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Abstract 
The crystal shape of Ni particles, dewetted in the solid state on sapphire substrates, was 

examined as a function of the partial pressure of oxygen (P(O2)) and iron content using 

scanning and transmission electron microscopy. The chemical composition of the 

surface was characterized by atom-probe tomography. Unlike other FCC equilibrium 

crystal shapes, the Ni crystals containing little or no impurities exhibited a facetted 

shape, indicating large surface anisotropy. In addition to the {111}, {100} and {110} 

facets, which are usually present in the equilibrium crystal shape of FCC metals, high 

index facets were identified such as {135} and {138} at low P(O2), and {012} and 

{013} at higher P(O2).  The presence of iron altered the crystal shape into a truncated 

sphere with only facets parallel to denser planes. The issue of particle equilibration is 

discussed specifically for the case of solid-state dewetting.  
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1. Introduction 

The correlation of surface energy anisotropy with the equilibrium crystal shape was 

extensively studied over the last century, since the foundations were laid by G. Wulff 

[1]. An understanding of surface energy anisotropy is important for many technological 

applications as well as for fundamental scientific reasons, including facet formation, 

crystal nucleation and growth, catalytic processes, thin films, surface step energy, and 

surface thermodynamics. 

 

The equilibrium crystal shape (ECS) or Wulff shape of a crystal is the shape reflecting a 

minimum surface energy [1,2]. The normal vectors Ri extending from the geometric 

center (Wulff point) to the surface facets can be used to calculate the relative surface 

energies (Ji), according to: 
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Equilibrated metal particles were previously used to study the surface energy anisotropy 

of several FCC metals such as Cu [3,4], Pb [5,6] and Au [4,5,7,8,]. In most cases, at 

temperatures close to the melting point, the equilibrium (Wulff) shape of the pure 

metals was found to be composed of the close packed planes {111} and {100}, 

connected by extended rough surfaces. An exception was Cu which also exhibits 

(smaller) {110} and {311} facets. At lower temperatures, it is difficult to reach the ECS 

because of kinetic limitations (time-size-evaporation), while the kinetic shape can 

indicate which facets are stable at lower temperatures [9,10].   

 

The discrepancies between experimentally determined ECSs of pure metals may be 

related to the adsorption/segregation of extra components to the surface, originating as 

either an original solute in the metal, adsorbed from the gas phase, or obtained from the 

substrate on which the crystals were equilibrated. Adsorption of one or several foreign 

species may take place at the metal surface and can have a significant influence on the 

anisotropy (and consequently on the ECS) [11,12,13,14]. The relation between 

adsorption and the change in surface free energy, J is described by the Gibbs adsorption 

isotherm: 
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dJ�= -�6 (*i dPi) (2) 

 

where *i and Pi are the chemical surface excess and the chemical potential of 

component i, respectively. It is important to emphasize that it is not the concentration 

but rather the chemical potential of the solute which is correlated to surface adsorption, 

driven by a decrease in surface energy. This is a key-point in the case of oxygen 

adsorption at the surface of metals, which may take place at very low oxygen partial 

pressures, as directly measured for liquid metals [15], or at very low solute 

concentrations [16,17].  

 

While adsorption can significantly change the ECS (i.e. the surface anisotropy), very 

few experiments have been conducted on this topic [14]. One of the reasons is that a 

very low concentration of alloy components can have a strong effect and it is often 

difficult to control the composition of dilute alloys [12]. As such, careful control of the 

experimental conditions together with chemical analysis of the surface(s) is essential for 

characterization of the ECS.  This is especially true for Ni, due to its high surface 

energy which acts as a driving force for surface segregation [12,18], and the relatively 

high annealing temperature required for equilibration compared to other metals. The 

difficulty in achieving pure and equilibrated Ni particles could be the reason why the 

ECS of Ni was not studied to the same extent as other FCC metals. Recently, the ECS 

of dewetted Ni particles was investigated by Hong et al. [19]. Surprisingly, they found 

that at equilibrium, the most stable surface is {210} (which is usually the highest low 

index surface energy for FCC metals [12]), followed by {110}, {111}, {100} and 

{320}. In these experiments, the initial Ni film contained a total of 100 ppm of 

impurities, to which Si resulting from the use of a quartz tube furnace was added. No 

chemical analysis was performed on the equilibrated particles. In our opinion the ECSs 

of Ni determined by Hong et al. was modified by adsorption. 

