We consider a compressible fluid occupying an open bounded set depending on time.

∂ρu ∂t

+ div (ρu ⊗ u) -µ∆u + a∇ρ γ -ξ∇div u = ρf , on Q (1)

∂ρ ∂t + div (ρu) = 0 on Q (2)
where µ > 0, µ + ξ > 0, a > 0, T > 0, γ ∈ (1, ∞).

Boundary condition :

u(X + d(X , t), t) = ∂d ∂t on Σ
where d is a given smooth function describing the Σ evolution.

Some preliminary remarks :

On boundary conditions

Usually, for non homogeneous problem, it is necessary to impose value of density when u • n < 0. But, in our problem, even if we have non homogeneous boundary condition on the velocity, no fluid go across the boundary and it is no necessary to impose the value of density when u • n < 0.

On Eulerian or Lagrangian description

The more natural method to treat the difficulty linked to a moving domain is to use a lagrangian description of the equations. But we are not able to obtain energy estimate using this Lagrangian form.

The homogeneous problem

As usual for a non homogeneous Dirichlet problem, we assume that there exists a sufficiently smooth function w on Q such that w = ∂d ∂t on γt and verifying

w ∈ L 2 (0, T , H 1 (Ωt )) ∩ L ∞ (0, T ; L 2γ/(γ-1) (Ωt )) div w ∈ L 2 (0, T ; L ∞ (Ωt ))
∂w ∂t in a good space.

By tacking v = uw , we can prove the following a priori result :

Lemma

Let (v , ρ) a classical solution of the problem, then under some assumption on initial data and for a finite time T , v and ρ verify :

v ∈ L 2 (0, T ; H 1 0 (Ωt )), ρ ∈ L ∞ (0, T ; L γ (Ωt )), √ ρv ∈ L ∞ (0, T ; L 2 (Ωt )).

Proof

A large part of the estimate is usual and we give only a sketch of proof to treat the pressure term av ∇ρ γ . To handle this one, we multiply the mass equation by a γ γ-1 ρ γ-1 :

a γ -1 ∂ρ γ ∂t + γa γ -1 ρ γ-1 div (ρu) = 0, with div (ρρ γ-1 u) = ρ γ-1 div (ρu) + γ -1 γ u∇ρ γ .
After some straight-forward manipulations and an integration on Ωt , we obtain

Z Ωt av ∇ρ γ dx = a Z Ωt ρ γ div w dx + a γ -1 Z Ωt ∂ρ γ ∂t dx + a γ -1 Z γt ρ γ w • n dS.
Finally, by using the Leibniz formula, the boundary terms vanish, and we obtain the following result :

Z Ωt av ∇ρ γ dx = a Z Ωt ρ γ div w dx + a γ -1 d dt Z Ωt ρ γ dx.
Energy estimate is the following

d dt Z Ωt ρ |v | 2 2 + a γ -1 ρ γ dx + Z Ωt µ|Dv 2 |dx = Z Ωt ρ " f - ∂w ∂t « v + (ρu • ∇)w • v -aρ γ div w + µdiv (v ∇w ) -µDvDw dx.
The first two terms of the right-hand side are easily estimated by the Cauchy Schwarz inequality For the two remaining terms, we use the bound on div w in L 1 (0, T ; L ∞ (Ωt )) and we can write

Z Ωt ρ γ div wdx ||div w || L ∞ (Ωt ) Z Ωt ρ γ dx, Z Ωt (ρu • ∇)w • vdx C ||div w || L ∞ (Ωt ) »Z Ωt ρv 2 dx + ||ρ|| L γ (Ωt ) ||w || 1 2 L 2γ/(γ-1) (Ωt )
-.

Then we the deduce from Grönwall's lemma the desired bounds.

Time discretization

Proof of the existence is obtained by building a sequence of approached solutions based on the time discretisation of the continuous equations. The main difficulty is linked to the time depending domain. A classical Eulerian discretization requires to evaluate the value at a given position x i at time t k depending of the value at the same position at time t k-1 . But this point can be out of the domain Q.

∂ρ ∂t (x i , t k ) ≃ ρ(x i , t k ) -ρ(x i , t k-1 ) ∆t
For M 1, we denote ∆t = T M and we define for k 0 a sequence of (m + 1) domains Ω k by taking

Ω k = Q ∩ k∆t. Let ρ k defined on Ω k , we define ρk-1 a function also defined on Ω k such that ρk-1 = ρ k-1 on (Ω k-1 ∩ Ω k ) and ρk-1 = 0 on (∁ Ω k (Ω k-1 ∩Ω k ) ).
Similarly, we define ūk-1 a function such that ūk-

