of such simulations, see [57]), and eventually a phase transition occurs
(the double well disappears); in this regime, of course the first-order perturbation
result is inaccurate.
The correction also depends on the discretization. This is physically sound: a finer

discretization introduces more degrees of freedom per unit volume in the discretized
system, and hence allows for more fluctuation modes that contribute to the free
energy. With a slight change of perspective, this can also be seen as the natural
result of a coarse-graining procedure. Indeed, if the free energy is calculated from a
given microscopic model by coarse-graining (averaging) over cells with a certain size
∆x larger than the size of the microscopic elements, both the free energy density
and the amplitude of the fluctuations that remain after the averaging (which thus
have a wavelength larger than ∆x) depend on the choice of ∆x, as was recently
demonstrated explicitly for a simple lattice gas model [58].
However, a problem arises in the continuum picture: it is easy to verify that, when

the grid spacing ∆x tends to zero, the sum in Eq. (44) diverges for d ≥ 2. This is
a classical example of an ultraviolet divergence. Thus, Eq. (33) has no continuum
limit, and if it is written down in continuum language, it is implicitly understood
that an ultraviolet cutoff must be specified. A reasonable physical value for a cutoff
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in condensed-matter systems is the size of an atom.
Let us now discuss the implications of these facts for phase-field modelling. Even

though the above calculation have not been carried out for the full model (φ and
u), it is clear that renormalization occurs. If a phase-field model is seen as a sim-
ulation tool for a problem that is defined in terms of macroscopic parameters, the
relevant quantities that need to be adjusted in the model are the renormalized ones.
For instance, thermophysical properties are usually interpolated assuming that the
phase field takes fixed values in the bulk phases (φ = ±1). If, on average, this is
no longer the case, such as in the example of Fig. 3, these interpolations become
incorrect.
An obvious idea to cure this problem is to choose the “bare” potential such that

the renormalized potential has the desired properties. For the φ4-potential, which
is renormalizable, one may choose

V = −1 + ǫ2
2

φ2 +
1 + ǫ4

4
φ4, (45)

and determine the constants ǫ2 and ǫ4 by the two conditions f ′(1) = 0 and f ′′(1) =
2 using Eq. (44). For the example shown above, the values ǫ2 = 0.0693524 and ǫ4 =
0.0208810 indeed restore the correct bulk properties. However, in a quantitative
phase-field model, the macroscopic properties not only of the bulk phases, but
also of the interfaces need to be controlled. It is far from obvious that the above
procedure, designed for homogeneous systems, will work. This is even more so for
the critical nucleus needed to evaluate the nucleation barrier.
It is instructive to examine some orders of magnitude. In Nickel, the value of

Fexpt is 0.234 [10], of order unity; it can be expected that this value is of similar
order of magnitude for other substances with microscopically rough interfaces. An
inspection of Eqs. (27–29) reveals that if phase-field simulations are carried out
with the “natural” interface thickness, which is of the order of the capillary length
d0, the fluctuations are of order unity (recall that Fφ and Fu are equivalent to
T in the numerical example), and renormalization cannot be neglected. This is a
natural consequence of the fact that real solid-liquid interfaces do indeed exhibit
very strong fluctuations, as evidenced from molecular dynamics simulations [59];
therefore, a mean-field approximation (such as the phase-field model without noise)
is not accurate. In contrast, if (as in Refs. [10, 49]) a much larger interface thickness
is used, the fluctuation strength is greatly reduced, and the difference between
“bare” and renormalized free energy is small. Note, however, that even in this limit
a sufficient refinement of the grid would create noticeable fluctuation corrections.
We are thus faced with the conclusion (opposite to the usual point of view in phase-
field modelling) that the use of the simple prescription of Ref. [49] is more precise for
larger interface thickness and coarser grids. It is noted in passing that the concept
of the sharp-interface limit, central for the asymptotic analysis in the deterministic
case, has to be reexamined because a new length scale (the microscopic cutoff for
the fluctuations) has been introduced.
In conclusion, it is clear that the use of the phase-field method with fluctuations is

subject to caution, at least on small length scales. To gain a better understanding,
the fluctuation effects on the couplings of the phase-field variables need to be
investigated. Furthermore, a good control of the discretization effects needs to be
achieved; the introduction of a simple cutoff will most likely be insufficient, since
the renormalized free energy of Eq. (44) also depends on the grid structure. While
a large body of results on these topics can certainly be found in the field-theory
literature, the development of quantitative models for specific materials remains a
challenging task.
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5. Conclusions

In this paper, some open questions concerning various aspects of phase-field mod-
elling of solidification have been discussed, and potential future directions of re-
search have been outlined. The selection of topics is necessarily incomplete, both
concerning the problems and the potential solutions. For instance, the rapid de-
velopment of the phase-field crystal approach [45] and related methods currently
opens up interesting new perspectives for the modelling of polycrystals, which are
not discussed further here.
The common point of the topics treated here is that they illustrate the dual

nature of the phase-field method. On the one hand, it is a genuine representation
of condensed-matter systems and their evolution in terms of order parameters on
a mesoscopic scale. On the other hand, with the help of mathematical analysis, it
can be turned into an efficient simulation tool for the solution of free boundary
problems. As in the past, the development of more efficient and robust models for
materials modelling will most likely benefit from the pursuit and confrontation of
both of these two complementary viewpoints. Therefore, the further development
of the phase-field method remains an exciting research topic at the frontiers of
physics, mathematics, and materials science.

Acknowledgements

I thank Jean-Marc Debierre, Tristan Ducousso, Alphonse Finel, László Gránásy,
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