 

Mykura used the geometry of twin-boundary grooves in Ni annealed for 50-100 hours at 

1273 K (0.75 Tm) in vacuum to experimentally determine surface anisotropy and found 

that the lowest energy surface was for {100}, followed by {111} (

(100) (111)/ 0.947 0.028J J  r ) [20]. The maximum anisotropy found at this relatively low 
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equivalent temperature was 8.5 ± 2%. The purity of the Ni sheets was not reported, nor 

was the vacuum level (partial pressure of oxygen) used for annealing. While the 

measured anisotropy was consistent with the expected increase of anisotropy with 

temperature [11], the lack of surface chemical analysis prevents any comparison of 

Mykura’s results with similar experiments. Sundquist used Ni particles equilibrated on 

BeO for up to 100 hours at 1273 K to investigate the Wulff shape in two different 

atmospheres: vacuum and dry H2 [4]. Although no quantitative measurement of the 

anisotropy was made, {111} and {100} facets were identified in both atmospheres. 

However, the particles equilibrated in vacuum had almost no rounded surfaces and were 

almost completely faceted, while the particles equilibrated in H2 had rounded surfaces 

with sharp edges connecting the facets. The authors attributed this difference to 

anisotropic O2 or H2 adsorption, respectively (although H2 does not adsorb on the 

surface of Ni at this temperature [21]). No surface analysis was done to validate this 

assumption. In another report, Barsotti et al. investigated the ECS of a Ni field emission 

tip at 1300K and were able to measure the anisotropy of low index facets as well as 

rounded surfaces [22]. Emphasis was made on the measurement of surface impurities 

and only tips that were found to have clean surfaces were investigated. However, due to 

the initial geometry of the tips the resulting shape may have not been the equilibrium 

shape but rather that correlated with steady state, and thus only the facets at the apex 

were investigated. Barsotti et al. determined that the {111} facet has the lowest energy, 

followed by {001}, and a maximum anisotropy of 3%.  

 

In addition to surface composition, temperature also has a significant influence on 

surface anisotropy [11]. Moreover, the driving force for surface adsorption is also 

temperature dependent [14,17]. 

 

In this work, the equilibrium shape of Ni was investigated in two different atmospheres: 

Ar and Ar+7%H2. In addition, the influence of Fe on the ECS was also studied.  The 

crystal shapes were determined using transmission electron microscopy (TEM), and 

high resolution scanning electron microscopy (HRSEM) and compared with simulated 

Wulff shapes [3]. A detailed chemical analysis of the equilibrated surfaces was 

conducted using atom probe tomography (APT).   
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2. Experimental Procedures 
Dewetting Experiments 

(0001) oriented sapphire (D-Al2O3) substrates of 99.99% purity were provided by 

Gavish Industrial Technologies & Materials (Omar, Israel). Substrates were 

ultrasonically cleaned in acetone and ethanol. Ni films (120-250 nm thick) were 

deposited on the substrates by magnetron sputtering or by e-beam deposition (99.99% 

and 99.9995% pure, respectively). The specimens were dewetted [23] and further 

annealed in the solid state (between at 1572-1623 K) to form a large number of particles 

with a diameter ranging from 100 nm to a few microns (see Table 1), and were cooled at 

a rate of 15-20 K/min.   

 

Three different annealing procedures were performed in order to examine the influence 

of  P(O2) and the purity of the Ni particles on the equilibrium shape. In all cases, the 

total pressure was at least one order of magnitude larger than the vapor pressure of Ni 

(to limit evaporation) and the P(O2) levels were below the threshold for Ni oxidation or 

Ni-spinel formation (i.e. P(O2)<3*10-9 atm.) [24]. The experimental conditions in which 

the three specimens were prepared (marked here after as systems A, B, C) are given in 

Table 1. 

 

 

Characterization Methods 

The morphology of the equilibrated Ni particles was examined by high resolution 

scanning electron microscopy (HRSEM, FEI Strata 400-S). The Ni particle texture was 

also analyzed by X-ray diffraction (XRD), using Cu KD radiation operated at 40 mA 

and 40 kV (Philips X’Pert goniometer). A T-2T coupled Bragg-Brentano geometry was 

used for analysis of integrated intensities and the preferred orientation of Ni reflections 

relative to the sapphire substrate.   

