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Il existe une littérature foisonnante au sujet de l'anonymisation de données par généralisation des valeurs d'enregistrement. Les contributions portent soit sur le modèle de généralisation, enrichissant le K-anonymat de L. Sweeney, soit sur un algorithme de calcul d'une version anonymisée d'un jeu de données, étant entendu qu'il a été prouvé que le problème est N P-difficile, et donc que la plupart des algorithmes offrent des solutions approchées.

Les méthodes d'accès spatiales (MAS), bien étudiées dans le champ des bases de données, suscitent un intérêt grandissant dans le contexte de l'anonymisation de données par généralisation des valeurs d'enregistrements, étant données (i) leur capacité à atteindre des grandeurs d'échelle inégalées par d'autres approches, et (ii) l'adéquation du format des entrées de l'index avec les données anonymisées.

Nous proposons dans cette communication un état des lieux et une analyse critique des MASs étudiées sous l'angle de l'anonymisation de données. Nous évaluons les propositions existantes et suggérons des pistes de travail encore non explorées à ce jour.

INTRODUCTION 1.1 Motivation

As stated by Jim Gray [START_REF] Hey | The Fourth Paradigm: Data-Intensive Scientific Discovery, chapter Jim Gray on eScience: A Transformed Scientific Method[END_REF], we are entering the fourth age of science defined by a new paradigm where data play a central role in the production of science and innovation. To achieve that bright vision, scientific data must be unleashed from private repositories, and publicly released for the all research community. The Open Access movement, first concentrated on free access to scientific publications, turns now to Open Data initiative. In the same time, new business models have emerged to offer valuable services and take benefits from open data.

Then, organizations are strongly encouraged to release their micro-data to support data analysis, to provide new business opportunities and to allow every kind of scientific study and to support data journalism as well. For example, patients' medical records may be released by a clinic to support medical research and epidemiological studies.

However, releasing medical records about individuals violates their privacy thus, Privacy-Preserving Data Publishing (PPDP) has become a critical issue for companies and organizations. To obviate identity disclosure, many organizations usually remove the uniquely identifying information like name, SSN or IP address from the public release. However, as stated first by Latanya Sweeney in [START_REF] Sweeney | k-anonymity: A model for protecting privacy[END_REF], observing a 30-year tradition of inference problem in statistical databases, this sanitization of data might not be helpful in keeping the secrecy of given individuals since several attributes, coined quasi-identifiers, if they are put together, could surely lead to identity disclosure.

Preliminaries

This gave rise to the need for robust sanitization methods to publish sensitive individual data keeping their privacy intact. The seminal K-anonymization paradigm [START_REF] Sweeney | k-anonymity: A model for protecting privacy[END_REF] was proposed to achieve this goal by means of a generalization model. Basically, anonymization based on generalization consists in decreasing accuracy of values from quasi-identifiers. For instance, 44100 Zip code would become 44XXX and 70 pounds would be said to range between 50 and 80 pounds. More precisely, a table satisfies K-anonymity if every record is indistinguishable on quasiidentifiers from at least K -1 other records. This indistinguishability principle supports an equivalence relationship on the records of an anonymous public release and prevents from identity disclosure of individuals with a probability of 

Typical Use Case

Public release supports exploration, analysis and scientific studies. The very first and popular processing of public release is then to search and filter tabular data by the way of point queries and window queries. Indeed, regular database records can be geometrically interpreted as points in a multidimensional space where each dimension is a column of the raw table. Point coordinates are then defined by attribute values. Transformation is obvious for numerical and ordinal variables. Categorical variables could also be equipped with a total ordering, except that without any "native" ordering, the process is driven by the application domain and background knowledge.Thus database queries are transformed into queries against a set of points.

Translated to anonymous public releases, sanitized records become hyperrectangles in a multi-dimensional space, where each dimension is a field in the set of quasi-identifiers. For instance, sanitized records from To achieve such querying scenario, anonymous records are mutually disjoint spatial objects with a rectangular extent and window queries are orthogonal range queries. And any record that overlaps/lies within query region is a member of the result set. There exist many efficient algorithms and data structures [START_REF] Agarwal | Range searching[END_REF] to compute such orthogonal range queries against the spatial representation of the anonymous database. Furthermore, since any orthogonal range query can be decomposed into a collection of 1-dimensional range queries, it is then easy to manage filters on the tabular representation of the public release within a basic spreadsheet or web-client technologies as well. Query Q2 over Table 1 gives an example of such straightforward decomposition. Those practical features are very useful in lots of iterative exploration processes that would support analysis and scientific studies. Then, we argue that the axis-parallel rectangular coding of anonymous records is a strong requirement for a generic PPDP task.

