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Chemical Reaction Systems, Computer Algebra
and Systems Biology*

Francois Boulier!, Francois Lemaire', Michel Petitot!, and Alexandre
Sedoglavic!

Université Lille I, LIFL, 59655 Villeneuve d’Ascq, France

1 Introduction

In this invited paper, we survey some of the results obtained in the computer
algebra team of Lille, in the domain of systems biology. So far, we have mostly
focused on models (systems of equations) arising from generalized chemical re-
action systems. Eight years ago, our team was involved in a joint project, with
physicists and biologists, on the modeling problem of the circadian clock of the
green algae Ostreococcus tauri. This cooperation led us to different algorithms
dedicated to the reduction problem of the deterministic models of chemical re-
action systems. More recently, we have been working more tightly with another
team of our lab, the BioComputing group, interested by the stochastic dynam-
ics of chemical reaction systems. This cooperation led us to efficient algorithms
for building the ODE systems which define the statistical moments associated
to these dynamics. Most of these algorithms were implemented in the MAPLE
computer algebra software. We have chosen to present them through the corre-
sponding MAPLE packages.

Chemical reaction systems provide a general setting for modeling in biology.
More generally, chemical kinetics may be viewed as a prototype of nonlinear
science, as pointed out in [33, chapter 1].

The reaction A —— B describes the transformation of a species A into a
different species B. Species A is the reactant of the reaction. Species B is the
product. One often endows a reaction with a symbol k, which parametrizes the

speed of the transformation. The reaction is then denoted A —* . B. The reac-
tion A —— & describes the transformation of species A into a species which is
not part of the model. This sort of reaction often occurs when one models biolog-
ical phenomenons but one usually does not encounter it in chemistry, since it is
not equilibrated. Symmetrically, the reaction @ ——— B describes the entry, in
the model, of a species B, from outside the model. A more complicated reaction
is A+ B —— C. It is interpreted as follows: when a molecule of A encounters
a molecule of B, both may react and form a molecule of a third species C'. Last,
one sometimes encounters reactions denoted A+B —— C'. Some authors con-
sider it as a single revertible reaction. We view it as a pair of two reactions. The

* This work has benefited from the support of the French ANR (decision number
ANR-2010-BLAN-0109-03).



right to the left reaction may be described as follows: every molecule of C' may
break itself and yield two molecules: one of species A and one of species B.

A chemical reaction system is a set of chemical reactions. Here are two exam-
ples. The first one is a classics of chemistry lectures: it is the simplest example
of an enzymatic reaction. It describes the transformation of a substrate S into a
product P, in the presence of some enzyme E. An intermediate complex ES is
formed:

k
E+S——=BS—,E+P, (1)
k_1

The second example, adapted from [27, Syst. (7.19)], models a two-species os-
cillator:

o—2 A, ANz, 24+B-2,34, o-"5B.(

In order to build systems of equations, i.e. mathematical models of chemical
reaction systems, one needs more precise assumptions. There are at least two
families of models: the deterministic and the stochastic ones.

2 Deterministic modeling

There are different ways to associate a precise deterministic dynamics to a chem-
ical reaction system. In this paper, we focus on the mass-action dynamics. The
parameters of the reactions are called kinetic constants. To each species A, one
associates a function A(t) which represents the concentration of the species. The
evolution of each concentration is given by an ordinary differential equation, in
which kinetic constants appear as parameters. The system of ordinary differen-
tial equations built using the mass-action law, from a chemical reaction system,
is called the natural deterministic model of the system. It is given by the following
formula: dx
Eraie N-V

where X is the column vector of the concentrations, N is the stoichiometry
matriz, and V is the column vector of the laws. The law of a reaction is obtained
by multiplying the kinetic constant by the product of the concentrations of
the reactants. The stoichiometry matrix involves one row per species and one
column per reaction. Its coefficient, row r and column c¢, is equal to the number
of molecules of species r produced by the reaction ¢. This number is equal to the
number of occurences of species  as a product, minus the number of occurences
of species r as a reactant. On System (2), we have