 

A dual-beam focused ion beam (FIB, Strata 400 s, FEI) equipped with a field emission 

gun (FEG) electron source (operated at 3-30 kV), a Ga+ ion beam (2–30 kV), an in-situ 

nanomanipulator (Omniprobe, AutoProbe 200) and a scanning transmission electron 

microscopy (STEM) detector was used for preparing TEM specimens from the center of 

particles with a known morphology and orientation using the in-situ “lift-out” technique 
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[25, 26]. The particles were sectioned across the Wulff center and in a direction 

carefully chosen to intersect specific surface facets. This was important for subsequent 

edge-on imaging of the facets by TEM. The particles were initially covered with a 

protective layer (Pt or C) deposited using the electron beam in the FIB, in order to 

prevent surface damage by the ion beam.  

 

Particles for TEM specimen preparation and subsequent analysis were selected 

according to the following criteria: 

 

1) Particle size: Since the shape evolution involves diffusion processes, only relatively 

small crystals at high homologous temperatures will be able to reach an equilibrium 

shape within a reasonable time-frame. The equilibration time (W), for a particle with 

radius r is given by [27]:  

 
4

24 s

r kT
D

W
J Q

 
:

 
(3) 

 

where k is Boltzmann’s constant, T is the absolute temperature, J is the surface energy 

(<2.1 J/m2 [18]), Ds is the surface diffusivity (5*10-12 m2/s [28]), Q is the number of 

atoms per unit surface area, and : is the atomic volume. Given these values it was 

calculated that under the experimental conditions used here, only particles smaller than 

1 Pm can be equilibrated, and the selected particles were usually much smaller.  

 

2) Particle orientation and sectioning direction: The selected Ni particles were 

positioned in such a way that the sectioning direction was normal to the facet planes 

(and goes through the Wulff center of each particle). This allowed for edge-on imaging 

in the TEM, identification of the facets by electron diffraction, and correct measurement 

of surface energy anisotropy on a section of the Wulff shape. 

 

3) Particle microstructure: Only single crystal particles, without grain boundaries, were 

selected and analyzed.  
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The morphology of the particles was examined by TEM using a monochromated and 

aberration corrected FEG-TEM (FEI Titan 80-300 S/TEM) operated at 300 kV.  

Kikuchi electron diffraction was used to align the Ni particles in a low-index zone axis, 

with surface facets parallel to the viewing direction. After alignment of a Ni particle, 

selected area electron diffraction (SAD) patterns were acquired to identify the facet 

planes. The experimentally determined surface anisotropy and the Wulffman software 

were used to simulate the shape of the faceted spherical particles [29].  

 

The composition of the surfaces was measured using atom probe tomography (APT, 

Imago, LEAP).  Samples were prepared for APT using the dual-beam FIB following the 

procedure described in [30].  Experimentally determined APT bulk detection limits for 

S, Al, Ar, Fe, Mo, Ca, Si and W ranged from 25-35 ppm.   

 

 

3. Results 
Ni Crystal Shape 

The preferred orientation of the Ni particles on (0001) sapphire was found to depend on 

the P(O2); a {100} preferred orientation was dominant in system A (P(O2)=10-9 atm) 

and a {111} orientation was dominant in systems B and C (P(O2)<10-20 atm). In both 

cases, the preferred orientation of the as-deposited film was {111} (the preferred 

orientation was measured by XRD following the procedure described in [26]).  

 

Figure 2 presents a HRSEM micrograph of one of the Ni particles equilibrated in Ar 

(system A, P(O2)=1*10-9 atm). This particle (with a (100) orientation parallel to the 

substrate surface) has a highly faceted shape. Four different families of facets are visible 

in the plan-view image, which have sharp connections to the rounded surfaces.   

