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Absence of traveling wave solutions of conductivity type for the Novikov-Veselov equation at zero energy

We prove that the Novikov-Veselov equation (an analog of KdV in dimension 2 + 1) at zero energy does not have sufficiently localized soliton solutions of conductivity type.

Introduction

In this note we are concerned with the Novikov-Veselov equation at zero energy

∂ t v = 4Re(4∂ 3 z v + ∂ z (vw)), ∂ z w = -3∂ z v, v = v, v = v(x, t), w = w(x, t), x = (x 1 , x 2 ) ∈ R 2 , t ∈ R, (1) 
where

∂ t = ∂ ∂t , ∂ z = 1 2 ∂ ∂x 1 -i ∂ ∂x 2 , ∂ z = 1 2 ∂ ∂x 1 + i ∂ ∂x 2 .
Definition 1. A pair (v, w) is a sufficiently localized solution of equation ( 1) if

• v, w ∈ C(R 2 × R), v(•, t) ∈ C 3 (R 3 ), • |∂ j x v(x, t)| q(t) (1 + |x|) 2+ε , |j| 3, for some ε > 0, w(x, t) → 0, |x| → ∞, • (v, w) satisfies (1). Definition 2. A solution (v, w) of (1) is a soliton (a traveling wave) if v(x, t) = V (x -ct), c ∈ R 2 .
Equation ( 1) is an analog of the classic KdV equation. When v = v(x 1 , t), w = w(x 1 , t), then equation ( 1) is reduced to KdV. Besides, equation ( 1) is integrable via the scattering transform for the 2-dimensional Schrödinger equation

Lψ = 0, L = -∆ + v(x, t), ∆ = 4∂ z ∂ z , x ∈ R 2 .
(2)

Equation ( 1) is contained implicitly in [M] as an equation possessing the following representation

∂(L -E) ∂t = [L -E, A] + B(L -E), ( 3 
)
where L is defined in (2), A and B are suitable differential operators of the third and zero order respectively and [•, •] denotes the commutator. In the explicit form equation (1) was written in [START_REF] Novikov | Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formula and evolutions equations[END_REF], [START_REF] Novikov | Finite-zone, two-dimensional Schrödinger operators. Potential operators[END_REF], where it was also studied in the periodic setting. For the rapidly decaying potentials the studies of equation ( 1) and the scattering problem for (2) were carried out in [BLMP], [GN] [T], [LMS]. In [LMS] the relation with the Calderón conductivity problem was discussed in detail.

Definition 3. A potential v ∈ L p (R 2 ), 1 < p < 2, is of conductivity type if v = γ -1/2 ∆γ 1/2 for some real-valued positive γ ∈ L ∞ (R 2 ), such that γ δ 0 > 0 and ∇γ 1/2 ∈ L p (R 2 ).
The potentials of conductivity type arise naturally when the Calderón conductivity problem is studied in the setting of the boundary value problem for the 2-dimensional Schrödinger equation at zero energy (see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ+(v(x)-Eu(x))ψ = 0. Funkt. Anal. i Pril[END_REF], [N], [LMS]); in addition, in [N] it was shown that for this type of potentials the scattering data for (2) are well-defined everywhere.

The main result of the present note consists in the following: there are no solitons of conductivity type for equation (1). The proof is based on the ideas proposed in [START_REF] Novikov | Absence of exponentially localized solitons for the Novikov-Veselov equation at positive energy[END_REF].

This work was fulfilled in the framework of research carried out under the supervision of R.G. Novikov.

2 Scattering data for the 2-dimensional Schrödinger equation at zero energy with a potential of conductivity type

Consider the Schrödinger equation ( 2) on the plane with the potential v(z), z =

x 1 + ix 2 , satisfying v(z) = v(z), v(z) ∈ L ∞ (C), |v(z)| < q(1 + |z|) -2-ε for some q > 0, ε > 0. ( 4 
)
For k ∈ C we consider solutions ψ(z, k) of ( 2) having the following asymptotics

ψ(z, k) = e ikz µ(z, k), µ(z, k) = 1 + o(1), as |z| → ∞, (5) 
i.e. Faddeev's exponentially growing solutions for the two-dimensional Schrödinger equation ( 2) at zero energy, see [F], [GN], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ+(v(x)-Eu(x))ψ = 0. Funkt. Anal. i Pril[END_REF].

It was shown that if v satisfies (4) and is of conductivity type, then ∀k ∈ C\0 there exists a unique continuous solution of (2) satisfying (5) (see [N]). Thus the scattering data b for the potential v of conductivity type are well-defined and continuous:

b(k) = C e i(ky+ k ȳ) v(y)µ(y, k)dReydImy, k ∈ C\0. (6) 
In addition (see [N]), the function µ(z, k) from ( 5) satisfies the following ∂-equation

∂µ(z, k) ∂ k = 1 4π k e -i(kz+ kz) b(k)µ(z, k), z ∈ C, k ∈ C\0 (7) 
and the following limit properties:

µ(z, k) → 1, as |k| → ∞, (8) 
µ(z, k) is bounded in the neighborhood of k = 0. (9) 
The following lemma describes the scattering data corresponding to a shifted potential. As for the time dynamics of the scattering data, in [BLMP], [GN] it was shown that if the solution (v, w) of ( 1) exists and the scattering data for this solution are well-defined, then the time evolution of these scattering data is described as follows:

b(k, t) = e i(k 3 + k3 )t b(k, 0), k ∈ C\0, t ∈ R. ( 11 
)
3 Absence of solitons of conductivity type Theorem 1. Let (v, w) be a sufficiently localized traveling wave solution of (1) of conductivity type. Then v ≡ 0, w ≡ 0.

Scheme of proof. From ( 10), ( 11), continuity of b(k) on C\0 and the fact that the functions k, k, k 3 , k3 , 1 are linearly independent in the neighborhood of any point, it follows that b ≡ 0. Equation ( 7) implies that in this case the function µ(z, k) is holomorphic on k, k ∈ C\0. Using properties (8) and ( 9) we apply Liouville theorem to obtain that µ ≡ 1. Then ψ(z, k) = e ikz and from (2) it follows that v ≡ 0.

Lemma 1 .

 1 Let v(z) be a potential satisfying (4) with the scattering data b(k). The scattering data b y (k) for the potential v y (z) = v(zy) are related to b(k) by the following formula b y (k) = e i(ky+ kȳ) b(k), k ∈ C\0, y ∈ C. (10) Proof. We note that ψ(zy, k) satisfies (2) with v y (z) and has the asymptotics ψ(zy, k) = e ik(z-y) (1+o(1)) as |z| → ∞. Thus ψ y (z, k) = e iky ψ(z -y, k) and µ y (z, k) = µ(z -y, k). Finally, we have b y (k) = C e i(kζ+ k ζ) v y (ζ)µ y (ζ, k)dReζdImζ = = C e i(kζ+ k ζ) v(ζy)µ(ζy, k)dReζdImζ = e i(ky+ kȳ) b(k).
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