X:(A(t)>7 N:<(1)—01_11(;>, v kljlt)



Natural deterministic models of chemical reaction systems were intensively stud-
ied. Many informations can be read in the stoichiometry matrix alone: the
nullspace of its transpose provides linear conservation laws. System (2) does
not have any, while computing a basis of this nullspace for System (1) yields the
two laws:

—E(t)+ S(t) + P(t) = csty, E(t) + ES(t) = csta . (3)

A striking property of chemical reaction systems is a very simple necessary and
sufficient condition for a system of polynomial ODE to be the natural determin-
istic model of a chemical reaction system: it is necessary and sufficient that, in
the right hand side of the ODE which describes the evolution of any concen-
tration A(t), there does not exist any monomial which is both free of A(t) and
endowed with a minus sign [33, section 4.7.1]. Another striking, but much more
difficult result is the zero deficiency theorem of Feinberg, Horn and Jackson [14],
which gives a sufficient condition for a system to admit a unique steady state
with strictly positive coordinates. This sufficient condition, which can be formu-
lated in the setting of the graph theory, can be implemented very easily. This
theorem was much studied, recently, from different points of views. See [8, 15]
and the references therein.

The size of natural deterministic models becomes so large, on all but the
simplest examples, that it forbids any further analysis. The computer algebra
team of Lille has focused on the problem of reducing models. We make use
of two types of reduction: a reduction method which permits to approximate
the natural deterministic model, under some simplifying assumptions ; and a
reduction method, which permits to reduce the number of parameters, and to
separate parameters which have an effect on the coordinates and the stabilities
of the steady points, from the ones which have an effect on their stabilities only.

2.1 Approximating Models

The approximation method implements the well-known quasi-steady state ap-
proximation technique. See [20] for a general presentation and [39, 30] for more
chemically oriented texts. Our contribution [4] consisted in formulating it, in the
context of chemical reaction systems, as the result of a differential elimination
process [3]. In this section, we present it over System (1), by showing how to
obtain the famous Henri, Michaelis and Menten formula [18, 25]

where Vi,ax and K are two parameters which can be expressed from the kinetic
constants of the chemical reaction system. See [29] for a closely related work.
Our algorithm was successfully applied over a more complicated model [6, 5],
featuring two genes, arising from the modeling problem of the circadian clock of
the green algae Ostreococcus tauri [12].



Computation using Differential Algebra. Our method relies on the assump-
tion that the chemical reactions are split into two sets: the set of the fast re-
actions, and the set of the slow ones. In the case of the Henri, Michaelis and
Menten reduction, the revertible reaction is supposed to be fast, compared to
the third one: k1, k_1 > ko. One starts by building the natural deterministic
model.

> with (LinearAlgebra):

> X := <E(t), S(t), ES(t), P(t)>:

>V := <k[1]1*E(t)*S(t), k[-1I1*ES(t), k[2]*ES(t)>:

>N =<1, -1, 1, 0> | <1, 1, -1, 0> | <1, 0, -1, 1>>:

> X, N, V;
[E(t) 1 [-1 1 1]
L 1 1 [k[1] E(t) S(t)]
[s(t) 1 [-1 1 0] [ 1
L 1, I 1, [ x[-1] ES(¢) 1]
[Es(t)] [ 1 -1 -1 [ 1
L 1 I 1 [ k[2] ES(¢) 1
Pt ] [O 0 1]

Then, in the vector V', one replaces the laws corresponding to the fast reactions
by two unknown laws Fj(¢) and F_;(t). Denote W this new vector. The ap-
proximated system is obtained by enlarging the ODE system dX/dt = N - W,
with the equation ky E(t) S(t) = k_1 E(t) S(t), which gives the algebraic variety
where the fast reactions would be equilibrated, if the slow reactions did not exist.

