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The coarsening instability typically disrupts steady-state cluster-size distributions. We show that
degradation coupled to the cluster size, such as arising from biological proteolysis, leads to a novel
fixed-point cluster size. Stochastic evaporative and condensative fluxes determine the width of the
fixed-point size distribution. At the fixed-point, we show how the peak size and width depend on
number, interactions, and proteolytic rate. This proteolytic size-control mechanism is consistent
with the phenomenology of pseudo-pilus length control in the general secretion pathway of bacteria.

PACS numbers: 87.16.A-, 87.16.dt, 64.75.Jk

I. INTRODUCTION

Living cells control the sizes of subcellular structures.
Mechanisms of size control include molecular rulers for
bacterial injectisome length [1], measuring cups for the
length of the bacterial flagellar hook [2], counting for
telomere ends [3], and equilibrium energetics for actin
bundle radius [4]. Size control is also evident in the length
of eukaryotic flagella [5] or the size of lipid rafts [6].

Size control is challenging in bacteria because of the
strong stochastic effects expected in such small cells. It
is especially interesting how bacteria control the size of
extracellular macromolecular assemblies, such as bacte-
rial secretion systems and pili. In this paper, we investi-
gate a novel length-control mechanism that may apply to
the pseudopilus (here “ppilus”) of the type-II secretion
system (T2SS) of Gram-negative bacteria [7]. In the gen-
eral secretory pathway, proteins are first secreted across
the bacterial inner membrane by the Sec or Tat systems
then across the outer membrane by the T2SS. The T2SS
pushes folded proteins across the periplasm, and out a se-
creton in the outer membrane, using an assembling and
disassembling ppilus that is thought to function as a pis-
ton or plunger [7]. The ppilus assembles from the ener-
gized inner membrane and spans the periplasmic space.
The primary pilin subunit that assembles into the pseu-
dopilus of the T2SS is variously called PulG in Klebsiella

oxytoca, XcpT in Pseudomonas aeruginosa, or more gen-
erally GspG (here “G”) and is homologous to the PilA
pilin of the type-IV pilus used in twitching motility in,
e.g., P. aeruginosa or Myxococcus xanthus [8].

For a functioning T2SS the ppilus length should span
the periplasm, which is approximately 21 nm across [9]
– or 85 G monomers in the ppilus structure [10]. The
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ppilus is not normally seen outside the cell [7], hence
the “pseudo” prefix, indicating an effective length-control
mechanism. Overexpression of G leads to visible extracel-
lular ppili [11–13] which rules out the (fixed-size) molecu-
lar ruler or measuring cup mechanisms of size regulation.

Underexpression of a minor pilin (XcpX [11], PulK
[13], or GspK — here “K”) leads to long extracellular
ppili. So, it has been proposed that simple stoichiometric
control applies to T2SS ppilus length control [14]. How-
ever, stoichiometric control faces the inherent challenges
of precisely controlled protein expression [15]. Further-
more, while a single “stoichiometric” ppilus with a fixed
size pool of G monomers can have a narrow length dis-
tribution peaked at the pool size [16], this is not true of
multiple ppili sharing a common pool of G monomers.
With multiple ppili stoichiometric length distributions
are exponential, as seen in stochastic simulations with
more than one ppili (see Appendix A). Since five to ten
ppili are present on each individual bacteria [17], stoichio-
metric length control of each individual ppilus requires
an additional mechanism to partition G proteins equally
between the ppili.

