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Physical description of the problem

We consider a compressible fluid occupying an open bounded set depending on time.

Q= { =00

reinT)

T = Uepnao {tt x 7
@ etory {} %

% +div (pu ® u) — pAu + aVp? — £Vdiv u = pf, on Q (1)
% +div (pu) = 0 onQ @

where >0, u+&>0,a>0, T >0, ve€ (1,00).
Boundary condition :
ad
u(X +d(X,t),t)= B on X

where d is a given smooth function describing the X evolution.
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Physical description of the model

References :

o For a fixed domain, mains result have be presented by P.L. Lions (Mathematical topics in
fluid mechanics, volume 2, Compressible models, Oxford science Publication, 1996)

@ For time depending domain, some works have been realized by B. Desjardins and M.J.
Esteban, and by M. Boulakia when a fluid is contained in a fixed bounded set and some
elastic structures are immersed in this fluid.

@ The problem of interaction between a compressible fluid bounded by a elastic plate is
considered F. Flori and P. Orenga with the quasi Navier Stokes equations.

@ An existence result for a free boundary shallow water model is proposed by F. Flori, P.
Orenga and M. Peybernes using a Lagrangian scheme.
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Physical description of the model

Some preliminary remarks :

o On boundary conditions

Usually, for non homogeneous problem, it is necessary to impose value of density when

u-n < 0. But, in our problem, even if we have non homogeneous boundary condition on the
velocity, no fluid go across the boundary and it is no necessary to impose the value of density
when u - n < 0.

o On Eulerian or Lagrangian description

The more natural method to treat the difficulty linked to a moving domain is to use a
lagrangian description of the equations. But we are not able to obtain energy estimate using
this Lagrangian form.
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The homogeneous problem A priori estimate

The homogeneous problem

As usual for a non homogeneous Dirichlet problem, we assume that there exists a sufficiently

smooth function w on @ such that w = % on 7+ and verifying

w € L2(0, T, HY(Q:)) N L>(0, T; L2/ 0~1(Qy))
divw € L2(0, T; L*°(2))
ow
Bt in a good space.
By tacking v = u — w, we can prove the following a priori result :

Lemma

Let (v, p) a classical solution of the problem, then under some assumption on initial data and for
a finite time T, v and p verify :

vE LR, T H (QL)),  pel®(0, T;:L7(R)),  pveL®O, T; L3()).

5/23



The homogeneous problem A priori estimate

Proof

A large part of the estimate is usual and we give only a sketch of proof to treat the pressure term
avVp7. To handle this one, we multiply the mass equation by az lp“f L.

a Op” va
vy—1 Ot vy—1

p? " 1div (pu) = 0,

with

-1
div (pp” " tu) = p? " Ldiv (pu) + 7 uVp?.

After some straight-forward manipulations and an integration on Q;, we obtain

opY a
ava'de:a/ ——dx + / p'w-ndS.
/Qt Q¢ -1 Q¢ ot -1 Yt

Finally, by using the Leibniz formula, the boundary terms vanish, and we obtain the following
result :

d
/ avVpldx = a/ prdivw dx+ —_ p7dx.
Q Q —1dt
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The homogeneous problem A priori estimate

Energy estimate is the following

d / |v[* a 2
— p—+7p7dx+/ | Dve|dx
dt Jo," 2 vy—1 Q | |

7]
= p (f — 8—:‘_/) v+ (pu-V)w-v —ap?divw + pdiv (vVw) — uDvDw dx.
Q¢

The first two terms of the right-hand side are easily estimated by the Cauchy Schwarz inequality
For the two remaining terms, we use the bound on div w in L1(0, T; L>°(Q;)) and we can write

/ pdiv wdx < |div W"Loo(Qt)/ p7dx,
Q; Q

1

. (o v < Claivwhimqay | [ v+ Ikl -y

Then we the deduce from Gronwall’'s lemma the desired bounds.
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Time discretization

Proof of the existence is obtained by building a sequence of approached solutions based on the
time discretisation of the continuous equations. The main difficulty is linked to the time
depending domain. A classical Eulerian discretization requires to evaluate the value at a given
position x; at time t; depending of the value at the same position at time t,_;. But this point
can be out of the domain Q.

p(xi; ti) — p(xi, te—1)
At

op
o (Xiy t) =
at(X %)

Oy

Q1 Q
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Discretized Problem

For M > 1, we denote At = % and we define for k > 0 a sequence of (m + 1) domains Q4 by
taking Qx = Q N kAt.