 

Figure 3 presents two HRSEM micrographs of a Ni particle equilibrated in Ar+H2 

(system B, P(O2)<10-20 atm). The particle is oriented with the (111) plane parallel to the 

substrate surface, and appears less faceted than the (100) oriented particle shown in 

Figure 2. However, this information cannot be used to draw any conclusions regarding 

the anisotropy of the surface energy for two reasons. First, the (111) oriented particle is 

coated with a thicker carbon layer that covers the morphological details on the surface, 
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such as smaller facets. Second, the size of the (111) oriented particle is less than half 

that of the (100) oriented particle, so even if the facets were exposed, they might be too 

small to be detected (not resolved) by SEM. In addition, it is also possible that the 

connection of the facets to the rounded surface is smooth and not sharp as in system A. 

Such a gradual change in surface orientation (and thus contrast) makes facets much 

more difficult to detect.  

 

Due to a concern that the lack of facets in the particle seen in Fig. 3 may be due to 

impurities in the starting materials or contamination in the furnace system a dedicated 

dewetting furnace was constructed, in which the specimen is held in a sapphire tube. 

Figure 4 presents HRSEM micrographs of a Ni particle equilibrated in Ar+H2 (system 

C, P(O2)<10-20 atm) in the sapphire tube furnace. In addition, the Ni target used for the 

deposition was 99.9995% pure (rather than 99.99% as in systems A and B). The particle 

is oriented with the (111) plane parallel to the substrate surface, and appears to be 

completely faceted. 

 

Unlike SEM, by which over 50 particles were found to have identical crystal shapes for 

the three annealing processes, cross-section imaging of the particles in the TEM allows 

improved resolution and facet identification by electron diffraction. However, specimen 

preparation requires extreme precision (about 20 nm tolerance in the location of the 

thinnest area) and provides only limited sampling (due to the time required for specimen 

preparation) of a single projection of the shape to be analyzed. In this work, three TEM 

specimens were characterized for system A, two for system B and 5 for system C. 

Figure 5- present bright field TEM micrographs of the equilibrated Ni particles. The 

specimens were prepared from the center of the same particles shown in Figure 2-Figure 

3 respectively, along the directions marked on the plan-view SEM micrographs. 

 

TEM analysis revealed that in the three systems, {111}, {110} and {100} surface facets 

were stable. It should be noted that the existence of other facets cannot be ruled out 

since only one or two projections were examined for each system. In all cases, the 

lowest energy surface facets included both {111} and {100}. Most facets have sharp 

edges which mean that some orientations are missing on the ECS. An exception is the 
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{110} facet on the particle equilibrated in system B (Figure 3). As observed from the 

SEM micrographs, this system also has the least anisotropic surface energy.  

 

The use of a furnace with a sapphire tube and a purer Ni film (system C), stabilizes 

additional {113} and {135} surface facets that did not appear in the other two systems.  

The anisotropy for the examined particles as measured by TEM is given in Table 2. The 

estimated measurement error is 2%.    

 

ECS Simulations 

“Wulffman” freeware was used to identify all the facets present on the Wulff shape of 

the Ni particles, using the surface anisotropy observed by SEM (Table 2). The crystal 

equilibrium shape is approximated by a sphere cut by facets of given energy relative to 

the isotropic surface energy of the sphere. With this software we have identified the 

surface facets that are not included in the projection used for the specific TEM 

specimens, but are visible by SEM.  

 

The Wulffman construction proved to be useful for system A, where two additional 

surface facets were identified: (012) and (013). Moreover, in system C the simulation 

proved that the {135} facets are in fact included in the Wulff shape, and determined the 

presence of yet another vicinal surface, {138}, in the ECS. The {113} facet that was 

identified by TEM is not present in the simulated ECS. This is because the surface plane 

that was thought to be (113) is not positioned edge-on in the TEM.  

 

 

Surface Chemistry 

APT was performed on the surface of particles with similar orientations to the ones 

analyzed by TEM. Line-scans are given for systems A, B (Figure 9, 10) and a 3D 

reconstructed tomogram is given for system C (Figure 11). Unlike in the case of liquid 

Ni equilibrated on sapphire [31], no Al was detected in the bulk Ni or at the surface 

(detection limit of 0.001 atoms/nm2 which is roughly equivalent to 0.0001 monolayers). 