II. MODEL

The observations of G-G interactions [18] and of G-
clusters in individual bacteria [18, 19] are consistent with
clusters of G that could be associated with each ppilus,
as illustrated by the dashed regions in Fig. 1. The size
of each cluster, i.e. the number of G monomers, would
then determine the maximal length of the associated
ppilus, converting a ppilus length-control problem into a
G-cluster size-control problem. Nevertheless, thermally
driven evaporation, condensation, and diffusion (Fig. 1
(e), (c), and (D) respectively) will destabilize sponta-
neous partitioning of G among many clusters. The subse-
quent coarsening of the size-distribution, treated by Lif-
shitz, Slyozov and Wagner (LSW) [20], would lead to a
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FIG. 1: (Color online) Cartoon of the bacterial periplasmic
space showing the inner (IM) and outer (OM) membrane,
with pilin “G” proteins (red circles). Two pseudo-pili are
shown, extending from their inner membrane base towards
their outer membrane secretons (green squares). The IM clus-
ters associated with the ppili are indicated by the dashed
circles. The number of G proteins in the ppilus together
with its associated cluster is unchanged by ppilus assembly
or disassembly (not shown). Numbers change by the physical
processes of condensation (c), evaporation (e), proteolysis or
recycling (-), and insertion (+). Diffusion (D) of monomers
couples the clusters.

single large cluster (condensed phase) of G in equilibrium
with small clusters of G (vapour) in the bacterial inner
membrane. The net growth of large diffusively-coupled
2d clusters can be expressed in terms of their radius R
by dR/dt = A (1/Rc − 1/R) /R, where A is a constant.
Cluster growth is the net result of a condensation flux
(due to the supersaturation of G monomers in the inner
membrane) and an evaporative flux (due to the curved
boundary of the cluster within the membrane). Rc is the
critical cluster size above which clusters grow and be-
low which they shrink, and it typically grows with time
due to the decreasing supersaturation associated with in-
creasing average cluster radius via the Gibbs-Thompson
effect. Growth of the average cluster size is also asso-
ciated with a decreasing number of clusters, and with a
broad distribution of cluster sizes [20]. This is qualita-
tively unchanged for collections of smaller or irregularly-
shaped clusters.
In a biological system we should add both protein syn-

thesis and proteolysis. Protein synthesis will simply con-
tribute to the supersaturation, but proteolysis will add a
new degradative term to the LSW dynamics proportional
to the number of monomers in the cluster. Bacterial pro-
teolytic mechanisms include cytoplasmic ATP-dependent
proteosomes [21], ubiquitin-like targeting systems [22],
and periplasmic ATP-independent proteases [23]. Non-
degradative recycling of components away from the mem-
brane has an equivalent effect [24–26]. In terms of the
number of monomers in a large 2d cluster of size N we
will then have

dN

dt
= S − E√

N
− αN, (1)

where S corresponds to condensation due to supersatu-
ration, E corresponds to evaporation, and α is the pro-
teolytic rate. Eqn. 1 is an approximate mean-field equa-
tion, without stochastic effects or higher-order curvature

corrections expected for smaller clusters. However, it il-
lustrates (see inset of Fig. 2) how intermediate values of
the proteolytic term should generically stabilize coarsen-
ing to a steady-state cluster size (red dot in inset), while
for large enough proteolytic rate no stable fixed-point ex-
ists (blue curve in inset).
To test these ideas we model G clustering in the bacte-

rial membrane with a stochastic Ising lattice-gas in two-
dimensions (see e.g. [27]). The dynamics are (conserved)
particle-exchange, subject to a Metropolis acceptance cri-
terion with a reduced interaction energy J̃ ≡ J/(kBT ).
We supplement these dynamics with a dimensionless pro-
teolysis rate α (per monomer per timestep), where (to
minimize finite-size effects) monomers are removed and
replaced at random positions in the system. Using a
typical monomer size of ∆x = 5nm and diffusivity of
D = 70000nm2/s = δx2/(4δt) we have ∆t ≈ 10−4s [27],
and the proteolytic lifetime is τ = ∆t/α. In units of
∆x, we use a linear lattice size L = 400 and check that
finite-size effects are not significant. A typical bacterium
is larger in every direction, with L ≈ 2000 [27].

