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Exact sequences, lower central series and

representations of surface braid groups

Paolo Bellingeri, Eddy Godelle and John Guaschi

Abstract

We consider exact sequences and lower central series of (surface) braid
groups and we explain how they can prove to be useful for obtaining represen-
tations for surface braid groups. In particular, using a completely algebraic
framework, we describe the notion of extension of a representation intro-
duced and studied recently by An and Ko and independently by Blanchet.

1 Introduction

The faithful linear representations of Bigelow-Krammer-Lawrence of the Artin
braid groups Bn are probably one of the most important recent discoveries in the
theory of braid groups, and as such, have been intensively studied over the last few
years. They have also been extended to other groups, such as Artin-Tits groups
of spherical type (see for instance [14, 15]). However, with the exception of a few
results [3, 11, 27], their generalisation in a more topological direction, to braid
and mapping class groups of surfaces for example, as well as the linearity of these
groups, are open problems in general.

The aim of this paper is twofold. The first is to underline the relevance of short
exact sequences of braid groups and their generalisations to the study of represen-
tations of these groups. As we shall recall in Section 2, the Burau and Bigelow-
Krammer-Lawrence representations appear when one studies certain ‘mixed’ ex-
tensions of Bn arising from fibrations at the level of configuration spaces. This
extension splits, and in the simplest case, its kernel is the fundamental group of
the n-punctured disc Dn. The Burau representation then occurs as the induced
action of Bn on the homology of the infinite cyclic covering D̃n of Dn.

The Bigelow-Krammer-Lawrence representations may be obtained in a similar
way in terms of the Borel-Moore middle homology group of a Z2-covering of Dn
(see Section 2.3 for more details). Motivated by these constructions, one possible
strategy for obtaining linear representations of (surface) braid groups is to study
exact sequences of these groups. With this in mind, we recall the definitions of
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surface braid groups and their short exact sequences in Section 3, as well as the
known results concerning the splitting of these sequences (Lemma 3.2). In the
case of the short exact sequence of ‘mixed’ Artin braid groups, the induced short
exact sequence on the level of commutator subgroups brings into play groups and
homomorphisms that appear in the construction of Bigelow-Krammer-Lawrence
representations of Bn (see the end of Section 2.3).

Before stating similar results for exact sequences of surface braid groups, in
Section 4, we recall the basic definitions pertaining to the lower central series
(Γi(G))i∈N of a group G, and we show that if G is the braid or mixed braid group

(with a sufficiently large number of strings) of a compact orientable surface Σ̂g
with a single boundary component, the quotient group G/Γ3(G) is a semi-direct
product of free Abelian groups. We provide group presentations for such quotients
(Lemma 4.9 and Corollary 4.10) that will play an important rôle in the rest of the
paper.

In [1], An and Ko described an extension of the Bigelow-Krammer-Lawrence
representations of Bn to braid groups of orientable surfaces of positive genus and
with non-empty boundary. However, it is not currently known whether these
representations are faithful. The representation is based on the regular covering
arising from a projection of the n-th braid group of a surface Σ with non-empty
boundary onto a specific group GΣ, constructed in a technical manner in order
to satisfy certain homological constraints (Section 3 and Definition 2.2 of [1]) and
which turns out to be a Heisenberg group; more recently, the above projection has
been independently studied by Christian Blanchet to obtain a representation of
a large subgroup of the Torelli group of a surface with one boundary component
containing the Johnson subgroup [13].

The second aim of our paper is to show that technical construction proposed
in [1] of the representations may be described in terms of lower central series
and exact sequences of surface braid groups: this is the object of Section 5. As
we mentioned above, in the case of Artin braid groups, the induced short exact
sequence on the Γ2-level gives rise to elements used in the construction of the
Bigelow-Krammer-Lawrence representations. In the case of surface braid groups,
the corresponding construction on the same level does not work (Proposition 5.4),
but if we take this construction a stage further, to the Γ3-level, we obtain the
corresponding objects of the An-Ko representations. More precisely we show how
to use the Γ3-level to extend Bigelow-Krammer-Lawrence representations and we
prove that such extensions are unique up to isomorphism (Propositions 5.7 and
5.8), according to Definition 5.2.

We finish the main part of the paper with another possible application of
the lower central series of surface braid groups by showing that the standard
length function on Bn admits a unique extension to a homomorphism whose source
is the braid group of a surface of positive genus with one boundary component
(Proposition 5.10), and that there is no such extension if the surface is closed
and orientable (Proposition 5.11). In an Appendix, we discuss the relationship
between the splitting of the ‘mixed’ surface braid group sequences and that of their
restriction to the corresponding pure braid groups. In the terminology of [20], we
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show that this restriction never give rises to an almost-direct product (an almost-
direct product structure means that the extension is split, and that the induced
action of the lower central series quotient K/Γ2(K) on the kernel K is trivial).
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2 Exact sequences, lower central series and repre-

sentations of classical braid groups

2.1 Surface braid groups and configuration spaces

Surface braid groups are a natural generalisation of both the classical braid groups
and of the fundamental group of surfaces. First defined by Zariski during the
1930’s, they were re-discovered by Fox during the 1960’s, and have been used
subsequently in the study of mapping class groups.

We recall the definition due to Fox of these groups in terms of fundamental
groups of configuration spaces [21]. Let Σ be a connected surface. Let Fn(Σ) =
Σn \∆, where ∆ is the set of n-tuples x = (x1, . . . , xn) ∈ Σn for which xi = xj for
some i 6= j. The fundamental group π1(Fn(Σ)) is called the pure braid group on n
strands of the surface Σ; it shall be denoted by Pn(Σ). There is a natural action of
the symmetric group Sn on Fn(Σ) by permutation of coordinates; the fundamental
group π1(Fn(Σ)/Sn) is called the braid group on n strands of the surface Σ and
shall be denoted by Bn(Σ). Then Fn(Σ) is a regular n!-fold covering of Fn(Σ)/Sn
that gives rise to the following short exact sequence:

1 −→ Pn(Σ) −→ Bn(Σ) −→ Sn −→ 1. (1)

Regarded as a subgroup of Sk+n, the group Sk × Sn acts on Fk+n(Σ). The
fundamental group π1 (Fk+n(Σ)/(Sk × Sn)) will be called the mixed braid group
of Σ on (k, n) strands, and shall be denoted by Bk,n(Σ). Notice that Bk,n(Σ)
embeds canonically in Bk+n(Σ). These intermediate groups between pure braid
and braid groups of a surface, known as ‘mixed’ braid groups, play an important
rôle in [1]. They were defined previously in [23, 31, 34], and were studied in more
detail in [25] in the case where Σ is the 2-sphere S2.

2.2 Fibrations and induced exact sequences

We recall that π1(Fn(D
2)) is isomorphic to the pure braid group on n strands,

usually denoted by Pn, while π1(Fn(D
2)/Sn) is isomorphic to the braid group

Bn on n strands. In what follows, the mixed braid group on (k, n) strands
π1

(
Fk+n(D

2)/(Sk × Sn)
)

will be denoted simply by Bk,n.
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The fibration Fk+n(D
2)/(Sk × Sn) −→ Fn(D

2)/Sn given by forgetting the first k
coordinates is a locally-trivial fibration whose fibre over a point {x1, . . . , xn} may
be identified with the orbit space Fk(D

2 \ {x1 , . . . , xn})/Sk. From now on we
denote D2 \ {x1 , . . . , xn} by Dn. Let us also denote π1(Fk(Dn)/Sk) by Bk(Dn);
this group turns out to be isomorphic to the subgroup of Bk+n consisting of braids
where the last n strands are trivial (vertical). The long exact sequence in homotopy
of the above fibration yields a short exact sequence.