 

For all three systems, a few nanometers thick layer of oxidized Ni was found at the 

surface. This is expected since the measurements were conducted an extended period of 
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time after the samples were prepared using the FIB, which included transfer from the 

dewetting furnaces to the FIB, and to the APT system, during which surface oxidation 

could not be prevented. This issue is somewhat problematic and means that the 

measurement of oxygen at the surface is not possible.  However, a major difference was 

measured in the bulk oxygen content for all 3 systems: 0.2 at% in system B, and less 

than 0.02at% in system C. (The APT samples from system A were exposed to the 

ambient, as needles, for an extended duration and most of the metal was oxidized. Thus, 

the oxygen content in the Ni could not be determined for system A.) In system B, the 

surface Fe concentration was similar to that of the bulk (0.3-0.4at%). It can be seen 

from Figure 11 that in system C no other element was detected other than Ni, O and C. 

Since the specimen was coated with a conductive carbon layer, no conclusions can be 

deduced regarding carbon surface adsorption.   

 

 

Solid-state dewetting kinetics  

It is clear from Figure 1 that most of the particles have not equilibrated under the 

experimental conditions used in this study. At the final stage of the experiment, the 

particles are all single-crystals with a {111}plane parallel to the sapphire susbtrate. 

Although all of the facets that were identified in the ECS also appear in the large non-

equilibrated particles, the particle aspect ratio is very large (they all have a height of 1-

1.5 Pm regardless of the lateral dimensions). The particles that are less than 2Pm in 

diameter seem to have equilibrated completely in the directions parallel to the substrate, 

while the top facet is larger than the equilibrium size. In Figure 12, three equi-axed 

particles are visible, with different diameters ranging from 1.02 Pm to 1.45 Pm. The 

size of the side {111} facets is marked by dashed lines to demonstrate that the top 

{111} facet is larger, and hence not equilibrated for the particles shown in the center 

and bottom of Figure 12. However, the ratio of sizes measured for the side {111} facets 

and the particle diameter is almost identical for all three particles, equal to 0.27, 

indicating that the side facets had indeed reached a steady state which may be 

equilibrium.   

 

 
4.0 Discussion 
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Surface energy anisotropy 

The results presented here show that the crystal shape of pure Ni is completely faceted 

with a maximum anisotropy of 8%, and does not include all orientations. Considering 

this shape as the ECS may be surprising because all ECS’s of other FCC metals are 

spheroids truncated by small facets of two or three types of closed packed planes. 

Usually, an increase in surface anisotropy and the appearance of high index orientations 

are attributed to lower temperature, surface segregation, or surface structure 

(microscopic) reconstruction [10,11].  

 

Surface reconstruction: Since Ni has an absolute surface energy which is larger 

than most FCC metals, it is expected that the existence of a round surface that has a high 

number of unsaturated bonds (or a small number of nearest neighbors) will not be 

energetically favorable. This can result in a driving force for surface reconstruction that 

is larger than for other metals. Although it is known that Ni surface reconstruction 

occurs at room temperature, no reports were found in the literature about reconstruction 

above room temperature [32,33].  

 

Effect of temperature: In order to observe the Wulff shape of particles 

equilibrated at 0.97Tm, the specimen must be cooled down very rapidly to prevent 

surface diffusion from changing the shape according to the temperature change. 

Unfortunately, in the present experimental apparatus rapid cooling cannot be done, and 

the specimens were cooled at a rate of 15 K/min. At this rate it took 36-40 minutes to 

decrease the temperature to 0.6Tm, where no significant diffusion is expected to occur. 

Such a cooling duration could have some influence on the final examined shape. 

However, since the cooling rate was the same for all three systems, the results can be a 

basis for comparison.  

 

Surface composition: The fact that no impurities were detected on the surface of 

system C does not necessarily mean that this system represents the Wulff shape of clean 

Ni. First, atom probe analysis could not be used to quantify carbon or oxygen 

adsorption, due to specimen transfer/storage and the carbon coating used to prevent 

charging. Both carbon and oxygen are expected to influence surface anisotropy if they 

are present at the surface. Even if other impurities (like S which is a common impurity 
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of Ni) were present at the initial stage of dewetting, and have evaporated, the surface 

still needs sufficient time to allow the crystal to re-equilibrate according to the new 

anisotropy (that of pure Ni). In the work by Chatain et al. [3], Cu films were dewetted in 

the liquid state and were equilibrated in the solid state under a reducing atmosphere. 