III. RESULTS

Figure 2 illustrates the steady-state results of the
stochastic simulations. For a high proteolytic rate (α =
10−5, or protein lifetime τ ≈ 10s) no large domains are
seen. At an intermediate proteolytic rate (α = 5× 10−8,
or τ ≈ 2000s), stable domains with a characteristic
size are seen. At a low proteolytic rate (α = 10−9, or
τ ≈ 105s) proteolysis is insufficient to stabilize the largest
domain against coarsening to the limits of the system
size. For the remainder of the paper, and for interme-
diate proteolytic rates, we quantify the peak size N0 as
well as the full-width-half-maximum W of the steady-
state distribution of domain sizes, and explore how they
vary with proteolytic rate, total membrane density of G,
and reduced interaction J̃ .
The growth dynamics of a given cluster of size N is

given by the difference of incoming and outgoing flux,
Ṅ = Ṅ+(N)−Ṅ−(N). This gives us the transition prob-

abilities of monomer addition Γ+(N) ≡ Ṅ+/(Ṅ− + Ṅ+)

and subtraction Γ−(N) ≡ Ṅ−/(Ṅ−+Ṅ+). If P (N) is the
resulting steady state probability distribution of clusters
of size N , then the detailed balance condition of the tran-
sition probabilities is Γ+(N−1)P (N−1) = Γ−(N)P (N).
Approximating P (N) as a continuous distribution of
cluster sizes (where dP/dN ≃ P (N) − P (N − 1)), then
in steady state we have

P (N) ≃ P (1) exp

[

∫ N

1

(

1− Γ−(n)

Γ+(n− 1)

)

dn

]

, (2)

where we choose P (1) such that
∑

m P (m) = 1.
We have measured the steady-state evaporation and

condensation rates N±(N), and used the resulting tran-
sition probabilities Γ±(N) in Eqn. 2 to compare with the
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FIG. 2: (Color online) Cluster size probability distribution,
P (N), vs. number of monomers in a cluster, N , for low
(α = 10−9, green, right), medium (α = 5 × 10−8, red, cen-
ter), and high (α = 10−5, blue, left) proteolytic rates (per
protein per timestep, where ∆t ≈ 10−4s). Other parameters

are J̃ = 1.67 and ρ = 2 × 10−3. The dotted lines represent
the reconstruction of the probability distribution via Eqn. 2.
Intermediate proteolytic rates stabilize a peaked steady-state
cluster size distribution with multiple large clusters, as illus-
trated by the corresponding snapshot of the system. The in-
set is a stability diagram from Eqn. 1, illustrating the effects
of low (green, top curve, with only an unstable fixed point),
medium (red, center curve, with an additional stable fixed
point as indicated), and high (blue, bottom curve, with no
fixed points) proteolytic rates on the domain size dynamics
dN/dt vs. domain size N .

measured P (N). We find reasonable agreement (see e.g.
the dotted lines in Fig. 2 or the crosses in Fig. 3), showing
that the dispersity of domain sizes around the stable fixed
point N0 (where N+(N0) = N−(N0)) is due to stochastic
fluctuations driven by the finite fluxes. Intuitively, and
as proven in Appendix B, the stochastic width W of the
size-distribution increases either with increasing absolute
flux at the fixed point (i.e. |N±|) or with decreasing net
(stabilizing) flux (|N+−N−|) near the stable fixed point.

Fig. 3(a) shows the peak position and the width of the
steady-state cluster-size distribution vs. proteolytic rate
α. Increasing α decreases the stable domain size until,
for α & 4 × 10−6, the distribution becomes peaked at
N0 = 0. This is consistent with Eqn. 1 and the sta-
bility plots in the inset of Fig. 2. The width decreases
with α as the net stabilizing flux near the stable point
increases. As shown by the inset of Fig. 3(a), the relative
width W/N0 nevertheless increases with α. The fraction
f of G-monomers that are found in larger clusters (under
the second peak in Fig. 2) slightly decreases with α but

remains a considerable fraction (more than half) of the
total, which indicates that proteolysis can be an efficient
size-control mechanism. Experimentally, it appears that
at least 20% of G-monomers are in ppili [28].
In contrast, the steady-state peak cluster size N0, the

width W near the peak, and the fraction of G in the peak
clusters stay roughly constant over a large range of aver-
age G densities, ρ ≡ Ng/L