Other kinds of range queries are defined by the shape of query region: sphere, half-space, simplex, polytope. Sphere range queries, so-called nearest-neighbor queries have been extensively studied and there also exist efficient algorithms to compute such popular queries especially on rectangular objects. However, none of these range queries satisfies the decomposition property that makes anonymous releases human-friend under tabular representation.

Summary of the Requirements for PPDP

To sum-up the above discussion, we argue that every generic PPDP task should meet at least the following theoretical and practical requirements in order to be valuable for the end-user:

1. Indistinguishability principle -to ensure K-anonymity;

2. Mutually disjoint equivalence classes -to preserve quality of the anonymous public release;

3. Multidimensional point partitioning -to support point and range queries on the anonymous public release;

4. Hyperrectangular coding of equivalence classes -to allow decomposition of orthogonal range queries.

To follow-on

Section 2 reviews existing structures that support anonymization algorithms, and it presents features of the main logical structures eligible for a PPDP task. Next, Section 3 focuses on a special kind of those structures, so-called nested hyperrectangle-based bucketed point access methods, that have very nice features for the anonymization. Definition and searching strategies for such structures are provided. Then, Section 4 states several open issues to address in order to accommodate and optimize the index structures to the PPDP task.

POINT ACCESS METHODS

Point Access Methods (PAMs) are logical structures that organize a set of point for efficient searching. We will see in this section that PAMs have features that are suitable for the anonymization problem, and as such, we argue in the following that they are the preferred data structures to support K-anonymization algorithms.

Point Partitioning for PPDP

It is worth to notice that public release with one single equivalence class described on each dimension by the all domain is obviously K-anonymous (K ≤ n the number of records) but it is definitely useless for the end-user. Thus, the main challenge of K-anonymization is to compute a public release where the information loss has been minimized, in the sense of a general criteria such like certainty metric [START_REF] Xu | Utility-based anonymization using local recoding[END_REF], discernibility penalty [START_REF] Bayardo | Data privacy through optimal k-anonymization[END_REF] or KL-divergence [START_REF] Kifer | Injecting utility into anonymized datasets[END_REF] for the most popular ones. This optimization problem was proved to be N P-hard [START_REF] Meyerson | On the complexity of optimal k-anonymity[END_REF].

Hence, many approximation algorithms have been proposed in the literature since the seminal work of L. Sweeney [START_REF] Sweeney | Achieving k-anonymity privacy protection using generalization and suppression[END_REF]. Usually, Mondrian approach [START_REF] Lefevre | Mondrian multidimensional k-anonymity[END_REF] is thought as the baseline algorithm since it has the basic good properties we could expect from such algorithms: local recoding and multidimensional partitioning. Mondrian iteratively operates a binary partitioning of the data space until every block contains between K and 2K -1 points. Actually, Mondrian builds a kd-tree over the raw data and publishes bounding boxes of the leaves as equivalence classes of the anonymous release. Construction has time complexity

O(N • log N ),
where N is the number of records in raw data.

Following the geometric representation of the data, Iwuchukwu et al. [START_REF] Iwuchukwu | K-anonymization as spatial indexing: Toward scalable and incremental anonymization[END_REF] propose to use a bulk-loading implementation of an R + -tree, one of the most popular spatial access methods for databases, to compute the K-anonymous release. It outperforms Mondrian thanks to buffering and efficient bottom-up index construction algorithm, and it scales up to very large data sets. Furthermore, the hierarchical structure of the R + -tree natively supports (B ℓ K)-anonymity for all level ℓ in the tree, with B the fanout parameter. And with an ordered leaf scan, it could support (cK)-anonymity as well, for all c in N. Time complexity remains in O(N • log N ). And

I/O cost for external computation is in O(N/B • log N/B).
Since the R + -tree bulk-loading algorithm is applied on a set of points rather than a set of spatial objects with an extent, it is actually a variant of a kd-B-tree structure where hyperrectangles have been shrinked to the minimum bounding boxes (MBB) of the subset of points in each equivalence class. Remind that a kd-B-tree is a bucket-oriented variant of a kd-tree where the fanout of each node is defined by parameter B that usually fits the disk block size. The many good features of the R + -tree approach makes it therefore the reference algorithm for K-anonymization until now.