Lemma 2.1. Let k, n ∈ N. The Fadell-Neuwirth fibration Fk+n(D
2) −→ Fn(D

2)
induces the short exact sequence:

1 −→ Bk(Dn) −→ Bk,n −→ Bn −→ 1 . (MB)

In a similar way, we may obtain the more well-known short exact sequence of
pure braid groups.

1 −→ Pk(Dn) −→ Pk+n −→ Pn −→ 1. (PB)

Here Pk(Dn) denotes the fundamental group of Fk(Dn), which is isomorphic to the
subgroup of Pk+n consisting of pure braids where the last n strands are vertical.
Notice that the short exact sequences (MB) and (PB) split for all k ≥ 1, where
the section is given geometrically by adding k trivial strands ‘at infinity’ (see for
instance [1, 6]).

2.3 Linear representations for the braid group B
n

When k = 1, the short exact sequence (PB) plays a central rôle in the study
of Vassiliev invariants of braid groups and of Lie Algebras related to pure braid
groups. We refer to [33] for the classical case and to [7, 16, 28] for analogous results
in the case of surface braid groups.

In what follows, we will focus on the relevance of such short exact sequences
to linear representations of braid groups and their topological generalisations. Let
us start with the case k = 1. The group Bn may be interpreted as the mapping
class group of Dn [12]. We thus obtain an action of Bn on Dn that induces an
action on π1(Dn), the latter being isomorphic to the free group Fn on n generators.
This action, which is faithful, coincides with the action by conjugation of Bn on
B1(Dn) defined by the natural section of (MB). In this way, we recover the
famous Artin representation of the braid group Bn as a subgroup of the group of
automorphisms of Fn. Analogously, we have an action of Pn as the pure mapping
class group of Dn on P1(Dn) ≃ Fn what is faithful and coincides with the action by
conjugation of Pn on P1(Dn) defined by the natural section of (PB). Composing
the Artin representation with the Magnus representation associated to the length
function p1 : B1(Dn) −→ Z (see for instance [2]) we obtain the (non reduced)
Burau representation of Bn. In the case of the pure braid group, we obtain the
Gassner representation of Pn ([2]) in a similar way.

The Burau representation also has a homological interpretation (see for in-
stance Chapter 3 of [30]). Furthermore, it admits certain generalisations. Indeed,
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for any k ≥ 1 we may observe that Bn, regarded as the mapping class group of
Dn, acts on Fk(Dn)/Sk and therefore on its fundamental group, Bk(Dn). The
induced action of Bn on Bk(Dn) coincides with the action by conjugation of Bn
on Bk(Dn) defined by the natural section of (MB). In order to look for (linear)
representations, we consider regular coverings associated with normal subgroups
of Bk(Dn), and we try to see if the induced action on homology is well defined. In
other words, we wish to study surjections of Bk(Dn) onto a group Gk subject to
certain constraints.

When k = 1, we consider as before the length function p1 : B1(Dn) −→ G1 =
Z = 〈t〉. Since the action of Bn on B1(Dn) commutes with p1 : B1(Dn) −→ Z, Bn
acts on the regular covering D̃n of Dn. The induced action on the first homology
group of D̃n is the (reduced) Burau representation of Bn.

For k > 1, let Gk be the group Z2 = 〈q, t〉. The corresponding morphism
pk : Bk(Dn) −→ Gk for k > 1 sends the classical braid generators σ1, . . . , σk to
q and the generators ζ1, . . . , ζn, corresponding to the generators of π1(Dn), to t.
Since the action of Bn on Bk(Dn) commutes with pk : Bk(Dn) −→ Gk, it turns
out that Bn acts on the regular covering of Fk(Dn)/Sk, and the induced action on
the Borel-Moore middle homology group of such a covering space is in fact the kth
Bigelow-Krammer-Lawrence representation of Bn. In this way, for k > 1 we obtain
faithful linear representations of Bn (see [10] for k = 2 and [36] for k > 2). We
refer the reader to [30] for a complete description of these constructions. In what
follows, we first motivate the choice of the above projections pk : Bk(Dn) −→ Gk
using the lower central series of the corresponding groups. We then explain how
the study of the lower central series of surface braid groups can be used to obtain
the representations given in [1]. We will define also the notion of extension of a
representation in a completely algebraic manner, and its obstructions.

If we wish to consider surjections of Bk(Dn) onto some group G′
k, in order

to obtain a linear representation using the approach described above, the group
G′
k should be Abelian. Considering the short exact sequence (MB) on the level

of Abelianisation, we obtain the following commutative diagram of short exact
sequences:

1 // Bk(Dn)

q̄k

��

// Bk,n

rk,n

��

// Bn

rn

��

// 1

1 // ker ψ̄k // Bk,n/Γ2(Bk,n) // Bn/Γ2(Bn) // 1

(2)

where rk,n and rn are Abelianisation homomorphisms, and ψ̄k is the homomor-
phism satisfying ψ̄k ◦ rk,n = rn ◦ ψk. It is straightforward to show that for all
k ≥ 1, ker ψ̄k and q̄k coincide respectively with the group Gk and the morphism
pk considered in the Bigelow-Krammer-Lawrence representations.
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3 Exact sequences for surface braid groups

We now return to the general case. Let Σ be an orientable surface. The map
Fk+n(Σ)/(Sk × Sn) −→ Fn(Σ)/Sn given by forgetting the first k coordinates is a
locally-trivial fibration whose fibre may be identified with Fk(Σ\{x1 , . . . , xn})/Sk.
As in the case of pure braid groups [18], the long exact sequence in homotopy of
this fibration yields a short exact sequence.

Lemma 3.1. Let k, n ∈ N. The Fadell-Neuwirth fibration Fk+n(Σ) −→ Fn(Σ)
induces the short exact sequence:

1 −→ Bk(Σ \ {x1 , . . . , xn}) −→ Bk,n(Σ) −→ Bn(Σ) −→ 1 , (MSB)

where we suppose that n ≥ 3 if Σ = S2.

In what follows we shall refer to the above short exact sequence as (MSB)
(mixed surface braid groups sequence), and we denote its restriction to the corre-
sponding pure braid groups

1 −→ Pk(Σ \ {x1 , . . . , xn}) −→ Pk+n(Σ) −→ Pn(Σ) −→ 1 , (SPB)

by (SPB) (surface pure braid groups sequence). If Σ is the disc D2, we recover the
sequence considered in the previous section that gives rise to the Bigelow-Krammer
Lawrence representation. In a similar manner, we may study (MSB) in order to
find representations of Bn(Σ).

We have the following commutative diagram involving the short exact se-
quences (1), (SPB) and (MSB):

1

��

1

��

1

��
1 // Pk(Σ \ {x1 , . . . , xn}) //

��

Pk+n(Σ) //

��

Pn(Σ)

��

// 1

1 // Bk(Σ \ {x1 , . . . , xn}) //

��

Bk,n(Σ) //

��

Bn(Σ) //

��

1

1 // Sk

��

// Sk × Sn

��

// Sn

��

// 1

1 1 1

(3)

where the vertical arrows between (SPB) and (MSB) are inclusions, and the second
vertical sequence is obtained by restricting the exact sequence (1) for k+n strings
to Bk,n(Σ). The third row of symmetric groups splits as a direct product.