2, as shown in Fig. 3(b). We
understand this as an effective (nonequilibrium) coexis-
tence between a fixed density of G monomers and excess
G in clusters — increasing ρ simply increases the num-
ber of clusters without significantly changing their size-
distribution. (When approximately one cluster is seen
in the system, for smaller ρ, finite-size effects do appear
— decreasing both N0 and W . This is beginning to be
apparent at the lowest ρ in Fig. 3(b). Strong finite-size
effects are seen in the condensed-cluster fraction f , but
simply arise from an approximately constant vapour den-
sity as ρ varies.) The lack of strong dependence of the
cluster size N0 on the total membrane density ρ is ad-
vantageous in terms of robust control of cluster size in
the face of stochastic protein expression.
At a fixed proteolytic rate and expression level, the

effects of varying J/(kBT ) (i.e. G-G interactions) are
shown in Fig. 3(c). Thermal evaporation decreases with

increasing J̃ — leading both to an increasing f (see inset
of Fig. 3(c)), a decreasing effective supersaturation, and
a smaller stable N0. The fractional width W/N0 of the
peak of the cluster size distribution is narrower for weaker
interactions, but at the same time a smaller fraction of
G-monomers are in clusters.

IV. DISCUSSION

We find that intermediate levels of proteolysis controls
the natural coarsening instability of condensed clusters,
and leads to steady-state clusters with a relatively nar-
row distribution of sizes. For an intermediate proteolytic
rate α = 5 × 10−8 (turnover time τ ∼ 2000s), we obtain
a cluster size N0 ≈ 80 — remarkably close to the 85 G
required to assemble a ppilus that spans the periplasmic
space [9, 10]. The fractional width is then about 30%,
consistent with the lack of extracellular ppili observed
under normal conditions. For cluster size-control to ef-
fectively control ppilus length, we predict that G-clusters
are associated with the secreton base of the T2SS. Mu-
tational variation of G-monomers to affect either their
proteolytic susceptibility (α, see e.g. Fig. 3(a)) or G-

G interactions (J̃ , see Fig. 3(c)) should also affect the
distribution of ppilus lengths. We believe stoichiometric
mechanisms, via GspK [11–13], control the ppilus length
from individual associated G-clusters, while our prote-
olytic size control mechanism ensures that multiple G-
clusters remain approximately equally sized.
We have shown that a novel mean-field fixed-point in

the cluster size distribution arises from proteolysis, while
the dispersity of cluster sizes around the fixed point arises



4

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

10-8 10-7 10-6 10-5

α

(a)

N0

W

 0

 0.25

 0.5

 0.75

 1

 1.25

10-8 10-7 10-6 10-5

α

f
W/N0

 0

 20

 40

 60

 80

 100

10-3 10-2

ρ

(b)

N0

W

 0

 0.2

 0.4

 0.6

 0.8

 1

10-3 10-2

ρ

f

W/N0

 0

 50

 100

 150

 200

 1.5  2  2.5  3  3.5  4  4.5  5

J
~

(c)

N0

W

 0

 0.25

 0.5

 0.75

 1

 1.5  2  2.5  3  3.5  4  4.5  5

J
~

f

W/N0

FIG. 3: (Color online) (a) Dependence of the steady-state most-likely cluster size N0 (red circles) and the full-width-half-
maximum W (green squares) of the cluster-size distribution vs. the proteolytic rate α. Crosses (×) indicate corresponding
values derived from fluxes near N0 via Eqn. 2. The inset shows the relative width W/N0 (blue squares) and the fraction of
G-proteins in large domains (purple circles) vs. α. Error bars indicate statistical errors, which are often smaller than point

sizes. Other parameters are J̃ = 1.67 and ρ = 2 × 10−3. (b) The top figure shows size N0 (red circles) and width W (green
squares) vs. average membrane density ρ ≡ Ng/L

2. The bottom figure shows the dependence of relative width W/N0 (blue

squares) and the cluster fraction f (purple circles). Other parameters: J̃ = 1.67 and α = 5×10−8. (c) Size N0 (red circles) and

width W (green squares) vs the clustering interaction J̃ ≡ J/(kBT ). The inset shows the relative width W/N0 (blue squares)

and the fraction of G-proteins in large domains f (purple circles) vs. J̃ . Other parameters: ρ = 2× 10−3 and α = 5× 10−8.

from stochastic growth and shrinkage of clusters. The
noise associated with proteolysis is intrinsically multi-
plicative, in that proteolysis only targets existing G pro-
teins. Our lattice-gas model naturally implements both
proteolysis and the thermal evaporation and condensa-
tion of clusters in a membrane.