> W := <F[11(t), F[-11(t), k[21*ES(t)>:
> equilibre := 0 = k[11*E(t)*S(t) - k[-11*ES(t):
> redsys := map (diff, X, t) =N . W:
> redsys := [ seq (lhs (redsys) [i] = rhs (redsys) [il,
i =1 .. Dimension (X)), equilibre ];

d
redsys := [-- E(t) = -F[1](t) + F[-1]1(t) + k[2] ES(t),
dt
d d
-- S(t) = -F[11(t) + F[-11(t), -- ES(t) = F[1]1(t) - F[-11(t) - k[2] ES(t),
dt dt
d
-- P(t) = k[2] ES(t), 0 = k[1] E(t) S(t) - k[-1] ES(t)]
dt

This differential-algebraic equation can now be simplified, by means of a differ-
ential elimination software, such as the Differential Algebra package or the recent
[1]. With the DifferentialAlgebra package, the output involves three cases. We
only give the equation which expresses the evolution of S(t), in the general case.

> with (DifferentialAlgebra):
> Field := field (generators = [k[1],k[-1],k[2]]);



Field := field(generators = [k[1], k[-1], k[2]11)

> R := DifferentialRing
(blocks = [[F[1],F[-11], [ES,E,P,S], [k[110,k[-110,k[210]1],
derivations = [t]);

R := differential_ring
> ideal := RosenfeldGroebner (redsys, basefield = Field, R):
ideal := [regular_differential_chain, regular_differential_chain,

regular_differential_chain]

> Equations (ideal[1], solved, leader=diff(S(t),t));
2 2
d E(t) S(t) k[1] k[2] + E(t) S(t) k[1] k[-1] k[2]
[-- s(t) = - -———- - -—= -—= ]
dt 2
E(t) k[1] k[-1] + S(t) k[1] k[-1] + k[-1]

This equation is not yet the Henri, Michaelis and Menten formula, since some
minor hypotheses are missing: one still needs to take conservation laws (3) and
some initial values into account. Last, one needs to rename K = k;/k_; and
Vinax = k2 F(0) and to neglect some monomial K F(0), assuming S(0) > FE(0).
Here is a sequence of computations, which takes these hypotheses into account
and leads to the sought formula.

> conservation_laws :=
[E(t) + ES(t) = EO + ESO,
S(t) + ES(t) + P(t) = SO + ESO + PO]:
> hypotheses := [PO = 0, ESO = 0, op (conservation_laws)]:
> R := DifferentialRing (
blocks = [[F[1],F[-11], [ES,E,P,S],
[ESO(O,E00,P00),s00]1, [k[110,k[-110,k[21011,
derivations = [t]):
> ideal := RosenfeldGroebner ([ op(redsys), op(hypotheses) 1],
R, basefield = Field):

> formula := Equations (ideal[1], solved, leader = diff (S(t),t)):
> formula := subs (k[-1]=K*k[1], formula):
> formula := normal (formula):
> formula := algsubs (k[2]*EO=Vmax, formula):
> formula := normal (subs (K*E0=0, formula));

d Vmax S(t)

formula := [-- S(t) = - ————————- ]
dt S(t) +K

Computation using MABSys. The same computation can also be performed
by the dedicated MABSys package [24, 23], which relies on the MAPLE Regu-
larChains [21] and ELPS [36] packages. The MABSys package gathers as input



a chemical reaction system. Each reaction can be defined as fast or slow. The
package permits to obtain directly the stoichiometry matrix, the vector of the
laws, the system of the equilibria, the conservation laws that can be read from
the stoichiometry matrix and the natural deterministic model.

with (MABSys) :
R1 := NewReaction (E+S, C, MassActionLaw(kl), fast=true):

V V. V Vv VvV

R2 := NewReaction (C, E+S, MassActionLaw(kml), fast=true):
R3 := NewReaction (C, E+P, MassActionLaw(k2)):
RS := [R1,R2,R3]:

> ConservationLaws (RS) ;
[C+P+8-C0-P0O-S8.0,C+E-C_0-E_0]

> sys := ReactionSystem20DEs (RS, [E,S,C,P]);

d
sys := [-- E(t) = -k1 E(t) S(t) + kml C(t) + k2 C(t),
dt
d
-- S(t) = -k1 E(t) S(t) + kml C(t),
dt
d d
-- C(t) = k1 E(t) S(t) - kml C(t) - k2 C(t), —-— P(t) = k2 C(t)]
dt dt

The package provides a function that performs the quasi-steady state approxi-
mation using the information provided by the fast boolean.