Let px defined on Qy, we define px_1 a function also defined on Q such that px_1 = px_1 on
_ . Qy

(Qk—l N Qk) and px_1 =0 on (B(Qk—lmnk))'

Similarly, we define T, _1 a function such that Tx_1 = ug_1 on (Qx—1 N Qy), but Tx_;1 are non

imposed on (C?f;k lrmk)). Since this term is systematically multiplied par px_1, the value of the

product is zero in (U?é‘ )) for all chosen value of T4

k—1MQ
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Discretized Problem

Discretized problem

Let wy = w(kAt) where w is the function defined previously, by induction for k > 1, we define
(pk, vk) to be the solution of our discretized problem on Q :

Pk — Prk—1 + Atdiv (pkuk) — Cu—1 =0
PkVic — Pr—1Vk—1 + Pr—1(Wk — Wi—1) + wi(pk — pr—1) + Atdiv (prux & ug)
— pAtAu, + At aVp] =0

1
where C_1 = —— /Qk L pk—1dx and ug = vy + w.
05—

meas €2
k (Qp—1N9)

At this time, we have to considere existence of solution for this stationary problem. This one can
be obtained by a fixed point argument after obtention of some compactness results.
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DIETEGIL NG Compactness results

Compactness results

Lemma

Let (pk, vk) (0 < k < M) a sequence of weak solutions of our problem with the homogeneous
boundary conditions on v and some initial conditions pg > 0, vy a.e. in Qq. Let px =0 on
{x € 0, w(x) - n < 0}

sup lpilioay + loilvilline,) < €

M

ZAtHVV/HiQ(QI) <C

=1
M
Z I/ Pr—1(vk — Vk*l)HiQ(Qk) <C
k=1

M
Z/Q [(v = )0} + 5]y — ) Prtldx < C
k=1 k

M
Z/ lok — Pr—1[Tdx < C
k=12

Where, here and below, C denotes various positive constants independent of k, At and thus M.
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DIETEGIL NG Compactness results

Proof

We give only one step of the demonstration to trait the pressure term.
y—1

To do this, we multiply the discretized mass equation by a—~ and after some manipulations,

=

we deduce :
Ty .. YCh—1 ~-1
— div (ugp)) — aAtw Vp] — ﬁpz .

a a —1_
aAtv Vp] = ——p) — ———pJ _ +
k VP ’y—lpk ~ = lpk 1

Then, after integration over Q,, we obtain

a Y, a - a 5
aAt/Q kapk dx _77 1/ pydx 7"/ —1 /), Py_qdx + 77 — /an_l py_qdx
K k k=1 (24 —1M9)
AT Cy— _
—I— il / div (ugp] )dx — aAT/ wi V] dx — Rl 11 / oy Lax
_ 2

— —1-
71 / (v =V} +pi_y —vp) Pr—1dx
1o,
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By adding from kK =1 to M we obtain

M

M
1 5 1 > 3u > a ~
5"\/ PMVM"LQ(QM) + 2 E /Qk71 Pk—1Vj—1 + 5 ,?:1 At"vvk"LZ(Qk) + 41 "pM"L’Y(QM)

k=1"2(Q,_1nQy)

M M
+ (— - ) Soloealll ooy 43 AR R
k= k=1 k

Q1N

1 — _
3 ; 11— At) /Pr—1(vk — Vk71)||iz(9k)
M 3
||v V0||L2(QO - ||P0\|m () +Z At {EHDWk”LOO(Qk) + ka||izw/(~,f1)(9k)H "\/kak"iQ(Qk)
k=1