The result is a monodisperse cluster-size distribution
with a non-zero peak size, which qualitatively differs from
some earlier work on lipid raft sizes in membranes that
only found distributions peaked at N0 ≈ 0 [25, 26].
We believe this is due to the approximate evapora-
tion/condensation dynamics [25] or the additive noise
[26] used in those works. In contrast, earlier coarse-
grained models of ternary mixtures with recycling [24] —
also applied to lipid nanodomains — did recover a non-
zero peak size, though did not include recycling noise.
Our microscopic two-component model is simpler, and
the mean-field flow we present shows how the results are
expected to be generic for proteolysis or recycling.

Proteolysis is not just for cellular cleanup. Targeted
degradation can adjust timescales and levels of transcrip-
tion or translation (see, e.g. [15]). We have shown how
it can also be used to control cluster sizes within the cell.
Proteolysis contributes a new “evaporative” term that
limits coarsening with a novel mean-field fixed point for
the cluster size (inset of Fig. 2). The same mechanism
will qualitatively apply whether the proteolysis targets all
proteins in a cluster (as in Eqn. 1), appropriate for cyto-
plasmic or periplasmic proteases — or whether it targets
the cluster periphery as might be appropriate for mem-
brane associated proteases. In both cases the loss term in

Eqn. 1 will grow with N , and so will lead to a stable fixed
point at some N0. Proteolysis provides a new size-control
mechanism to cells. We expect that proteolysis or anal-
ogous degradation terms, such as recycling, are widely
exploited to achieve monodisperse steady-state clusters
in other biological systems.
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Appendix A - Stoichiometric length-control

We present here analytical limits as well as computa-
tional simulations for a stoichiometric model for length-
control. This system consists of M polymerized pili shar-
ing a common pool of Ng = MNp monomers, where Np

is the average number of monomers per pilus. Each pilus
has a probability p+ of growing and p− of terminating
growth and completely disassembling, and these prob-
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FIG. 4: (Color online) Probability distribution pM (l) of the
maximum length for various number of pili (M = 1, 2, 3, 4, 6)
sharing the same common pool of monomers. We use t = 0.3
and Np = 40, though qualitatively similar results are seen
with other parameters. The continuous lines are the result
of the stochastic simulation. The red dashed lines represents
the two exact limiting distributions p1 and p∞, overlaying the
M = 1 data and close to the M = 6 data, respectively.

abilities are dependent only on the pool of monomers.
The total number of monomers is constant, so that Ng =

n+
∑M

i=1
li, where li are the lengths of the pili and n the

number of monomers remaining in the monomeric pool.
Since the growth rate is proportional to n, while the ter-
mination rate t is fixed, then the growth and termination
probabilities are p+(n) = n/(n+t) and p−(n) = t/(n+t),
respectively, where p+ + p− = 1.
For a single pilus, the probability of achieving a maxi-

mum length l can be written as the product of the indi-
vidual probabilities: p1(l) = p+(Ng)×p+(Ng−1)×· · ·×
p+(Ng − (l − 1))× p−(Ng − l). This leads to

p1(l) =
tΓ(Ng + 1)Γ(Ng + t− l)

Γ(Ng + t+ 1)Γ(Ng − l + 1)
(3)

which is peaked around Np for t . 1, as shown with M =
1 in Figure 4. A single pilus can achieve length-control
by assembling most of the available pool of monomers
before disassembly is triggered.
For the more biologically appropriate case of multiple

pili per cell, we can use a mean-field approximation. In
this case, t becomes Mt, and Ng becomes MNp − Ml̃

where l̃ is the average length of the pili, and then pM (l) =

p+(MNp −Ml̃)× p+(MNp −Ml̃− 1)× · · · × p+(MNp −
Ml̃− (l− 1))× p−(MNp −Ml̃− l). The p+ are constant
at O(1/M), so that in the limit M ≫ 1 we recover an

exponential distribution

p∞(l) =
t+ 1

Np + t
e
− t+1

Np+t
l

(4)

For the intermediate regime, with finiteM > 1, we per-
formed stochastic computer simulations — as illustrated
in Fig. 4. The exponential limit is quickly approached
for M & 4. However, even for M = 2 the peak around
Np seen for M = 1 is lost.

