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Absence of traveling wave solutions of conductivity type for the

Novikov-Veselov equation at zero energy

A.V. Kazeykina 1

Abstract. We prove that the Novikov-Veselov equation (an analog of KdV in dimension
2 + 1) at zero energy does not have sufficiently localized soliton solutions of conductivity type.

1 Introduction

In this note we are concerned with the Novikov-Veselov equation at zero energy

∂tv = 4Re(4∂3zv + ∂z(vw)),

∂z̄w = −3∂zv, v = v̄,

v = v(x, t), w = w(x, t), x = (x1, x2) ∈ R
2, t ∈ R,

(1)

where
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∂

∂t
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1

2

(

∂

∂x1
− i

∂

∂x2

)

, ∂z̄ =
1

2

(

∂
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+ i

∂

∂x2

)

.

Definition 1. A pair (v,w) is a sufficiently localized solution of equation (1) if

• v,w ∈ C(R2 × R), v(·, t) ∈ C3(R3),

• |∂jxv(x, t)| 6
q(t)

(1 + |x|)2+ε
, |j| 6 3, for some ε > 0, w(x, t) → 0, |x| → ∞,

• (v,w) satisfies (1).

Definition 2. A solution (v,w) of (1) is a soliton (a traveling wave) if v(x, t) = V (x − ct),
c ∈ R

2.

Equation (1) is an analog of the classic KdV equation. When v = v(x1, t), w = w(x1, t), then
equation (1) is reduced to KdV. Besides, equation (1) is integrable via the scattering transform
for the 2–dimensional Schrödinger equation

Lψ = 0,

L = −∆+ v(x, t), ∆ = 4∂z∂z̄, x ∈ R
2.

(2)

Equation (1) is contained implicitly in [M] as an equation possessing the following represen-
tation

∂(L− E)

∂t
= [L− E,A] +B(L− E), (3)

where L is defined in (2), A and B are suitable differential operators of the third and zero order
respectively and [·, ·] denotes the commutator. In the explicit form equation (1) was written
in [NV1], [NV2], where it was also studied in the periodic setting. For the rapidly decaying
potentials the studies of equation (1) and the scattering problem for (2) were carried out in
[BLMP], [GN] [T], [LMS]. In [LMS] the relation with the Calderón conductivity problem was
discussed in detail.
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Definition 3. A potential v ∈ Lp(R2), 1 < p < 2, is of conductivity type if v = γ−1/2∆γ1/2 for
some real-valued positive γ ∈ L∞(R2), such that γ > δ0 > 0 and ∇γ1/2 ∈ Lp(R2).

The potentials of conductivity type arise naturally when the Calderón conductivity problem
is studied in the setting of the boundary value problem for the 2-dimensional Schrödinger
equation at zero energy (see [Nov1], [N], [LMS]); in addition, in [N] it was shown that for this
type of potentials the scattering data are well-defined everywhere.

The main result of the present note consists in the following: there are no solitons of con-
ductivity type for equation (1). The proof is based on the ideas proposed in [Nov2].

This work was fulfilled in the framework of research carried out under the supervision of
R.G. Novikov.

2 Scattering data for the 2-dimensional Schrödinger equation

at zero energy with a potential of conductivity type

Consider the Schrödinger equation (2) on the plane with the potential v(z), z = x1 + ix2,
satisfying

v(z) = v(z), v(z) ∈ L∞(C),

|v(z)| < q(1 + |z|)−2−ε for some q > 0, ε > 0.
(4)

For k ∈ C we consider solutions ψ(z, k) of (2) having the following asymptotics

ψ(z, k) = eikzµ(z, k), µ(z, k) = 1 + o(1), as |z| → ∞, (5)

i.e. Faddeev’s exponentially growing solutions for the two-dimensional Schrödinger equation (2)
at zero energy, see [F], [GN], [Nov1].

It was shown that if v satisfies (4) and is of conductivity type, then ∀k ∈ C\0 there exists
a unique continuous solution of (1) satisfying (5) (see [N]). Thus the scattering data b for the
potential v of conductivity type are well-defined and continuous:

b(k) =

∫∫

C

ei(ky+k̄ȳ)v(y)µ(y, k)dReydImy, k ∈ C\0. (6)

In addition, the function µ(z, k) from (5) satisfies the following ∂̄-equation

∂µ(z, k)

∂k̄
=

1

4πk̄
e−i(kz+k̄z̄)b(k)µ(z, k), z ∈ C, k ∈ C\0 (7)

and the following limit properties:

µ(z, k) → 1, as |k| → ∞, (8)

µ(z, k) is bounded in the neighborhood of k = 0. (9)

The following lemma describes the scattering data corresponding to a shifted potential.

Lemma 1. Let v(z) be a potential satisfying (4) with the scattering data b(k). The scattering
data by(k) for the potential vy(z) = v(z − y) are related to b(k) by the following formula

by(k) = ei(ky+k̄ȳ)b(k), k ∈ C\0, y ∈ C. (10)
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Proof. We note that ψ(z − y, k) satisfies (1) with vy(z) and has the asymptotics ψ(z − y, k) =
eik(z−y)(1+o(1)) as |z| → ∞. Thus ψy(z, k) = eikyψ(z−y, k) and µy(z, k) = µ(z−y, k). Finally,
we have

by(k) =

∫∫

C

ei(kζ+k̄ζ̄)vy(ζ)µy(ζ, k)dReζdImζ =

=

∫∫

C

ei(kζ+k̄ζ̄)v(ζ − y)µ(ζ − y, k)dReζdImζ = ei(ky+k̄ȳ)b(k).

As for the time dynamics of the scattering data, in [BLMP], [GN] it was shown that if the
solution (v,w) of (1) exists and the scattering data for this solution are well-defined, then the
time evolution of these scattering data is described as follows:

b(k, t) = ei(k
3+k̄3)tb(k, 0), k ∈ C\0, t ∈ R. (11)

3 Absence of solitons of conductivity type

Theorem 1. Let (v,w) be a sufficiently localized traveling wave solution of (1) of conductivity
type. Then v ≡ 0, w ≡ 0.

Proof. From (10), (11), continuity of b(k) on C\0 and the fact that the functions k, k̄, k3, k̄3, 1
are linearly independent in the neighborhood of any point, it follows that b ≡ 0. Equation (7)
implies that in this case the function µ(z, k) is holomorphic on k, k ∈ C\0. Using properties
(8) and (9) we apply Liouville theorem to obtain that µ ≡ 1. Then ψ(z, k) = eikz and from (2)
it follows that v ≡ 0.
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