The following lemma summarises some of the known results for the splitting
problem for the sequences (SPB) and (MSB) (we refer to [19, 25] for the case of
S2.
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Lemma 3.2. Let Σ be a compact, connected orientable surface different from S2.

(a) Suppose that Σ has empty boundary.

(i) If Σ is the 2-torus T2 then (SPB) splits for all k, n ∈ N.

(ii) If n = 1 then both (SPB) and (MSB) split for all k ∈ N.

(iii) Let n ≥ 2 and k ∈ N. If Σ 6= T2, then (SPB) does not split. If further
k = 1 then (MSB) does not split.

(b) If Σ has non-empty boundary then (SPB) and (MSB) split for all k, n ∈ N.

Proof. (a) (i) The statement is a consequence of [18] and the fact that T2

admits a non-vanishing vector field.

(ii) Suppose that n = 1. Then (SPB) splits using [22] in the orientable case.
The fact that the upper right-hand vertical arrow P1(Σ) −→ B1(Σ) of
the diagram (3) is the identity yields a section for Bk,1(Σ) −→ B1(Σ).

(iii) For (SPB), this follows from [22]. Next, let k = 1, suppose that (MSB)
splits, and let s be a section for B1,n(Σ) −→ Bn(Σ). For m ∈ N, let
τm : Bm(Σ) −→ Sm denote the usual permutation homomorphism that
appears in the short exact sequence (1). If x ∈ Pn(Σ) then τn(x) = 1,
and so τ1+n(s(x)) = 1 by commutativity of the diagram (12) and the
fact that k = 1 (by abuse of notation, τ1+n also denotes the restriction
of τ1+n to B1,n(Σ)). Hence s(x) ∈ P1+n(Σ). Since P1+n(Σ) −→ Pn(Σ)
is the restriction of B1,n(Σ) −→ Bn(Σ) to P1+n(Σ), the restriction
of s to Pn(Σ) gives rise to a section for (SPB), and so we obtain a
contradiction.

(b) Suppose that Σ has non-empty boundary, and let C be a boundary compo-
nent of Σ. Then Σ′ = Σ \ C is homeomorphic to a compact surface with
a single point deleted. The fact that Σ and Σ′ are homotopy equivalent
implies that their configuration spaces are also homotopy equivalent, and
hence the pure braid groups (resp. braid groups, mixed braid groups) of Σ
are isomorphic to the corresponding pure braid groups (resp. braid groups,
mixed braid groups) of Σ′. Applying the methods of [22], the short exact
sequences (SPB) and (MSB) split for Σ′, and so split for Σ.

Taking into account the above discussion concerning the existence of braid
group representations via the induced action on first homology, this lemma indi-
cates that one might use (MSB) to look for representations of surface braid groups
in the case where the boundary is non empty.

4 Lower central series for surface braid groups

4.1 Definitions and known results

In this section we will give some results on the lower central series of (mixed)
surface braid groups that will turn out useful in the next section when we come
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to study their representations. Given a group G, we recall that the lower central
series of G is the filtration G = Γ1(G) ⊇ Γ2(G) ⊇ · · · , where Γi(G) = [G,Γi−1(G)]
for i ≥ 2. The group G is said to be perfect if G = Γ2(G). Following P. Hall,
for a group-theoretic property P , a group G is said to be residually P if for any
(non-trivial) element x in G, there exists a group H with the property P and a
surjective homomorphism ϕ : G −→ H such that ϕ(x) 6= 1. It is well known that
a group G is residually nilpotent if and only if

⋂
i≥1 Γi(G) = {1}.

In what follows, we denote a compact, connected orientable surface with one
boundary component of positive genus g by Σ̂g. The surface Σ̂g \ {x1 , . . . , xn}

will be denoted by Σ̂g,n. We will focus on Σ̂g since, according to Lemma 3.2, for
these particular surfaces the sequence (MSB) splits. The following result is well
known (see [8, 29] for instance).

Proposition 4.1. Let Bn be the Artin braid group on n ≥ 3 strands. Then
Γ1(Bn)/Γ2(Bn) ∼= Z and Γ2(Bn) = Γ3(Bn).

The case of braid groups of orientable surfaces of genus at least one, is much
richer (the cases of the sphere S2 and the punctured sphere were studied in [23]):

related statements for Σ̂g may be summarised as follows (see [5, 8, 29] for similar
results for the other orientable surfaces).

Theorem 4.2. ([8]) Let g ≥ 1 and n ≥ 3. Then:

(a) Γ1(Bn(Σ̂g))/Γ2(Bn(Σ̂g)) = Z2g ⊕ Z2.

(b) Γ2(Bn(Σ̂g))/Γ3(Bn(Σ̂g)) = Z.

(c) Γ3(Bn(Σ̂g)) = Γ4(Bn(Σ̂g)). Moreover Γ3(Bn(Σ̂g)) is perfect for n ≥ 5.

(d) Bn(Σ̂g) is not residually nilpotent.

4.2 Group presentations for surface braid groups and their

3-commutator groups

Theorem 4.3. ([8]) Let n ≥ 1. The group Bn(Σ̂g) admits the following group
presentation:
Generators: a1, b1, . . . , ag, bg, σ1, . . . , σn−1.
Relations:

σiσj = σjσi if |i− j| ≥ 2 (4)

σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i ≤ n− 2 (5)

ciσj = σjci for all j ≥ 2, ci = ai or bi and i = 1, . . . , g (6)

ciσ1ciσ1 = σ1ciσ1ci for ci = ai or bi and i = 1, . . . , g (7)

aiσ1bi = σ1biσ1aiσ1 for i = 1, . . . , g (8)

ciσ
−1
1 cjσ1 = σ−1

1 cjσ1ci for ci = ai or bi, cj = aj or bj and 1 ≤ j < i ≤ g (9)
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In Figure 1 we recall a geometric interpretation of the generators of Bn(Σ̂g); we

represent Σ̂g as a polygon with 4g sides, equipped with the standard identification
of edges and one boundary component. We may consider braids as paths on
the polygon, which we draw with the usual ‘over and under’ information at the
crossing points. For the braid ai (respectively bj), the only non-trivial string is the
first one, which passes through the wall αi (respectively the wall βj). The braids
σ1, . . . , σn−1 are the standard braid generators of the disc. One can easily write
a braid represented by a loop of the first strand around the boundary component
as the composition of the generators (see for instance Section 2.2 of [6]).

α
r

β rα
r β r

a r rb

α
r

β r

σ
i

P Pi i+1
P1 P P P1 kk

Figure 1: The generators σ1, . . . , σk−1, a1, b1, . . . , ag, bg

From Theorem 4.3 one may deduce the following result.

Lemma 4.4. ([8]) Let n ≥ 3. The quotient group Bn(Σ̂g) /Γ3(Bn(Σ̂g)) admits
the following group presentation:
Generators:

a1, b1, . . . , ag, bg, σ.
Relations:

a1, b1, . . . , ag, bg and σ commute pairwise except (ai, bi)i=1,...,g; (10)

[a1, b1] = · · · = [ag, bg] = σ2. (11)

We point out that the corresponding result proved in [8, Theorem 1 ] is in fact
for closed surfaces but the proof given there can be repeated verbatim to prove
Lemma 4.4.