Appendix B - Analytical monotonicities of the width

For the proteolytic size-control mechanism described
in the text, we detail here the formal derivations of the
variation of the full width half maximum (FWHM) W of
the non-zero peak in the size distribution. We consider
the evaporative and condensation fluxes J+ and J−, re-
spectively, close to the stable fixed point size N = N0,
where J+ = J− = J0 (see Fig. 5). We allow for linear
dependence of the fluxes near the fixed point

J+ = a(N −N0) + J0 (5)

J− = b(N −N0) + J0 (6)

where the stability of the fixed point requires J− > J+
for N > N0 and J+ > J− for N < N0, corresponding to
the requirement that b < a.

+  

0

J0

J

N

J

J

−

N

FIG. 5: Figure illustrating the mean-field fixed-point cluster
size N0 that occurs where the evaporative and condensative
fluxes are equal (J− = J+ = J0). The fixed-point is stable
when evaporation is stronger than condensation (J− > J+)
for N > N0 — as illustrated. The demonstration of mono-
tonicities in this appendix are for N ≈ N0, where a linear
approximation for J± holds.

These fluxes give us the transition rates

Γ+ =
an+ J0
cn+ 2J0

(7)

Γ− =
bn+ J0
cn+ 2J0

, (8)
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where we define n ≡ N −N0 and c ≡ a+ b. The detailed
balance condition is p(n) = p(n − 1)Γ+(n − 1)/Γ−(n).
We define

A(n) ≡
n
∏

m=1

Γ+(m− 1)

Γ−(m)

=
cn/2 + J0
bn+ J0

∏n−1

m=1
(ma+ J0)

∏n−1

m=1
(mb+ J0)

.

(9)

A monotonically decreases with n, since Γ+(n −
1)/Γ−(n) = (a(n − 1) + J0)/(b(n − 1) + J0) < 1 where
b > a. The FWHM condition, A(W/2) = 1/2, allows us
to determine how W must respond to changes in J0 and
∆ ≡ b− a.
Varying J0 at FWHM we have

d logA

dJ0
=

1

cW/4 + J0
− 1

bW/2 + J0

+

W/2−1
∑

n=1

(

1

na+ J0
− 1

nb+ J0

) (10)

where c/2 < b and a < b so that d logA/dJ0 > 0 and
A monotonically increases with J0. We conclude that W
increases with increasing J0.

In the same manner,

d logA

d∆
=

(

W

W∆+ 2aW + 4J0
− W

W∆+ aW + 2J0

)

−
W/2−1
∑

n=1

n

n∆+ na+ J0

(11)

is negative, so that A monotonically decreases with ∆ ≡
b − a. We conclude that W decreases with increasing
b− a.

[1] L. Journet et al., Science 302, 1757 (2003).
[2] S. Makishima et al., Science 291, 2411 (2001).
[3] S. Marcand et al., Science 275, 986 (1997).
[4] G. M. Grason et al., Phys. Rev. Lett. 99, 098101 (2007);

N. S. Gov, Phys. Rev. E 78, 011916 (2008); L. Haviv et

al., Eur. Biophys. J. 37, 447 (2008).
[5] J. Rosenbaum, Current Biology 13, R506 (2003).
[6] A. Pralle et al., J. Cell. Biol. 148, 997 (2000).
[7] A. Filloux, Biochim. Biophys. Acta 1694, 163 (2004);

T. L. Johnson et al., FEMS Microbiol. Lett. 255, 175
(2006).

[8] K. F. Jarrell and M. J. McBride, Nat. Rev. Microbiol. 6,
466 (2008).

[9] V. R. F. Matias et al., J. Bacteriol. 185, 6112 (2003).
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