Impurities (such as sulfur) that were present in the initial film significantly increased the 

anisotropy and formed faceted steps around the larger facets. By equilibrating the 

particles under flowing He+H2, the surface was cleaned of all impurities. However, it 

still took the crystals 78 hours to reshape into the new ECS (although the initial shape 

was very close to the final ECS of pure Cu).  

 

Shape equilibration: Shape evolution towards equilibrium depends upon the initial 

state of the system. If the initial shape was a sphere (as in the case of solidifying drop), 

it is expected to develop facets that will increase in size at the expense of the rounded 

surfaces. In the case of growth shapes (as in solid state dewetting), a polyhedral crystal 

will form during the initial stages of dewetting and the rounded surfaces will only 

develop at the final stages of equilibration. In the present work, it is possible that the 

fully faceted Ni crystals represent growth shapes rather than an equilibrium shape.  

However, while impurities and kinetic effects may have prevented full equilibration in 

these experiments, we think that system C is the closest to equilibrium for the following 

reasons:  

a) In contrast to previous equilibration experiments of Cu, it is less likely that 

impurities originated from the Ni target (which was 99.9995% pure for systems B 

and C). Impurities may have come from the sapphire substrate (99.99%, probably 

containing several ppm of Na, Ca, Si), but these were not detected by APT.  

b) The very long equilibration times required for Cu was for particles that were about 

5Pm in diameter. According to equation (3), the time for shape equilibration 

depends very strongly on the particle size, and the sub-micron Ni particles are 

expected to have reached equilibration.   

c) Since the present experiment was done in the solid state, equilibration kinetics and 

their mechanisms are quite different than the ones proposed by Nichols  and Mullins 

[27] and Mullins and Rohrer [34,35].  In their models, shape changes are calculated 

for surface-diffusion processes on particles that are initially spherical, and develop 

facets that are tangentially connected to the neighboring vicinal orientations. 
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Whereas in this work, where the initial geometry is a flat continuous film, the facets 

have mostly sharp edges, and evaporation-condensation is also expected to take part 

in mass transport. To the best of our knowledge, no model has been formulated to 

describe the time required to equilibrate solid particles similar to the ones seen in 

this work. 

 

 

Simulations of the equilibrium shape:  

Although the facets and their relative stability identified by TEM agree very well with 

those calculated using Wulffman, several discrepancies were found in the relative 

surface energies of the stable facets.  In system A, the relative energy of the {100} facet 

is lower than the measured value (see Table 2). The reason for this is that the top (100) 

facet that was used to determine the relative energy is slightly larger than the side {100} 

facets. In other words, the top facet hadn’t fully reached its equilibrium size. The 

projection chosen for TEM analysis does not include the side {100} facets, and thus this 

error in measurement could not be considered. However, the shape simulation did 

include the projected size of the side facets (seen from the top view in Figure 2 and 

Figure 8a). Hence, for system A, the calculated anisotropy is more correct than the 

measured one. The calculated anisotropy for system C is lower for almost all facets. The 

reason for this is that the size of the {111} facets in the simulation is smaller than the 

real size of these facets (i.e., it is thought to have a larger relative energy). Since all 

energies in Table 2 were taken relative to that of {111}, the resulting values reflect a 

lower anisotropy. Thus, for system C, the experimental measurement (as conducted 

using TEM) is more accurate than the simulation.    

 

 

Effect of P(O2) and Fe contamination 

It is clear that the dominant factor that determines the anisotropy is different in all three 

systems.  In system A, it is believed that the main factor is the presence of a larger 

amount of oxygen in the gas phase. In system B, Fe is the dominant factor, although it 

may be a combined effect with oxygen.  According to the APT profile, the Fe 

concentration at the surface is similar to that of the bulk, i.e., there is no Fe surface 

segregation. This is explained by the similar surface energies of Fe and Ni (JFe is 
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slightly higher) and the relatively large enthalpy of mixing [18]. Although the influence 

of Fe on the surface anisotropy is dramatic, it is not clear what lowers the surface 

energy of rough surfaces and de-stabilizes higher index planes. One possible 

explanation is the formation of Fe-O bonds at the surface. In System C, the main reason 

for the high anisotropy and the stability of high index planes was discussed above.  