> output := ModelReduce(RS, [E,C,P,S], useConservationLaws=true):
> red_sys := output[1][1]:

> red_sys := subs (C_0=0, P_0=0, red_sys):

> red_sys[4];

d E_0 k2 k1 S(t) (k1 S(t) + kml)

= S(t) = = e

dt 2 2 2
k1 S(t) + 2 S(t) kml k1 + kml k1 E_O + kmil

It also provides a function that permits to reduce the number of parameters of the
system. Over this example, the parameter k; is removed, using the assumption
that it is strictly positive. The change of coordinates is provided, following the
syntax: “new parameter = rational function of the old parameters”.

> output := InvariantizeByScalings (red_sys, [k1], [km1,k2,E,C,P,S]):
> red_sys2 := output[1]:
> red_sys2[4];



d S(t) k2 E_O (S(t) + kml)
-- S(t) = - -—- -—-
dt 2
S(t) + 2 kml S(t) + E_O kml + kml

> output[2];
km1
[kmi = ---]
k1

Other functions, which are still prototypes, hence not yet integrated in MABSys,
permit to perform the final approximation which yields the Henri, Michaelis and
Menten formula.

2.2 Reducing and Reparametrizing Models

This section, in which we give some more details on the method which permitted
us to remove the k; parameter, is much inspired from [38, chapter 2] and [22].
The goal consists in reducing and reparametrizing an initial model into a reduced
one (the initial model possibly comes from the quasi-steady state approximation
method). The reduced model is equivalent to the initial one, by an invertible
change of coordinates, which preserves the most important properties: the pos-
itive steady points of the initial model are in bijection with the positive steady
points of the reduced one, the initial model presents an oscillating behaviour if,
and only if, the reduced model does, and so on.

The computed changes of coordinates are given by Lie symmetries of the
initial system of the simplest type: they are restricted to scalings. Moreover, the
method distinguishes the parameters which are supposed to be strictly positive
(dividing by them is allowed) from the ones which are only supposed to be
nonnegative (dividing by them is forbidden). The computations of the scalings
is performed by the ELPS package. It is important to point out that this package
computes, in general, a restricted set of the scalings of the input system, in order
to preserve a worst case polynomial complexity [35].

The method is illustrated over System (2), whose natural deterministic model
[27, Egs. (7.20)] depends on two variables and four parameters.

> 0DS := [
> diff(A(t),t) = a - k1 * A(t) + k2 * A(t)"2 * B(t),
> diff (B(t),t) = b - k2%A(t) "2*B(t)
>1;
d 2 d 2
0DS := [-- A(t) = a - k1 A(t) + k2 A(t) B(t), -- B(t) = b - k2 A(t) B(t)]
dt dt

The four parameters are supposed to be strictly positive. The steady points of
the natural deterministic model are the zeros of non differential system obtained
by equating to zero, the right hand sides of the model equations. The steady
points obviously depend on the four parameters.



The reduction step. It makes use of the scalings of the natural deterministic
model. These scalings can be described by the two following changes of coordi-
nates. The first one depends on a parameter v1. The second one depends on a
parameter vy.

k
(t, A, B, ki, k2, a, b) — (thVl,BVl,kl, . aVlbe1>~

=2,
vy

t
(t, A, B, ky, ks, a, b) — (2, Avy, Bug, ki va, ks, avs, bu§'> .
V3

Assuming that the four parameters are strictly positive, these scalings permit to
rewrite the natural deterministic model in a new coordinate set. The new system
depends on two parameters instead of four. The change of coordinates is given
using the syntax: “new variables = rational fractions of the old ones”.