The following Corollary is a straightforward consequence of Lemma 4.4.

Corollary 4.5. Let n ≥ 3. The group Bn(Σ̂g) /Γ3(Bn(Σ̂g)) is isomorphic to the
semi-direct product

Gg = (Z× Zg)⋊ Zg.

More precisely, the first factor Z is central and is generated by σ, the second
factor Zg is generated by {a1, . . . , ag}, and the third factor Zg is generated by
{b1, . . . , bg}. Any generator bj (for 1 ≤ j ≤ g) acts trivially on a1, . . . , aj−1, aj+1
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and bjajb
−1
j = σ−2aj. Hence, Bn(Σ̂g) /Γ3(Bn(Σ̂g)) is a central extension of Z2g

by Z.

Thus every element of Bn(Σg)/Γ3(Bn(Σg)) can be written in a unique way in
the form σp

∏g
i=1 a

mi

i

∏g
i=1 b

ni

i .

4.3 Group presentations for mixed braid groups of surfaces

and their 3-commutator groups

Following the standard definition of a Coxeter system, we introduce the notion of
a surface braid group system.

Definition 4.6. Let G be a group. Let S = {σ1, · · · , σk−1}, AB = {a1, · · · , ag, b1,
· · · , bg} and Z = {ζ1, . . . , ζn} be subsets of G such that k ≥ 1 and g, n ≥ 0. We
say that (G,S,AB,Z) is a surface braid group system if G admits the following
group presentation:

σiσj = σjσi; |i− j| ≥ 2
σiσi+1σi = σi+1σiσi+1; 1 ≤ i ≤ k − 2
aiσj = σjai and biσj = σjbi; j ∈ {2, . . . , k − 1}, i ∈ {1, . . . , g}
aiσ1aiσ1 = σ1aiσ1ai and biσ1biσ1 = σ1biσ1bi i ∈ {1, . . . , g}
aiσ1bi = σ1biσ1aiσ1; i ∈ {1, . . . , g}
ci(σ

−1
1 cjσ1) = (σ−1

1 cjσ1)ci; ci ∈ {ai, bi}, cj ∈ {aj, bj}, j < i
ζjσi = σiζj i 6= 1;
(σ−1

1 ζjσ1)aℓ = aℓ(σ
−1
1 ζjσ1)

(σ−1
1 ζjσ1)bℓ = bℓ(σ

−1
1 ζjσ1);

(σ−1
1 ζjσ1)ζℓ = ζℓ(σ

−1
1 ζjσ1) j < ℓ;

(σ1ζjσ1)ζj = ζj(σ1ζjσ1).

The following Lemma is a straightforward consequence of the group presenta-
tions given in [6].

Lemma 4.7. (i) There exist S = {σ1, · · · , σn} and AB = {a1, · · · , ag, b1, · · · , bg}

such that (Bn(Σ̂g), S, AB, ∅) is a surface braid group system.

(ii) There exist S = {σ1, · · · , σk}, AB = {a1, · · · , ag, b1, · · · , bg} and Z = {ζ1, . . . ,

ζn} such that (Bk(Σ̂g,n), S, AB,Z) is a surface braid group system.

Proposition 4.8. The group Bk,n(Σ̂g) admits the following group presentation:

Generating set: S ∪ S̃ ∪ AB ∪ ÃB ∪ Z with

S̃ = {σ̃1, . . . , σ̃n−1}, S = {σ1, . . . , σk−1},

ÃB = {ã1, b̃1, . . . , ãg, b̃g}, AB = {a1, b1, . . . , ag, bg},
Z = {ζ1, · · · , ζn}.

Relations:

(a) the relations associated with the system (Bk(Σ̂g,n), S, AB,Z);
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(b) the relations associated with the system (Bn(Σ̂g), S̃, ÃB, ∅);

(c) the relations describing the action of Bn(Σ̂g) on Bk(Σ̂g,n);

(i) σ̃iσj σ̃
−1
i = ãiσj ã

−1
i = b̃iσj b̃

−1
i = σj ;

(ii) σ̃iaj σ̃
−1
i = aj ; σ̃ibjσ̃

−1
i = bj

(iii)





σ̃iζi+1σ̃
−1
i = ζi;

σ̃iζiσ̃
−1
i = ζ−1

i ζi+1ζi;
σ̃iζj σ̃

−1
i = ζj , j 6= i, i+ 1;





ãiζ1ã
−1
i = ζaiζ11 ;

b̃iζ1b̃
−1
i = ζbiζ11 ;

ãiζj ã
−1
i = ζ

[a−1

i
,ζ

−1

1
]

j j 6= 1;

b̃iζj b̃
−1
i = ζ

[b−1

i
,ζ

−1

1
]

j j 6= 1;

(iv)





ãiaiã
−1
i = ζ−1

1 aiζ1;

ãiaj ã
−1
i = a

[a−1

i
,ζ

−1

1
]

j i > j;

ãiaℓã
−1
i = aℓ, ℓ > i;





b̃ibib̃
−1
i = ζ−1

1 biζ1;

b̃ibj b̃
−1
i = b

[b−1

i
,ζ

−1

1
]

j i > j;

b̃ibℓb̃
−1
i = bℓ, ℓ > i;

(v)





ãibiã
−1
i = biζ1;

ãibj ã
−1
i = b

[a−1

i
,ζ

−1

1
]

j i > j;

ãibℓã
−1
i = bℓ, ℓ > i





b̃iaib̃
−1
i = ζ−1

1 ai[b
−1
i , ζ−1

1 ];

b̃iaj b̃
−1
i = a

[b−1

i
,ζ

−1

1
]

j i > j;

b̃iaℓb̃
−1
i = aℓ, ℓ > i;

where ab := b−1ab.

Proof. As we recalled in Section 2, the short exact sequence (MSB): 1 −→ Bk(Σ̂g,n)

−→ Bk,n(Σ̂g) −→ Bn(Σ̂g) −→ 1 splits. Therefore, the group Bk,n(Σ̂g) is isomor-

phic to Bn(Σ̂g)⋉Bk(Σ̂g,n). We may interpret the braids depicted in Figure 2 as

geometric representatives of generators of Bk(Σ̂g,n), and those depicted in Fig-

ure 3 as the coset representatives of generators of Bn(Σ̂g) in Bn(Σ̂g). The result
follows by a straightforward verification of the corresponding geometric braids, see
for instance Figure 4.

As in the case of Bn(Σ̂g)/Γ3(Bn(Σ̂g)) (Corollary 4.5), we may obtain a group

presentation of Bk,n(Σ̂g) /Γ3(Bk,n(Σ̂g)) from the previous proposition, and decom-
pose the group as a semi-direct product.