Many works also proposed point partitioning structures in low dimension (2-3D) for privacy preserving location-based queries [START_REF] Gruteser | Anonymous usage of location-based services through spatial and temporal cloaking[END_REF][START_REF] Ghinita | Private queries in location based services: Anonymizers are not necessary[END_REF][START_REF] Mokbel | The new casper: Query processing for location services without compromising privacy[END_REF][START_REF] Damiani | The probe framework for the personalized cloaking of private locations[END_REF]. In this application domain, privacy is related to instant location of users and queries as well. Popular approaches design an anonymizer that dynamically provides a Cloaking Region to the Location-Based Service. For that purpose, Gruteser et al. [START_REF] Gruteser | Anonymous usage of location-based services through spatial and temporal cloaking[END_REF] implements a kd-tree, whereas Mokbel et al. [START_REF] Mokbel | The new casper: Query processing for location services without compromising privacy[END_REF] uses a variant of a PR quadtree in Casper. Ghinita et al. [START_REF] Ghinita | Private queries in location based services: Anonymizers are not necessary[END_REF] accommodate partitioning structures from kd-tree and R-tree to hash a database of Points Of Interest (POI) and answer approximate nearestneighbor queries in a Privacy Information Retrieval (PIR) approach. They also consider Hilbert space filling curves to map 2D points to single-dimensional data structures like B + -trees to index POIs. Actually, they argue that their PIR approach is independent from the partitioning structure as far as it provides at most √ N buckets within up to √ N POIs each. Other work [START_REF] Krishnamachari | Privacy-preserving publication of user locations in the proximity of sensitive sites[END_REF] focused on geo-privacy in the sense of privacy-preserving location data publishing. In this context, a space filling curve was also employed to order both data points and POIs on the map. Quad-trees and space filling curves do not scale for higher dimensions, and the latter cannot guarantee non overlapping bounding boxes in the worse case.

The above short review states that every approach to geoprivacy accommodates in memory and implements well-known structure for multi-dimensional point data partitioning. K-anonymity were also studied from the cardinality constraint clustering point of view. On the one hand, anonymization algorithms were proposed [START_REF] Byun | Efficient k-anonymization using clustering techniques[END_REF][START_REF] Chiu | A k-anonymity clustering method for effective data privacy preservation[END_REF][START_REF] Aggarwal | Achieving anonymity via clustering[END_REF] that achieve good quality, whereas neither they scale up in the size of the data set, nor they meet the basic orthogonal range query requirement since patterns are spheres (centers and radius) of each cluster. On the other hand, many grid clustering techniques ( [START_REF] Wang | STING: A statistical information grid approach to spatial data mining[END_REF][START_REF] Pilevar | GCHL: A grid-clustering algorithm for high-dimensional very large spatial data bases[END_REF] for a short excerpt) have been proposed. However, none of them are as fast and scalable as Point Access Methods (PAM) since external storage support and dedicated insert-delete-search operations are missing. Then, PAMs remain the preferred logical structures for the anonymization of very large data sets.

Comparative Analysis of PAMs

For an insight into multi-dimensional Point Access Methods, the reader is strongly invited to refer to the first chapter of [START_REF] Samet | Foundations Of Multidimensional And Metric Data Structures[END_REF]. In Table 2, we present a short comparison between the most popular PAMs that could be of interest for PPDP task. For the sake of simplicity, we omit the multiple extensions of each structure, available in the literature, since the main criteria of our comparison are inherent to each structure such that they remain valid whenever the extension.

Criteria are as follows:

• bucket? -decides whether the PAM is bucketed or not, i.e. each element of the logical structure has a parametrized size rather than a fixed-length size. Bucket PAMs are those that could be used as spatial indices for databases since the bucket size B is set to the disk page size and then, the I/O cost of such structures is controlled. • orientation -separates PAMs into 2 categories: those that decompose the underlying space, and those that aggregate the data points. The former are top-down since they iteratively divide the space to build the blocks, and the latter are bottom-up since they operate from the data to the blocks;

• shape -blocks of the partitioning could have various shapes in the space. The most simple but popular one is the hyperrectangle (HR);

• grid? -decides whether pre-defined scales support the PAM or not, such that every partition line follows a grid in the space. PAMs with such feature adopt regular decomposition.

• done -already used into an anonymization approach? (see Section 2.1 above for a review).

The 5 first raws of Table 2 refer to in memory structures. Except the BSP tree, all of them build (nested) hyperrectangular ((N)HR) blocks, thus they meet the PPDP requirements as stated in Section 1.4. The NHR property will be discussed further in Section 3.1. The BSP tree builds convex polytopes that do not allow to decompose orthogonal range queries then it is not eligible for a PPDP task. The only BD-tree, that builds nested HRs, has not already been support of an anonymization process.