 

 

Shape Equilibration Kinetics  

In order to satisfy the size limitation for shape equilibration according to equation (3), 

all of the examined particles were less than 1Pm in diameter. However, for some 

particles that did meet this requirement, the aspect ratio did not reach that of 

equilibrium. It should be noted that equation (3) considers only surface diffusion and no 

other processes such as evaporation-condensation that may also take part in 

equilibration, especially at such high homologous temperatures. According to Mullins 

and Rohrer [34, 35] in order for a facet to reach an equilibrium size, a nucleation energy 

barrier needs to be overcome to create a step on the surface. This approach applies to 

the case where mass transport occurs only by surface diffusion and the facet has no 

step-propagating defects such as screw dislocations or discontinuous facet edges (no 

tangential connection between the facet and the adjacent surface orientations).  

 

 

5.0 Summary & Conclusions 

Solid-state dewetting experiments of pure and Fe-doped Ni films were performed under 

controlled working conditions. The crystal shape was analyzed by three complementary 

characterization methods (SEM, TEM and Wulffman simulations), and for the first time 

the nickel crystal shape was related to the chemical composition of the surface. The 

crystal shape was found almost completely facetted with both dense and high index 

planes, in contrast to that expected for an FCC metal.  At P(O2)=1*10-9 atm, {012} and 

{013} facets were stabilized, and at P(O2)<1*10-20 atm, {135} and {138} facets were 

stabilized. The addition of Fe decreased the anisotropy dramatically, de-stabilizing high-

index planes. The kinetics of particle shape equilibration from the geometry of a thin 

film was studied. A major difference was found between shape evolution in the 
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directions parallel and normal to the substrate. This resulted in particles that had side 

facets with similar proportions (i.e., the same facet diameter to particle diameter ratio) 

but a top facet that is significantly larger, indicating a nucleation barrier preventing the 

top facet from reaching equilibrium. 

 
 

Appendix I – P(O2) Measurements 
In the experimental apparatus used for systems B and C, the partial pressure of oxygen 

was controlled by the reaction: O2 + 2H2 →2H2O.  The specimen was placed in a 

sapphire tube furnace under flowing Ar + 7%vol.H2.  Since the total pressure was 1 atm, 

the P(H2)=0.07 atm.  

 

The moisture content in the gas tank (as measured by the manufacturer) is 0.1 ppm. 

Assuming the moisture level in the chamber is 1 ppm gives a P(H2O) of 1*10-6 atm.   

 

The P(O2) can then be calculated using:  
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At T=1623 K, 'G=-313500 J/mol, giving a P(O2) =1.6*10-20 atm. 

 

 

Appendix II – Estimation of the Absolute Solid Surface Energy of Ni 
 

In addition to relative surface energy and thus anisotropy, the data given in the present 

study was used to estimate the absolute surface free energy of solid Ni. This is an 

extremely important and fundamental parameter that is rarely measured due to the lack 

of a rigorous experimental method.  In this work, we estimated the solid surface energy 

using several assumptions and data from the literature: 

a) Levitated drop experiments by Brillo et al. [18] were used to obtain the surface 

energy of undercooled liquid Ni at 1625 K.  They used the same Ni as used for 

the dewetting experiments. From the measurements we obtained J(liquid,1625K)=1.8 

J/m2. 
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b) Considering a 2% increase in surface energy at solidification [36] (due to the 

solid-liquid interface that is formed) gives J(solid,1625K) = 2.16 J/m2. This value 

represents the surface free energy of the rounded solid surface. 

c) Taking into account the measured surface anisotropy J({111},1625K)= 2.05±0.05 

J/m2. 

 

The major assumption in this approach is the 20% increase in surface energy upon 

solidification, while the advantage is that absolute values of surface energy can be 

determined for each individual facet. Zero creep experiments can provide a direct 

measurement of the average solid surface energy, and Kumikov and Khokonov suggest 

that the most reliable published value for the average surface energy of Ni is 1.94 J/m2 

[37], which is close to the value measured here. 
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Tables & Captions 
 

Table 1: Experimental conditions used to equilibrate the Ni particles.  
 