Lemma 4.9. Let k, n ≥ 3. Then the group Bk,n(Σ̂g) /Γ3(Bk,n(Σ̂g)) has the fol-
lowing group presentation:
Generators: σ, σ̃, ζ, a1, b1, . . . , ag, bg, ã1, b̃1, . . . , ãg, b̃g.
Relations:

(a) [σ, ai] = [σ, bi] = [σ̃, ãi] = [σ̃, b̃i] = [σ̃, ai] = [σ̃, bi] = [σ, ãi] = [σ, b̃i] = [σ, σ̃] =
1;

(b) [ai, aj] = [ai, bj] = 1 for i 6= j and [aj , bj] = σ2;

(c) [ãi, ãj] = [ãi, b̃j] = 1 for i 6= j and [ãj , b̃j] = σ̃2

(d) [ai, ãj] = [bi, b̃j ] = 1 for any pair (i, j);
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α
r

β rα
r β r

a r rb

α
r

β r

σ
i

P Pi i+1

P1

zi

P1 P P P Q1 1
Qn

QnQ
1

Qn

Q
1Pk

k
Q

1

QnQi

k

Figure 2: The generators σ1, . . . , σk−1, a1, b1, . . . , ag, bg, ζ1, · · · , ζn

(e) [bi, ãj ] = [b̃j , ai] = 1 for i 6= j and [bi, ãi] = [b̃i, ai] = ζ;

(f) [ζ, ai] = [ζ, bi] = [ζ, ãi] = [ζ, b̃i] = [ζ, σ] = [ζ, σ̃] = 1.

Proof. Consider the group presentation of Bk,n(Σ̂g) given in Proposition 4.8 and

the map p : Bk,n(Σ̂g) −→ Bk,n(Σ̂g) /Γ3(Bk,n(Σ̂g)). It follows from the braid re-
lations σiσi+1σi = σi+1σiσi+1 and σ̃iσ̃i+1σ̃i = σ̃i+1σ̃iσ̃i+1 that σi = σi+1[σi, σi+1]

and σ̃i = σ̃i+1[σ̃i, σ̃i+1]. But [σ̃i, σ̃i+1] and [σi, σi+1] belong to Γ2(Bk,n(Σ̂g)). Their

images under p therefore belong to the centre of Bk,n(Σ̂g) /Γ3(Bk,n(Σ̂g)). Since
p(σi) and p(σi+1) are center elements, the equality p(σiσi+1σi) = p(σi+1σiσi+1)
implies that p(σi) = p(σi+1). We denote the image of σi under p by σ. Similarly,
the σ̃j have the same image under p, which we denote by σ̃ in what follows. By

abuse of notation, we also denote p(ai), p(bi), p(ãi) and p(b̃i) by ai, bi, ãi and b̃i
respectively. Using the fact that σiaj = ajσi for i 6= j, we obtain σaj = ajσ for

all j. Similarly, we have σbj = bjσ, σãj = ãjσ, σ̃b̃j = b̃jσ̃ and σ̃p(ζj) = p(ζj)σ̃.
We deduce from relations ai(σ

−1
1 ajσ1) = (σ−1

1 ajσ1)ai for i 6= j that aiaj = ajai.

Similarly we have aibj = bjai, ãiãj = ãj ãi and b̃iãj = ãj b̃i for i 6= j. For the

same reason, we have ãip(ζj) = p(ζj)ãi and b̃ip(ζj) = p(ζj)b̃i. Now, from the
equality ajσbj = σbjσajσ, we deduce the relation [aj , bj ] = σ2. Similarly we

have [ãj , b̃j] = σ̃2. From Relations (i) and (ii) of the presentation of Bk,n(Σ̂g), we

have [σ̃, ai] = [σ̃, bi] = [σ, ãi] = [σ, b̃i] = [σ, σ̃] = 1. From Relations (iii) we see
that σp(ζi+1)σ

−1 = ζi = σjζiσ
−1
j with j 6= i, i+ 1. Then, all the ζi have the same

image under p, which we denote by ζ. Then [ζ, ãi] = [ζ, b̃i] = [ζ, σ] = [ζ, σ̃] = 1.
Still using Relations (iii), we have [ζ, ai] = [ζ, bi] = 1. From Relations (iv) we
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α
r

β rα
r β r

a r rb

α
r

β r

σ

Q
1

QnQ
1

Qn Q
1

j

Q
j

Q
j+1

Qn

P
1

P
1

P
k

Pk

Figure 3: The generators σ̃1, . . . , σ̃n−1, ã1, b̃1, . . . , ãg, b̃g

P
1

Q
1

α
r

β r

β r

α
r

Q
1

Qn

P
1

P
k

Q
1

P
1

Figure 4: The braids ãibiã
−1
i and biζ1 are isotopic.

obtain [ai, ãj ] = [bi, b̃j] = 1, and from Relations (v) we get [bi, ãj ] = [b̃j, ai] = 1

for i 6= j and [bi, ãi] = [b̃i, ai] = ζ. Then, the defining relations of the presentation

given in the lemma hold in Bk,n(Σ̂g) /Γ3(Bk,n(Σ̂g)) if one takes σ = p(σ1), σ̃ =

p(σ̃1), ζ = p(ζ1), ai = p(ai), bi = p(bi), ãi = p(ãi) and b̃i = p(b̃i). Conversely,
let G be the group defined by the presentation given in the lemma. We may
check without difficulty that we have a group homomorphism from Bk,n(Σ̂g) to G
that sends σi, σ̃j , ai′ , bi′′ , ãj′ , ãj′′ and ζℓ to σ, σ̃, ai′ , bi′′ , ãj′ , ãj′′ and ζ respectively.

In order to prove that G is isomorphic to Bk,n(Σ̂g) /Γ3(Bk,n(Σ̂g)), we need to
prove that in G, the equality [a, [b, c]] = 1 holds for all a, b, c in G. Using the
equality [a, bc] = [a, b]b[a, c]b−1, it is enough to consider the case where a, b and
c are defining generators of G. But in these particular cases, the equality clearly
holds since σ, σ̃ and ζ belong to the centre of G, and therefore any commuta-
tor [x, y], where x, y are defining generators, is in the centre of G. Thus G and
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Bk,n(Σ̂g) /Γ3(Bk,n(Σ̂g)) are isomorphic.

Corollary 4.10. Let k, n ≥ 3. The group
Bk,n(Σ̂g)

Γ3(Bk,n(Σ̂g))
is isomorphic to the

semi-direct product:

Hg :=
(
Z3 × Z2g

)
⋊ Z2g.

More precisely, the first factor Z3 is central and is generated by σ, σ̃, ζ, the sec-
ond factor Z2g is generated by {a1, . . . , ag, ã1 . . . , ãg}, and the third factor Z2g is

generated by {b1, . . . , bg, b̃1 . . . , b̃g}.

The actions defining the above semi-direct product are as described in Lemma 4.9.
Then Bk,n(Σ̂g) /Γ3(Bk,n(Σ̂g)) can be seen as a central extension of Z4g by Z3.
We remark that the action of any generator on the previous ones is trivial ex-
cept in at most two cases: for instance the only non-trivial actions of ãj are

ãj b̃j ã
−1
j = σ̃2b̃j and ãjbjã

−1
j = ζ−2bj . Finally, notice that every element w

of Bk,n(Σ̂g) /Γ3(Bk,n(Σ̂g)) may be written in a unique way in the form w =

σpσ̃qζr
∏g
i=1 a

mi

i ãMi

i

∏g
i=1 b

ni

i b̃
Ni

i .

5 Mixed surface braid sequences and representa-

tions of surface braid groups

As in previous sections, we will focus on connected orientable surfaces of positive
genus with a single boundary component. One might ask whether it is possible to
use the short exact sequence (MSB) to obtain representations of Bn(Σ̂g) which
are extensions of Bigelow-Krammer-Lawrence representations of Bn. First, let us
denote by ιn : Bn −→ Bn(Σ̂g) and ιk,n : Bk(Dn) −→ Bk(Σ̂g,n) the homomor-

phisms induced by the inclusion of D2 into Σ̂g and of Dn into Σ̂g,n respectively.
We recall that they are injective (see for instance [34]).