1 = u k-1 on (Ω k-1 ∩ Ω k ), but ūk-1 are non imposed on (∁ Ω k (Ω k-1 ∩Ω k ) )
. Since this term is systematically multiplied par ρk-1 , the value of the product is zero in (∁

Ω k (Ω k-1 ∩Ω k )
) for all chosen value of ūk-1 Let w k = w (k∆t) where w is the function defined previously, by induction for k 1, we define (ρ k , v k ) to be the solution of our discretized problem on Ω k :

ρ k -ρk-1 + ∆tdiv (ρ k u k ) -C k-1 = 0 ρ k v k -ρk-1 vk-1 + ρk-1 (w k -wk-1 ) + w k (ρ k -ρk-1 ) + ∆tdiv (ρ k u k ⊗ u k ) -µ∆t∆u k + ∆t a∇ρ γ k = 0 where C k-1 = 1 meas Ω k Z ∁ Ω k-1 (Ω k-1 ∩Ω k ) ρ k-1 dx and u k = v k + w k .
At this time, we have to considere existence of solution for this stationary problem. This one can be obtained by a fixed point argument after obtention of some compactness results.

Compactness results

Lemma Let (ρ k , v k ) (0 k M) a sequence of weak solutions of our problem with the homogeneous boundary conditions on v k and some initial conditions ρ 0 0, v 0 a.e. in Ω 0 . Let

ρ k = 0 on {x ∈ ∂Ω k , w (x) • n < 0} sup 0 l M ||ρ l || L γ (Ω l ) + ||ρ l |v l | 2 || L 1 (Ω l ) C M X k=1 ∆t||∇v l || 2 L 2 (Ω l ) C M X k=1 || p ρk-1 (v k -vk-1 )|| 2 L 2 (Ω k ) C M X k=1 Z Ω k [(γ -1)ρ γ k + ργ k-1 -γρ γ-1 k ρk-1 ]dx C M X k=1 Z Ω k |ρ k -ρk-1 | γ dx C
Where, here and below, C denotes various positive constants independent of k, ∆t and thus M.

Proof

We give only one step of the demonstration to trait the pressure term.

To do this, we multiply the discretized mass equation by a ρ γ-1 k γ -1 and after some manipulations, we deduce :

a∆tv k ∇ρ γ k = γa γ -1 ρ γ k - γa γ -1 ρ γ-1 k ρk-1 + a∆T γ γ -1 div (u k ρ γ k ) -a∆tw k ∇ρ γ k - γC k-1 γ -1 ρ γ-1 k .
Then, after integration over Ω k , we obtain a∆t

Z Ω k v k ∇ρ γ k dx = a γ -1 Z Ω k ρ γ k dx - a γ -1 Z Ω k-1 ρ γ k-1 dx + a γ -1 Z ∁ Ω k-1 (Ω k-1 ∩Ω k ) ρ γ k-1 dx + aγ∆T γ -1 Z Ω k div (u k ρ γ k )dx -a∆T Z Ω k w k ∇ρ γ k dx - γC k-1 γ -1 Z Ω k ρ γ-1 k dx + a γ -1 Z Ω k (γ -1)ρ γ k + ργ k-1 -γρ γ-1 k ρk-1 dx By adding from k = 1 to M we obtain 1 2 || √ ρ M v M || 2 L 2 (Ω M ) + 1 2 M X k=1 Z ∁ Ω k-1 (Ω k-1 ∩Ω k ) ρ k-1 v 2 k-1 + 3µ 2 M X k=1 ∆t||∇v k || 2 L 2 (Ω k ) + a γ -1 ||ρ M || γ L γ (Ω M ) + " a γ -1 -ε « M X k=1 ||ρ k-1 | γ L γ (∁ Ω k-1 Ω k-1 ∩Ω k ) + M X k=1 Z Ω k [(γ -1)ρ γ k + ργ k-1 -γρ γ-1 k ρk-1 ] + 1 2 M X k=1 || (1 -∆t) p ρk-1 (v k -vk-1 )|| 2 L 2 (Ω k ) 1 2 || √ ρ 0 v 0 || 2 L 2 (Ω 0 ) + a γ -1 ||ρ 0 || γ L γ (Ω 0 ) + M X k=1 ∆t » 3 2 ||Dw k || L ∞ (Ω k ) + ||f k || 2 L 2γ/(γ-1) (Ω k ) || - || √ ρ k v k || 2 L 2 (Ω k ) + M X k=1 ∆t » ||Dw k || L ∞ (Ω k ) 1 2 ||w k || 1 2 L 2γ/(γ-1) (Ω k ) -aC ||Dw k || L ∞ (Ω k ) + 3 2 ||f k || 2 L 2γ/(γ-1) (Ω k ) + Cε - ||ρ k || L γ (Ω k ) -µ M X k=1 ∆t 1 2 ||∇w k || 2 L 2 (Ω k ) + 3 2 ||f 0 || 2 L 2γ/(γ-1) (Ω 0 ) ||ρ 0 || L γ (Ω 0 )
Using the discrete Gronwall lemma, we deduce the bound on ρ k v 2 k , ρ k and ∇v k .