M
1. 1
+> At {\l Dwy IILw(Qk)§|| Wkllfzw/(vfn(ﬂk) — aC| Dwy| 1o (q,)
st
3 2
+§”fk”sz/(~,71)(Qk) + Ce | lokliv u)

*uzAt 9wk gy + 21822, g o0l 0
k=1

Using the discrete Gronwall lemma, we deduce the bound on pkvE, pk and V.
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DIETEGIL NG Compactness results

To ensure convergence of the solution of our equations to this of the continuous problem, we need
to obtain an other bound for p to treat the pressure term. We now can prove the following lemma

Lemma
If v >2for N=2or~ >3 for N=3, we have Yy € C>([0, T]; C§°(4))

1
ZAtlleopkllﬁﬂ <

Proof

The proof follow these proposed by P.L. Lions by applying the A~1div operator at the discrete
momentum equation. To apply this operator in case of Dirichlet boundary condition, we need to
localize the equations by applying a cut-off function. In our case of moving domain, we define for
any fixed compact set K C Q, a cut-off function ¢ € C*([0, T]; C5°(Q2)) such that ¢ =1 on K
and ¢ >0 on Q.

The end of the proof corresponds to this given by P.L. Lions.
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Discretized Problem Passage to the limit

Passage to the limit

Introducting for any function (¢o, ¢1, ...pm) the piecewise constant (respectively piecewise affine)
function @ and @ (respectively @) defined by

B(x,t) = pria(x),  if kAL <t < (k+1)At

?(x, t) = @k(x), if KAT <t < (k+1)At
(respectively @¢(x,t) = pk(x) + (t — kAt) (%) (x), if kKAt <t < (k+1)At)
We have "

T M T
/ @(t) dt = At gy, / 3(t) dt:ZAttpk%w
0 k=1 0 k=1

and

0% _ $ri1 = Pk

if KAt <t < (k+1)At
E A i St<(k+1)
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Discretized Problem Passage to the limit

With this notation, we can observe that our discretized equations on [(k — 1)At, kAt[, (k > 1)

Pk — Pr—1 + Atdiv (pruk) — C—1 =0

PkVk — Pk—1Vk—1 + Pr—1(Wk — Wk—1) + wk(pk — Pk—1) + Atdiv (prux ® uy)
— pAtAu, + At anZ =0

can by written as

op .. c
— +div (pd) = —
ot iv (i) "

.
% + div (P ® ) — pAd+aVpT =0

where o = ¥ + W and pu = pv + pw.
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Discretized Problem Passage to the limit

It is easy to see that the term % goes to zero when At goes to zero. We recall that

1
Ch1= 7/0% L Pr—1dx.

dx < | I meas (anf1 )%
Pk—1 X IPk—1 L,Y(Eﬂk—l (QNS+1)

Q_
G (Qk—lmnk))

(24 NQy+1)
We introduce then the di sequence such that dy = 0 and for all k and all point X belonging on
the boundary of Qy, dk(X) = dx_1(X) + f(iA_tl)At w(X, t)dt. Then

Qe
meas (G0 1)) <C [ |dk — di—1]dS < C'AT

Y0
where C and C’ depend of the regularity of the domain. Then
C (AT | ps] < C/ATA
X - k—1 Q1 55 -
At L’Y(E(Qk—lnnk))
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Discretized Problem Passage to the limit

M
From the estimate sup |[p/];v(q,) < C and E At||pk||zﬂj'+11 < C, we may assume that,
0<ISM

k=0
extracting subsequences if necessary, as At goes to 0, p converge weakly in L°°(0, T; L7(2:))
(weak-*) and in LYT1(L7T(Q;)) for some p > 0.

loc

M
In addition, from Z/ lpk — Pr—1|7dx < C we deduce that
k=1"%

T M
[ [ 160 - orasde = cY" [ o peal o < cae
o Jo, —Jo,

and we see easily that p — p converge to 0 as At goes to 04 in L9(0, T; L) for all 1 < g < 0.
Moreover,