Remark 5.1. In particular Bk(Dn) is generated as a subgroup of Bk(Σ̂g,n) by
σ1, . . . , σk−1 and ζ1, . . . , ζn (see for instance [4, 6]).

Given β ∈ Bn, we denote the induced action by conjugation of β on Bk(Dn),

and abusing notation, the action of β (regarded as an element of Bn(Σ̂g)) on

Bk(Σ̂g,n), by β∗. As in Section 2, for the case k = 1 we consider the length
function p1 : B1(Dn) −→ G1 = Z = 〈t〉, while for k > 1 we set Gk to be the
group Z2 = 〈q, t〉. The corresponding homomorphism pk : Bk(Dn) −→ Gk for
k > 1 sends σ1, . . . , σk to q and ζ1, . . . , ζn to t. As we mentioned in Section 2, the
fact that the action of Bn on Bk(Dn) commutes with pk : Bk(Dn) −→ Gk implies
that Bn acts on a regular covering. For k = 1 the induced action on homology
gives rise to the Burau representation, while for k > 1 we obtain faithful linear
representations of Bn.
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Definition 5.2. Let Pk : Bk(Σ̂g,n) −→ Gk(Σ̂g) be a surjective homomorphism.
We will say that the homomorphism Pk is a lifting extension of the map pk :
Bk(Dn) −→ Gk defined above if there exists an injective homomorphism ῑk :

Gk −→ Gk(Σ̂g) such that Pk ◦ ιk,n = ῑk ◦ pk, and if further for all β ∈ Bn(Σ̂g)

there exists a homomorphism β̄∗ : Gk(Σ̂g) −→ Gk(Σ̂g) such that β̄∗ ◦Pk = Pk ◦β∗.

The second condition means that there is an induced action of Bn(Σ̂g) on the

homology of the covering space of Fk(Σ̂g,n)/Sk. In other words, the surjection Pk
is a lifting extension of pk if the following diagram commutes for any β ∈ Bn:

Gk

Id

�

� ῑk // Gk(Σ̂g)

β̄∗

��

Bk(Dn)

pk

bbbbEEEEEEEEE

�

�

//

β∗

��

Bk(Σ̂g,n)

Pk

99 99ttttttttt

β∗

��
Bk(Dn)

pk
||||yy

yyy
yyy

y

�

�

// Bk(Σ̂g,n)

Pk

%% %%JJJJJJJJJ

Gk
�

� ῑk // Gk(Σ̂g)

(12)

We remark that the middle homology group HBM
k




˜
Fk(Σ̂g,n)

Sk


 of the covering

space
˜

Fk(Σ̂g,n)

Sk
of

Fk(Σ̂g,n)

Sk
is a free Z[Gk(Σ̂g)]-module (see Lemma 3.3 of [1]) and

that some β ∈ Bn(Σ̂g) acts as a Z[Gk(Σ̂g)]-module morphism ofHBM
k (

˜
Fk(Σ̂g,n)/Sk)

if and only if the map β̄∗ : Gk(Σ̂g) −→ Gk(Σ̂g) defined above is the identity ho-

momorphism (see Section 2 of [1]). If this property holds for all β ∈ Bn(Σ̂g) we

thus obtain a representation of Bn(Σ̂g) in Aut
Z[Gk(Σ̂g)]

(HBM
k




˜
Fk(Σ̂g,n)

Sk


) which

is a linear representation if Gk(Σ̂g) is Abelian. The above discussion gives rise
naturally to the following definition, which provides a notion of extension of the
Bigelow-Krammer-Lawrence representations from Bn to Bn(Σ̂g).

Definition 5.3. Let Pk : Bk(Σ̂g,n) −→ Gk(Σ̂g) be a lifting extension of the ho-
momorphism pk : Bk(Dn) −→ Gk. The homomorphism Pk is said to be a linear

extension of pk if for any β ∈ Bn(Σ̂g), we have that β̄∗ = Id and that Gk(Σ̂g) is
Abelian.

The following proposition states that it is not in fact possible to extend the
Bigelow-Krammer-Lawrence representations from Bn to Bn(Σ̂g).
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Proposition 5.4. There is no homomorphism Pk : Bk(Σ̂g,n) −→ Gk(Σ̂g) that is
a linear extension of pk : Bk(Dn) −→ Gk.

Proof. This result is a reformulation of Lemma 2.6 of [1]. We sketch the proof.

The action by conjugation of Bn(Σ̂g) on Bk(Σ̂g,n) is described in Proposition 4.8,

where Bk(Σ̂g,n) is the subgroup of Bk,n(Σ̂g) generated by S,AB and Z. For any

generator g, let us denote its image in Gk(Σ̂g) by [g], and we consider b̃j as a

generator of Bn(Σ̂g). Since Pk is a lifting extension of pk, the action of b̃j by

conjugation induces the homomorphism (b̃j)∗ : Gk(Σ̂g) −→ Gk(Σ̂g), which sends

the element [ai] to [ai][ζ1]. Since Pk is also a linear extension, (b̃j)∗ must coincide
with the identity. One deduces that [ζ1] = 1, but this cannot be true since the
hypothesis that Pk is a lifting extension of pk implies that [ζ1] = q.

In what follows we show that for k ≥ 3, there is a unique group Gk(Σ̂g) such

that one may define a lifting extension Pk : Bk(Σ̂g,n) −→ Gk(Σ̂g) of pk. We

first characterise the group Gk(Σ̂g) which was defined in Section 3.1 of [1] (with
the notation GΣ) in terms of lower central series. We then show that this group
is the unique group admitting a lifting extension for pk, and we construct the
corresponding homomorphism Pk : Bk(Σ̂g,n) −→ Gk(Σ̂g).

Consider the following diagram:

1 // Bk(Σ̂g,n)

P̄k

��

// Bk,n(Σ̂g)

rk,n

��

// Bn(Σ̂g)

rn

��

// 1

1 // ker ψ̄k // Bk,n(Σ̂g)/Γ3(Bk,n(Σ̂g))
ψ̄k // Bn(Σ̂g)/Γ3(Bn(Σ̂g)) // 1

(13)
where, by abuse of notation, rk,n and rn denote the canonical projections and ψ̄k
is the map such that ψ̄k ◦ rk,n = rn ◦ ψk. Following Lemma 4.9, we denote the

generators of Bk,n(Σ̂g)/Γ3(Bk,n(Σ̂g)) by σ, σ̃, ζ, a1, b1, . . . , ag, bg, ã1, b̃1, . . . , ãg, b̃g.

Proposition 5.5. The group ker ψ̄k admits the following presentation:

Generating set: σ, ζ, a1, b1, . . . , ag, bg;
Relations:

(a) [σ, ai] = [σ, bi] = 1;

(b) [ai, aj] = [ai, bj] = 1 for i 6= j and [aj , bj] = σ2;

(c) [ζ, ai] = [ζ, bi] = [ζ, σ] = 1.

Proof. Let us denote the subgroup of Bk,n(Σ̂g)/Γ3(Bk,n(Σ̂g)) generated by σ, ζ, a1,
b1, . . . , ag, bg by Kg. From diagram (13), one deduces that the group Kg belongs

to ker ψ̄k. By Lemma 4.9, the group Kg is normal in Bk,n(Σ̂g)/Γ3(Bk,n(Σ̂g)).