To ensure convergence of the solution of our equations to this of the continuous problem, we need to obtain an other bound for ρ to treat the pressure term. We now can prove the following lemma

Lemma If γ > 2 for N = 2 or γ ≥ 3 for N = 3, we have ∀ϕ ∈ C ∞ ([0, T ]; C ∞ 0 (Ωt )) M X k=1 ∆t||ϕρ k || γ+1 L γ+1 ≤ C

Proof

The proof follow these proposed by P.L. Lions by applying the ∆ -1 div operator at the discrete momentum equation. To apply this operator in case of Dirichlet boundary condition, we need to localize the equations by applying a cut-off function. In our case of moving domain, we define for any fixed compact set

K ⊂ Q, a cut-off function ϕ ∈ C ∞ ([0, T ]; C ∞ 0 (Ωt )
) such that ϕ ≡ 1 on K and ϕ 0 on Q. The end of the proof corresponds to this given by P.L. Lions.

Passage to the limit

Introducting for any function (ϕ 0 , ϕ 1 , ...ϕ M ) the piecewise constant (respectively piecewise affine) function φ and φ (respectively φ) defined by

φ(x, t) = ϕ k+1 (x), if k∆t t < (k + 1)∆t φ(x, t) = φk (x), if k∆T t < (k + 1)∆t (respectively φ(x, t) = ϕ k (x) + (t -k∆t) " ϕ k+1 -φk ∆t « (x), if k∆t t < (k + 1)∆t)
We have

Z T 0 φ(t) dt = M X k=1 ∆t ϕ k , Z T 0 φ(t) dt = M X k=1 ∆t ϕ k-1 + ϕ k 2 and ∂ φ ∂t = ϕ k+1 -φk ∆t if k∆t t < (k + 1)∆t
With this notation, we can observe that our discretized equations on [(k -1)∆t, k∆t[, (k 1)

ρ k -ρk-1 + ∆tdiv (ρ k u k ) -C k-1 = 0 ρ k v k -ρk-1 vk-1 + ρk-1 (w k -wk-1 ) + w k (ρ k -ρk-1 ) + ∆tdiv (ρ k u k ⊗ u k ) -µ∆t∆u k + ∆t a∇ρ γ k = 0
can by written as

∂ ρ ∂t + div (ρû) = C ∆t ∂f ρu ∂t + div (ρû ⊗ û) -µ∆û + a∇ρ γ = 0 where û = v + ŵ and f ρu = f ρv + f ρw .
It is easy to see that the term C ∆t goes to zero when ∆t goes to zero. We recall that

C k-1 = 1 meas Ω k Z ∁ Ω k-1 (Ω k-1 ∩Ω k ) ρ k-1 dx. Z ∁ Ω k-1 (Ω k ∩Ω k +1) ρ k-1 dx ||ρ k-1 || L γ (∁ Ω k-1 (Ω k-1 ∩Ω k ) ) meas (∁ Ω k-1 (Ω k ∩Ω k +1) ) γ γ-1
We introduce then the d k sequence such that d 0 = 0 and for all k and all point X belonging on the boundary of

Ω k , d k (X ) = d k-1 (X ) + R k∆t (k-1)∆t w (X , t)dt. Then meas (∁ Ω k-1 (Ω k ∩Ω k -1) ) C Z γ 0 |d k -d k-1 |dS C ′ ∆T
where C and C ′ depend of the regularity of the domain.

Then C ∆t (C ′ ∆T ) 1 γ-1 ||ρ k-1 || L γ (∁ Ω k-1 (Ω k-1 ∩Ω k ) ) C ′′ ∆T 1 γ-1 From the estimate sup 0 l M ||ρ l || L γ (Ω l ) C and M X k=0 ∆t||ρ k || γ+1
L γ+1 ≤ C , we may assume that, extracting subsequences if necessary, as ∆t goes to 0, ρ converge weakly in L ∞ (0, T ; L γ (Ωt )) (weak-*) and in L γ+1 (L γ+1 loc (Ωt )) for some ρ 0.