> out := InvariantizeByScalings (ODS, [a,b,k1,k2]):

> 0DS_reduced := out[1];
0ODS_reduced :=

d 2 d 2
[-- ACt) =1 - A(t) + k2 A(t) B(t), -- B(t) = b - k2 A(t) B(t)]
dt dt
> Change_of_coordinates := out[2];
2
k2 a A ki1 B ki1
Change_of_coordinates := [b = b/a, k2 = ----- ,t=tkil, A=--——, B=-—-—-]
3 a a
k1

The reparametrization step. It makes use of the scalings of the system which
gives the steady points of ODS_reduced. These scalings can be described by the
following change of coordinates, which depends on a parameter vs.

k
(A, B, ko, b) — (A, Bus, 172 b> )
3

The key idea is now very simple: apply these scalings, not on the system which
gives the steady points of ODS_reduced, but on 0DS_reduced itself. In the result-
ing system, the parameter ks is still present. However, it has no control anymore
on the location of the steady points: it can only control their stabilities.

> out := SemiRectifySteadyPoints (0DS_reduced, [b,k2,A,B], []):

> Reparamatrized_system := out[1][1];

Reparamatrized_system :=
d 2 d 2
[-- A(t) =1 - A(t) + A(t) B(t), —— B(t) = (b - A(t) B(t)) k2]
dt dt

> Change_of_coordinates := out[1] [3];
Change_of _coordinates := [B = k2 B]



3 Stochastic Modeling

The dynamics of chemical reaction systems can also be studied with a stochastic
point of view. The parameters of the reactions are stochastic constants, which
are probabilities that reactions occur per unit of time [17, page 2342]. To each
species A, one associates a random variable A(t) which counts the number of
molecules of A. In a celebrated paper [17], Gillespie provided a numerical simu-
lation algorithm, based on a strong rigorous analysis, under some assumptions ;
the main one being that the chemically reacting system keeps being well-stirred
over the time.

In the context of biological modeling, Gillespie’s main assumption is very
unlikely. However, the analysis of the stochastic behaviour of chemical reaction
systems is a very important counterpart of the deterministic analysis. In a living
cell, some molecules may occur in a very little number: if one views a gene, in
the “active” state, as a chemical species, the number of molecules is zero or
one, and handling this number as a real valued concentration is contestable.
In such cases, it is known that there exist many different stochastic behaviours
which are, at least, difficult to reproduce by a deterministic model. See [19, page
454]. Moreover, stochastic simulations may reproduce the surprising effects of
the “noise” on the models, as pointed out in [41] and the references therein.

It is well-known that the evolution, over the time ¢, of the moments (mean,
variance, covariance) of the random variable associated to each species may be
described by a system of ordinary differential equations, at least for chemical
systems the reactions of which do not involve more than one reactant [31, 32].
For more general systems, the differential system is, in general, infinite, and
approximating it by a finite ODE system, by performing a so-called moment
closure, is a difficult problem [37, 16]. In this area, our contribution [40] consisted
in showing how to build these ODE systems by using Weyl algebra methods.
The use of Weyl algebra led us to a few algorithmic improvements (reducing
expressions swells and taking advantage of linear conservation laws at an early
stage of the formula generation process).

4 Analysis of Statistical Moments

Before proceeding, one needs to associate a precise stochastic dynamics to a
chemical reaction system. This can be achieved using stochastic Petri nets!,
endowed with their standard temporisation [40] ; or by relying on the Gillespie’s
stochastic simulation algorithm.

Define the state v of a given chemical reaction system as a vector of non-
negative integers (one coordinate per chemical species, each coordinate being a
number of molecules) ; m,(¢) as the probability that the chemical reaction system

1 According to some sources, cited on the Wikipedia, Petri nets were invented by Carl
Adam Petri to model chemical reaction systems at the age of 13.



be in the state v at time ¢ ; and the probability generating function

¢(tv Z) = Z Wu(t) 27, (5)

v>0

where z” stands for 27" z52 - - - 2z (one “symbol” z; per chemical species). Given

any chemical reaction system, it is possible to compute a general equation for ¢
[33, Eq. (5.60)] as follows. To each reaction

a1 Ar+agAg+ -+ ay Ay —— Br A1+ Ba Ag -+ B A,

associate the differential operator

- () (6)

a!