A straightforward calculation shows that the quotient Bk,n(Σ̂g)/Γ3(Bk,n(Σ̂g)) by
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Kg is isomorphic to Bn(Σ̂g)/Γ3(Bn(Σ̂g)), and therefore Kg coincides with ker ψ̄k.
To prove the proposition, it is therefore sufficient to check that the given set of
relations is a complete set of relations for Kg. Let Dg be the (abstract) group
with the group presentation given in the statement. Let j : Dg −→ Kg be the
(surjective) homomorphism sending every generator of Dg to the corresponding

generator of Kg, and let ι : Kg −→ Bk,n(Σ̂g)/Γ3(Bk,n(Σ̂g)) be the (injective)
homomorphism given in diagram (13). We claim that the composition k = ι ◦ j is
injective, and therefore Dg coincides with Kg. In fact, it follows from the group
presentation of Dg that any element w ∈ Dg can be written (in a unique way) as
w = σpζq

∏g

j=1 a
mj

j

∏g

j=1 b
nj

j . We call this decomposition of w its normal form in

Dg. On the other hand, any element w′ ∈ Bk,n(Σ̂g)/Γ3(Bk,n(Σ̂g)) may be written

uniquely as w′ = σpζq σ̃r
∏g
j=1(a

mj

j ã
Mj

j )
∏g
j=1(b

nj

j b̃
Nj

j ). We call this decomposition

of w′ its normal form in Bk,n(Σ̂g)/Γ3(Bk,n(Σ̂g)). Let w ∈ Dg be written in its

normal form. From the definition of k : Dg −→ Bk,n(Σ̂g)/Γ3(Bk,n(Σ̂g)), k(w)

coincides with its normal form in Bk,n(Σ̂g)/Γ3(Bk,n(Σ̂g)). Therefore k(w) = 1
implies that w = 1.

Remark 5.6. Let k ≥ 3. Then the group ker ψ̄k is the group GΣ introduced in [1,

Section 3]. The homomorphism Pk : Bk(Σ̂g,n) −→ ker ψ̄k is the homomorphism

ΦΣ : Bk(Σ̂g,n) −→ GΣ also defined in [1, Section 3].

The homomorphism ΦΣ : Bk(Σ̂g,n) −→ GΣ and the group GΣ defined in Sec-
tion 3 of [1] were constructed in a technical manner in order to obtain (non-linear)
representations of surface braid groups subject to certain homological constraints
(Definition 2.2 of [1]). Proposition 5.5 and Remark 5.6 show that such techni-
cal constructions coincide with objects arising in the lower central series. On the
other hand, reinterpreting Lemma 3.1 and Theorem 4.3 of [1], we conclude that the

unique lifting extension of pk : Bk(Dn) to Bk(Σ̂g,n) arises from the lower central

series and the homomorphism Pk : Bk(Σ̂g,n) −→ ker ψ̄k, as we shall now explain
in the following two propositions.

Proposition 5.7. Let k ≥ 3, and let ψ̄k : Bk(Σ̂g,n) −→ ker ψ̄k be the homo-
morphism defined above. The homomorphism ψ̄k lifts to an action on the level of
regular coverings.

Proof. We recall that there is an induced action of Bn(Σ̂g) on the homology of

the covering space of Fk(Σ̂g,n)/Sk β ∈ Bn(Σ̂g) if there exists a homomorphism

β̄∗ : Gk(Σ̂g) −→ Gk(Σ̂g) such that β̄∗ ◦ ψ̄k = ψ̄k ◦ β∗. As we remarked previously,

we may replace the homomorphism Pk : Bk(Σ̂g,n) −→ ker ψ̄k and the group ker ψ̄k
respectively by the homomorphism ΦΣ : Bk(Σ̂g,n) −→ GΣ and the group GΣ given
in Section 3 of [1]. The statement follows from Lemma 3.1 of [1].

Proposition 5.8. Let k ≥ 3.

(i) The homomorphism ψ̄k : Bk(Σ̂g,n) −→ ker ψ̄k is a lifting extension of pk :
Bk(Dn) −→ Gk;
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(ii) let Pk : Bk(Σ̂g,n) −→ Gk(Σ̂g) be a lifting extension of pk : Bk(Dn) −→ Gk.

There is a canonical isomorphism ι : Gk(Σ̂g) −→ ker ψ̄k such that ι◦Pk sends

any generator of Bk(Σ̂g,n) to the corresponding coset of Bk,n(Σ̂g)/Γ3(Bk,n(Σ̂g)).

Proof. (i) In order to prove that ψ̄k : Bk(Σ̂g,n) −→ ker ψ̄k is a lifting extension
of pk : Bk(Dn) −→ Gk, it suffices to show that ψ̄k(Bk(Dn)) is isomorphic to
Z2 in ker ψ̄k. This is immediate because ψ̄k(σj) = σ for any j = 1, . . . , k− 1,
and ψ̄k(ζl) = ζ for any l = 1, . . . , n. The claim then follows from Remark 5.1

(ii) Let Pk : Bk(Σ̂g,n) −→ Gk(Σ̂g) be a lifting extension of pk : Bk(Dn) −→ Gk.
Therefore Pk(σj) = q for all j = 1, . . . , k − 1, and Pk(ζl) = t for all l =

1, . . . , n, where q, t ∈ Gk(Σ̂g) generate a central subgroup isomorphic to Z2.
One can check easily that these conditions imply that:

• the images of a1, b1, . . . , ag, bg commute with q and t;

• [Pk(ai), Pk(bj)] = 1 for i 6= j;

• [Pk(ai), Pk(bi)] = q2.

We can therefore define a surjection p̄k : ker ψ̄k −→ Gk(Σ̂g) such that p̄k(σ) =
q, p̄k(ζ) = t and p̄k(ai) = Pk(ai), p̄k(bi) = Pk(bi).

We will prove that p̄k is actually an isomorphism. Let w ∈ ker ψ̄k,and
consider 1 ≤ r ≤ g. By Proposition 5.5, we observe that for every gen-
erator x of the presentation, we have arx = xar except for x = br, in
which case we have arbr = σ2brar. Therefore, if the normal form of w is
σcζd

∏g

j=1 b
nj

j a
mj

j , then arw = σ2nrwar and [w, ar ] = σ−2nr . Similarly,

[w, br] = σ2mr . Now if p̄k(w) = 1 then p̄k([w, ar ]) = p̄k([w, br ]) = 1.
We obtain p̄k(σ

−2nr ) = q−2nr = 1 and p̄k(σ
−2mr ) = q−2mr = 1, and

thus mr = nr = 0. Since this is so for all r, we have w = σcζd and
p̄k(w) = qctd = 1. Since q, t generate a subgroup that is isomorphic to
Z2, we get c = d = 0 and w = 1. Hence p̄k is injective.

The cases k = 1, 2 are still open, mainly because we do not have a finite group
presentation for ker ψ̄k and Bk,n(Σ̂g)/Γ3(Bk,n(Σ̂g)) in these cases. As in Propo-
sition 5.8, there is a natural surjection from ker ψ̄k onto the group GΣ considered
in Section 3 of [1], but it is not an isomorphism.

Remark 5.9. Notice that in the proof of Proposition 5.8, we proved a slightly
stronger result, i.e. that if Hk is a group for which there exists a surjection hk :
Bk(Σ̂g,n) −→ Hk satisfying hk(σj) = q for all j = 1, . . . , k − 1 and hk(ζl) = t for
all l = 1, . . . , n , where the subgroup 〈q, t〉 of Hk is torsion free, then the group Hk

coincides with ker ψ̄k.