In addition, from

M X k=1 Z Ω k |ρ k -ρk-1 | γ dx C we deduce that Z T 0 Z Ωt |ρ(t) -ρ(t)| γ dxdt = ∆t M X k=1 Z Ω k |ρ k -ρk-1 | γ dx C ∆t
and we see easily that ρ -ρ converge to 0 as ∆t goes to 0+ in L q (0, T ; L γ ) for all 1 q < ∞. Moreover,

ρ -ρ = ρ k -ρk-1 ∆t (t -(k -1)∆t) | {z } ∆t on [(k -1)∆t; k∆t[, then, Z T 0 Z Ωt |ρ -ρ| γ dxdt Z T 0 Z Ωt |ρ k -ρk-1 | γ dxdt ||ρ -ρ|| γ L γ (Q)
and we deduce that ρ -ρ converge to 0 as ∆t goes to 0+ in L q (0, T ; L γ ) for all 1 q < ∞.

Passage to the limit in non linear terms

To ensure convergence of non linear terms, we recall the following general lemma (P.L. Lions)

Lemma

Let gn, hn converge weakly to g , h respectively in L p1 (O, T ; L p2 (Ω)), L q1 (O, T ; L q2 (Ω)) where 1 p1, p2 ∞,

1 p1 + 1 q1 = 1 p2 + 1 q2 = 1.
We assume in addition that ∂gn ∂t is bounded in L 1 (0, T ; W -m,1 (Ω)) for some m 0 independent of n. ||hnhn(. + ξ, t)|| L q1 (O,T ;L q2 (Ω)) → 0 as |ξ| → 0, uniformly in n.

Then, gnhn converge to gh (in the sens of distribution in Ω × (0, T )).

The estimate sup

0 l M ||ρ l || L γ (Ω l ) + ||ρ l |u l | 2 || L 1 (Ω l ) C imply that √ ρû, g √ ρu are bounded in L ∞ (0, T ; L 1 (Ωt )) and √ ρ, √ ρ are bounded in L ∞ (0, T ; L 2γ (Ωt )). ⇒ ρû, f ρu are bounded in L ∞ (0, T ; L 2γ/(γ+1) (Ωt )).
We can also claim that ρû -ρū and ρûf ρu converge to 0 as ∆t goes to 0+ in L q (0, T ; L r (Ωt )) with 2 q < ∞, 1 r < 2γ γ+1 . This convergence is obvious using previous bounds and observing that ρ

k u k -ρk-1 ūk-1 = (ρ k -ρk )u k + ρk-1 (u k -u k-1 ) From ∂ ρ ∂t + div (ρû) = C
∆t and using the bound on ρû, we deduce that ∂ ρ ∂t is bounded in L ∞ (0, T ; W -1,2γ/(γ-1) (Ωt )) ⊂ L 1 (0, T ; W -1,1 ). Then, applying previous lemma we deduce that ρû converge to ρu (in the sense of distributions on Q).

This equation can then be written as follow :

∂ ρ ∂t + div (ρû) -div ((ρ -ρ)û) = C
∆t and, since (ρ -ρ) goes to 0 we can pass to the limit in this equation in the sense of distribution on Q to obtain ∂ρ ∂t + div (ρu) = 0

To pass to the limit in momentum equation, we first observe that |ρû ⊗ ûf ρu ⊗ û| |û||ρû -ρū|

We deduce then that ρû ⊗ ûf ρu ⊗ û converge to 0 as ∆t goes to 0+ in L 1 (0, T ; L r (Ωt )) ∩ L q (0, T ; L 1 (Ωt )) for all 1 r r 1 if N 3, 1 r < γ if N = 2 and for all q ∈ [1, +∞ with 1

r 1 = 1 γ + N-2 N
In view of bounds show above, we may prove that ∂ f ρu ∂t is bounded in L ∞ (0, T ; W -1,1 (Ωt )) + L 2 (0, T ; H -1 (Ωt )) ⊂ L 1 (0, T ; W -1,1 (Ωt )). Using the Lemma 5.1 (PL2), we deduce that f ρu ⊗ û, and thus ρ(û ⊗ û) converge weakly in L 1 (0, T ; L r (Ωt )) ∩ L q (0, T ; L 1 (Ωt )) to ρu ⊗ u.

To finish the proof, we need then to obtain a strong convergence of ρ in L γ (Q). We follow for thus the proof proposed by P.L. Lions in the case were ρ is bounded in L γ+1 (Q) ∩ L ∞ (0, T , L s (Ωt )) for some s > N, which is precisely the case here.

Then, when ∆t goes to 0+, our discretized system converge to the continuous system.
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Perspectives 1) This work is restricted at the case of given moving domain (Q thus d are given). We propose to extend this result at a problem where d is unknown, for instance, d can be a solution of a PDE describing movement of a plate or a shell.

The main difficulty is then that we need to construct the domain at each time step and the solution can be obtained by a fixed point method. Moreover, the equation verified by d need to give sufficient regularity to obtain a sufficient regularity on boundary Σ that permit to apply all previous result.

2) Developments of a numerical code based on the constructive method developed here.

1 How to calculate W ?

2 Since we do not pass numerically to the limit, how many manage ρ on the boundary.