The very same operator can be denoted using Fuler operators 0; = z;0/0 z;
instead of partial derivatives

— (P —1) 62, (7)

where % denotes the product of the 5% = 6; (6; —1) - - (§; —a; +1). Define H as
the sum of the differential operators (6), or (7), for all reactions of the considered
chemical reaction system. The general equation for ¢ is:

ot )= Holt, 2). ¥
With partial derivatives, the differential operator H, for System (2), is

83

0 k
A B

a(zA—l)—&-kl(l—zA)@—F?

With Euler operators, the differential operator H, for System (1), is

ky ( ES —1) 0 0s+k_; (ZEZS —1) Ops + ke (ZEZP —1) Ops .

ZE %S ZES ZES

By differentiating the probability generating function (5) and evaluating it at
z1 =29 = -+ = 2z, = 1, one gets formulae which bind ¢ and the moments of
the random variables which count the numbers of molecules. A mere evaluation
yields: ¢(t, z) |.—1= 1. Differentiating (5) with respect to any z; and evaluating
at z = 1 provides the expected value of the number of molecules of the chemical
species associated to z;.

These ideas are illustrated using a prototype software available at [34], on Sys-
tem (1). Variables are numbered, with the convention (E, S, ES, P) = (1, 4, 2, 3).
The differential operator H is displayed using Fuler operators.



> crl := ChemicalReaction (E+S = ES, k[1], ""):

> cr2 := ChemicalReaction (ES = E+S, k[-1], ""):

> cr3 := ChemicalReaction (ES = E+P, k[2], ""):

> CRS := ChemicalSystem (crl,cr2,cr3):

> HSyst := HamiltonianSystem (CRS, z, theta, x(t));

HSyst := hamiltonian_system

> map (numero, [E,S,ES,P], HSyst);

[1, 4, 2, 3]
> H := Hamiltonian (HSyst);
/ z[2] \ /z[1] z[4] \
H := k[1] |--——-——-- - 1| theta[1] theta[4] + k[-1] |--——---—- - 1| thetal2]
\z[1] =z[4] / \ z[2] /
/z[1] =z[3] \
+ k[2] |-———————- - 1| thetal[2]

\ z[2] /

The next command permits to generate an ODE system for the expected val-
ues and the covariances of the random variables which count the molecules
of E, S, ES and P (the variable x(t) is the expected value of the random
variable which counts the molecules of the enzyme E ; the variable x1 4(¢) is the
covariance of the random variables which count, respectively, the molecules of
the enzyme E and the product P). Since some reactions of System (1) involve
two reactants, the ODE system is infinite. The function truncates it. The pa-
rameter iv receives some information on initial values, for a further numerical
integration.

> ODEs := mean_equations (HSyst, ’iv’);
d
ODEs := [-- x[1]1(t) = -%2 + (k[-1] + k[2]) x[2]1(t) - %1,
dt
d d
-- x[2]1(t) = %2 + (-k[-1] - k[2]) =x[2](t) + %1, —- x[3]1(t) = k[2] x[2](¢),
dt dt
d d
-— x[41(t) = -%2 + k[-1] x[21(t) - %1, —- x[1, 11(t) = ...
dt dt
w1 o= k[1] x[1, 41(®

%2

k[1] x[41(t) x[11(%)



5 Conclusion

Beyond the improvements of the underlying theories, a lot of improvements can
be brought to the software. Since this paper is software oriented, let us focus
on that single issue. First, our packages could certainly be polished and merged.
Second, they miss very important tools dedicated to the solving problem of
polynomial systems in the field of the real numbers, such as [10, 7, 42, 11, 26].
See [28] for a recent study of the sizes of the problems that can be investigated
using some of the best available such tools. However, even the nice integrated
MAPLE package that we could foresee would miss two features: sort of a model
checking functionality, which would permit to the practitioner to query models,
as [13, 2] do ; and a user interface of the same quality as that of, say, Cytoscape
[9]. These two missing features, which are both user interface related, may seem
a bit irrelevant to the traditional audience of a computer algebra conference.
The need for them is however pretty obvious for any lecturer, teaching symbolic
techniques close to ours, among other systems biology approaches.
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