F—p= % (t— (k—1)At)  on [(k — 1)At; kAL,
| S —
<At

then,

T T
[ [ p=arade< [* ]l paPande <1071}, g
0 Q¢ 0 Q

and we deduce that § — p converge to 0 as At goes to 04 in L9(0, T; L7) for all 1 < g < co.
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Discretized Problem Passage to the limit

Passage to the limit in non linear terms

To ensure convergence of non linear terms, we recall the following general lemma (P.L. Lions)

Lemma

Let gy, hn converge weakly to g, h respectively in LP1(O, T; LP?(Q2)), L9(O, T; L9%(Q)) where
1< pl,p2 < o0,

We assume in addition that

%gt" is bounded in L}(0, T; W~™1(Q)) for some m > 0 independent of n.

lhn — hn(. + & )l a1 (0, T:102(q)) — O @s [€] — O, uniformly in n.

Then, gnh, converge to gh (in the sens of distribution in Q x (0, T)).
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Discretized Problem Passage to the limit

The estimate sup | p|v (@) + lor|u|? li1(q,y < C imply that i, \/ﬁu are bounded in
0<I<M

L>(0, T; LY(Q:)) and v/p, v/p are bounded in L>=(0, T; L?7(Q:)).
= pi, pu are bounded in L>(0, T; L27/(v+1)(Q,)).

We can also claim that pi — ﬁL_J and pi — pu converge to 0 as At goes to 04 in L9(0, T; L"(2:))
with2 <g<oo, 1<r <4 . This convergence is obvious using previous bounds and observing

that ppug — pr—1lk—1 = (Pk — Pi) U + pr—1(uk — uk—1)
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Discretized Problem Passage to the limit

op C 5 .
From 2 + div (p0) = — and using the bound on pi1, we deduce that % is bounded in

L0, T; W—127/(v=1)(Q,)) C L1(0, T; W—L1). Then, applying previous lemma we deduce that
pi converge to pu (in the sense of distributions on Q).

This equation can then be written as follow :

ap C

— +div(pi) — div((p — p)b) = —

g T v (p8) —div((5 - p)E) = =

and, since (p — p) goes to 0 we can pass to the limit in this equation in the sense of distribution
on @ to obtain

9p

ot + div (pu) =0
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Discretized Problem Passage to the limit

To pass to the limit in momentum equation, we first observe that
160 ® o — pu @ 0] < [0]|p0 — 7
We deduce then that pil ® &l — pu ® i1 converge to 0 as At goes to 04 in
LY0, T; L"(Q2)) N L0, T; LY(Q)) forall 1 < r < if N 23,1 <r <y if N=2 and for all
qE[l,—l—oowith%:%—l—%
In view of bounds show above, we may prove that 65’?’ is bounded in
L>(0, T; W=11(Qy)) + L2(0, T; H1(Q¢)) C LY(0, T; W—11(Q¢)). Using the Lemma 5.1 (PL2),

we deduce that pu ® @, and thus p(& ® &) converge weakly in L1(0, T; L"(:)) N LI(0, T; L1())
to pu @ u.

To finish the proof, we need then to obtain a strong convergence of j in L7(Q). We follow for
thus the proof proposed by P.L. Lions in the case were p is bounded in
LYF1(Q) N L>(0, T, L5(2)) for some s > N, which is precisely the case here.

Then, when At goes to 04, our discretized system converge to the continuous system.
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Perspectives

1) This work is restricted at the case of given moving domain (Q thus d are given). We propose
to extend this result at a problem where d is unknown, for instance, d can be a solution of a PDE
describing movement of a plate or a shell.

The main difficulty is then that we need to construct the domain at each time step and the
solution can be obtained by a fixed point method. Moreover, the equation verified by d need to
give sufficient regularity to obtain a sufficient regularity on boundary ¥ that permit to apply all
previous result.

2) Developments of a numerical code based on the constructive method developed here.
© How to calculate W?
@ Since we do not pass numerically to the limit, how many manage p on the boundary.
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