Using Lemma 4.9 and Theorem 4.3, one may easily adapt the proof of Propo-
sition 5.8 in order to obtain the following result:
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Proposition 5.10. Let k, n ≥ 3.

(i) Let H be a group, and let λΣ̂g
: Bn(Σ̂g) −→ H be a surjective homomorphism

such that λΣ̂g
(Bn) is isomorphic to Z. Then there is an isomorphism ι :

H −→ Bn(Σ̂g)/Γ3(Bn(Σ̂g)) for which ι◦λΣ̂g
sends every generator of Bn(Σ̂g)

to the corresponding class of Bn(Σ̂g)/Γ3(Bn(Σ̂g)).

(ii) Let H be a group. Assume that h : Bk,n(Σ̂g) −→ H is a surjective homomor-
phism such that the image of the subgroup generated by σ1, . . . , σk−1, σ̃1, · · · ,
σ̃n−1 is isomorphic to Z2.

Then there is an isomorphism ι : H −→
Bk,n(Σ̂g)

Γ3(Bk,n(Σ̂g))
for which ι ◦ h sends

any generator of Bk,n(Σ̂g) to the corresponding coset of
Bk,n(Σ̂g)

Γ3(Bk,n(Σ̂g)
.

The above proposition is of additional interest in the study of the lower central
series of surface braid groups, since it states that the only possible extension of the
length function from Bn to Bn((Σ̂g) is the canonical projection of Bn(Σ̂g) onto

Bn(Σ̂g)/Γ3(Bn(Σ̂g)). It is interesting to remark that in the case of closed surfaces,
we have the following result:

Proposition 5.11. Let n ≥ 3 and let Σ be an orientable surface of positive genus.
It is not possible to extend the length function λ : Bn −→ Z to Bn(Σ). In other
words there is no surjection λΣ of Bn(Σ) onto a group F such that the restriction
of λΣ to Bn coincides with λ.

Proof. Let λΣ : Bn(Σ) −→ F be such that λΣ(σ1) = . . . λΣ(σn−1). Set λΣ(σ1) =
σ. Using the group presentation of Bn(Σ) given in [6], we see that σ2(n+g−1) = 1.
For further details, we refer the reader to the calculation of the group presentation
of Bn(Σ)/Γ3(Bn(Σ) given in the proof of Theorem 1 in [8].

6 Appendix on exact sequences

Let us recall that the short exact sequences (MBS) and (PBS) also exist if Σ
is a non-orientable surface. If n ≥ 2 and k ≥ 2 then the splitting of (MSB) for
compact surfaces without boundary (also possibly non-orientable) is an open ques-
tion. As the following example shows, the splitting of one of the two short exact
sequences (SPB) and (MSB) does not imply in general that the other sequence
splits.

Example 6.1. (a) Let Σ = RP 2 and n = k = 2. First note that the pure
braid sequence (SPB) does not split by [24, Theorem 3]. Secondly, us-
ing Van Buskirk’s presentation of Bn(RP

2) [35] in the case n = 4, let
a = σ−1

3 σ−1
2 σ−1

1 ρ1 (which is of order 16 by [24]) and let ∆4 = σ1σ2σ3σ1σ2σ1
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denote the ‘half-twist’ braid (which is of order 4 by [35]). Then [27, Propo-
sition 15(a)] and standard properties of dicyclic groups imply that the sub-
group H of B4(RP

2) generated by a2 and a∆4 is isomorphic to the gen-
eralised quaternion group Q16 of order 16. Let τ4 : B4(RP

2) −→ S4 de-
note the usual permutation homomorphism. A straightforward calculation
shows that τ4(H) = 〈(1, 3), (2, 4)〉, which is isomorphic to S2 × S2. Taking
B2,2(RP

2) to be τ−1
4 (〈(1, 3), (2, 4)〉), the restriction to H of the projection

p : B2,2(RP
2) −→ B2(RP

2) given geometrically by forgetting the second
and fourth strings is an isomorphism. This follows since ker(p) is torsion
free and B2(RP

2) ∼= Q16 [35]. In particular, p admits a section. So in this
case, (MSB) splits, but (SPB) does not.

(b) Let Σ = S2. For all n ≥ 3 and all k ∈ N, (SPB) splits [17]. The question of
the splitting of (MSB) is examined in [25]. For example, if n = 3 and k ≡
1 mod 3, or if n ≥ 4 and k 6≡ ε1(n−1)(n−2)−ε2n(n−2) mod n(n−1)(n−2),
where ε1, ε2 ∈ {0, 1}, then (MSB) does not split. So for these values of k
and n, (SPB) splits, but (MSB) does not.

Let us finish this appendix by pointing out another interesting feature when we
pass from short exact sequences of classical braid groups to short exact sequences
of surface braid groups. The sequence (PB) (in the case k = 1) has the property
that the induced action of the quotient on the Abelianisation of the kernel is
trivial. Following [20], we will call such a splitting extension an almost-direct
product. The important remark for us in Theorem 3.1 of [20] is that such an exact
sequences induces exact sequences on the level of the lower central series quotients
(see also [28, 33]). Since Pn is an iterated almost-direct product of free groups,
Pn ‘inherits’ various properties of Fn, and it is possible to use this structure to
derive a presentation for the Lie algebra associated to the lower central series of
Pn and to construct a universal finite type invariant for braid groups [33]. On the
other hand, the fact that Pn acts trivially on the Abelianisation of Fn allows us to
compose the Artin representation with the Magnus representation, thus yielding
the Gassner representation (we refer to [2] for the details).

Proposition 6.2. Let Σ be an orientable surface different from S2 and T2. The
sequence:

1 // Pk(Σ \ {x1 , . . . , xn}) // Pk+n(Σ) // Pn(Σ) // 1

defines an almost-direct product structure for Pk+n(Σ) if and only if n = 1.

Proof. The case n = 1 was proved in [5]. If n ≥ 2, as we recalled in Section 3,
the sequence (PBS) splits only if Σ has boundary (Lemma 3.2). However, even
when the sequence (PBS) splits, the extension is never an almost-direct product.
In fact, a straightforward calculation on the level of group presentations (given
for instance in [6, 8]) shows that the natural section (corresponding to adding a
strand ‘at infinity’) does not define a trivial action on the level of Abelianisation
(see also relation (v) of Proposition 4.8). The statement then follows from the
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following proposition, which shows that the existence of an almost-direct product
structure is independent of the choice of section.

Proposition 6.3. Let 1 −→ K −→ G
p

−→ Q −→ 1 be a split extension of groups.
Let s, s′ be sections for p, and suppose that the induced action of Q on K via s
on the Abelianisation KAb = K/[K,K] is trivial. Then the same is true for the
section s′.

Proof. Let k ∈ K and q ∈ Q. By hypothesis, s(q) k (s(q))−1 ≡ k mod [K,K]. Let
s′ be another section for p. Then p ◦ s′(q) = p ◦ s(q), and so s′(q) (s(q))−1 ∈ ker p.
Thus there exists k′ ∈ K such that s′(q) = k′ s(q), and hence

s′(q) k (s′(q))−1 ≡ k′ s(q) k (s(q))−1 k′−1 ≡ k′kk′−1 ≡ k mod [K,K].

Thus the induced action of Q on KAb via s′ is also trivial.
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