System 

Atmosphere 

(dynamic flow) 

Deposition 

Method  

(Ni purity) 

Measured 

P(O2) [atm] 

Annealing 

temperature 

Time at  

temperature 
Texture 

A  Ar 
Sputtering 

(99.99%) 
1*10-9 1300°C 30 minutes {100} 

B 
Ar + 7vol.% H2 

(+Fe*) 

Sputtering 

(99.99%) 
<10-20 1350°C 120 minutes {111} 

C Ar +7vol.% H2 
e-beam deposition 

(99.9995%) 
<10-20 1350°C 300 minutes {111} 

 
 

 

Table 2: Ni surface energy anisotropy as measured by TEM or from “Wulffman” 

simulations.  

System P(O2) 

Relative surface energies, J(hkl)/J(111)  

as measured by TEM (red) or by Wulffman (blue) 

J(001) J(011) J(012) J(013) J(135) J(138)  J(max) 

A 10-9 atm 
1 
1.05 

1.05 
1.05 1.05 1.05 

  
1.07 
1.06 

B 10-20 atm 
1 
1 

1.01 
1.01 

    
1.05 
1.05 

C 10-20 atm 
1  
1.02 

1.06 
1.03 

  
1.04 
1.01 1.03 

1.08 
1.04 

 

 

  

                                                           
* The furnace used in system B was contaminated with Fe. 
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Figure Captions 
 

Figure 1: Ni particles after dewetting on (0001) sapphire for 5 hours at 1623 K in 

Ar+7%H2. 

 

Figure 2: Secondary electron HRSEM micrographs of a Ni particle (system A, 

P(O2)=1*10-9 atm). The single crystal particle is oriented with the (100) plane parallel to 

the substrate. (a) plan-view. (b) side-view (52° tilt). The arrows indicate the location 

and direction of sectioning.  

 

Figure 3: Secondary electron HRSEM micrographs of a Ni particle in system B 

(P(O2)=10-20 atm).  The single crystal particle is oriented with the (111) plane parallel to 

the substrate surface. (a) plan-view (b) side-view (52° tilt). The arrows indicate the 

location and direction of sectioning. The bright contrast in (b) is due to electron 

charging of uncoated sapphire. 

 

Figure 4: HRSEM micrographs of a Ni particle from system C (P(O2)=10-20 atm). The 

single-crystal particle is oriented with the (111) plane parallel to the substrate surface. 

(a) plan-view (b) side-view (52° tilt). The arrows indicate the locations and directions of 

sectioning. 

 

Figure 5: (a) bright field TEM micrograph of the (100) oriented Ni particle in system A 

along the [101] projection. (b) The Wulff shape contour (bold line), selected area 

electron diffraction pattern (inset in the center) and distances from the Wulff point to the 

{hkl} facets (dotted lines, marked as R{hkl}).   

 

Figure 6: (a) High angle annular dark field STEM micrographs of the (111) oriented Ni 

particle equilibrated in system B, along the [101] projection. (b) The Wulff shape 

contour (bold line), selected area electron diffraction pattern (inset in the center) and 

distances from the Wulff point to the {hkl} facets (dotted lines, marked as R{hkl}).  

 

Figure 7: (a,c) bright field TEM micrographs of the (111) oriented Ni particle 

equilibrated in system C, along the [101] and [121] projections. (b,d) The Wulff shape 
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contour (bold line), selected area electron diffraction patterns (inset in the center) and 

distances from the Wulff point to the {hkl} facets (dashed lines, marked as R{hkl}). 

 

Figure 8: “Wulffman” simulations from SEM pictures of the ECS of particles from 

systems A, B and C. 

 

Figure 9: Line-scan from the APT data perpendicular to the Ni surface from system B. 

 

Figure 10: Line-scan from the APT data perpendicular to the Ni surface from system A. 

 

Figure 11: Reconstructed atom probe tomogram of the top of a (111) Ni particle from 

system C. Only three elements were detected: Ni, O and C. The large blue circles 

represent oxygen adsorbed from the ambient on the surface of the atom probe tip (after 

sample preparation).  

 

Figure 12: SEM micrographs of three particles of different diameters in system C 

showing different stages of equilibration. The dotted lines mark the size of the {111} 

facets on the sides, for comparison with the top {111} facet. Only the top particle 

reached equilibrium. All three particles exhibit the same facets but different relative size 

of the top {111} facet.  
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