The all remaining raws are Bucketed PAMs (BPAMs) that is, indexing structures for point databases. Among them, the 4 first structures generate HR blocks, whereas the 3 last ones provide nested HRs. The only R + -tree was used for PPDP until now.

Moreover, we argue that bottom-up spatial indexing is not systematically more efficient than top-down approaches as opposed to the conjecture from [START_REF] Iwuchukwu | K-anonymization as spatial indexing: Toward scalable and incremental anonymization[END_REF]. This result is given by our own experiments comparing in the same running environment R + -tree approach (bottom-up) with the BANG file (top-down). Following usual analysis on spatial access methods, we claim that the performance is mainly dependent from the splitting strategy. In the BANG file, we use regular decomposition following the grid whereas the original R + -tree grows by means of a quadratic procedure comparing pairwise distances of elements in an overflow bucket.

Those strategies determine a constant factor (w.r.t. N , the number of points) in time complexity that makes the execution time slower for the R + -tree. Hence, both top-down and bottom-up approaches deserve to be studied in the context of PPDP.

Finally, the grid-based PAMs have the ability to support background knowledge in the space decomposition process by means of dimensional scales. Consequences are multiple. First, the block splitting strategy is straightforward since scales have been pre-defined over each dimension, so that the algorithm performs very well. Second, the lowest K value is given by the density of the finest regions in the grid.

Hence the user controls the privacy requirement by means of the grid resolution rather than a parameter K. Obviously, grid resolution could be adapted to match a given K value when needed.

Focus on Bucketed PAMs

Bucketed PAMs (BPAMs) are well-suited for the anonymization task. The very first reason is that BPAMs fulfill the basic requirements for PPDP as stated in Section 1.4. But BPAMs have many other nice features that could be of interest in the context of PPDP. First, since they support spatial indexing techniques in databases, they leverage 30years research and experience in effective and efficient multidimensional partitioning data structures built from very large data sets. Thus, they scale up and perform very well.

Next, BPAMs natively offer basic insert-delete-search operations that straightforwardly make the anonymization process incremental. It then supports dynamic updates of the dataset before the generation of the anonymous public release, and it provides a framework to study the open issue of continuous publication.

Moreover, BPAMs require a search operation to perform at least in O(log n) to be efficient. Thus, they all develop a hierarchical structure, so-called tree directory, that makes possible multi-granular anonymization with partitioning extraction at any level in the tree. The only exception would be the Grid file that performs in O(1) such like linear hashing, having the main drawback of a low filling rate in each block and a large and sparse directory.

NESTED HYPERRECTANGLES

We focus in this section on a category of BPAMs: those with nested hyperrectangle blocks. We first present their features and then we discuss about open issues such that they could effectively support PPDP tasks.

Features of NHR-based BPAMs

We argue that. . . 

Point and Range Queries against NHRs

Remind that one of the PPDP requirements is to provide user-friend descriptions of anonymous data set to ease point and range searching in very simple but popular environments such like spreadsheets. Remind that point queries and orthogonal range queries both have the property of being decomposable into dimensional filters. HR-based BPAMs are obviously tailored to fulfill such requirement. We argue that anonymous public releases built with NHR-based BPAMs could also support point and orthogonal range queries, without disregarding quality and efficiency of the anonymization process.

Then, we present a first attempt to resolve point and orthogonal range queries against NHRs within a tabular representation of anonymous records. To this end, each equivalence class of the public release is encoded by its enclosing hyperrectangular region such that nested regions are allowed in the table. And the partitioning level of each region is provided in an additional column. Hence, it becomes very easy to process point queries in the anonymous table :   1. define filters on each dimension; Orthogonal range searching is slightly more difficult to manage. Indeed, if we follow the above point query process, defining range filters rather than exact match filters, then we are left with false negatives since enclosing regions could be partly covered by the range query. At the contrary, if we stop at step 2, then there could be false positives in the answer set.

Then, we propose the following methodology to manually perform orthogonal range searching in anonymous public releases. The query is first decomposed into elementary range queries that cover the entire query space with small cuboids that correspond to the finest resolution of regions in the public release. The resolution can be determined by means of the highest level value. Obviously, the resolution depends on the K value for a given public release. Then, each elementary range query is performed in the same way than point queries, except that filters on dimensions are ranges rather than exact matching. Finally, the answer set is the union of all the elementary range query results.

For instance, assume a range query Q that spans the subspace of A shown on Figure Obviously, the BPAM tree directory remains available for very large data sets and could be used as a regular database access method for any kind of range queries over the leaves of the index structure (the M -anonymous release).

DISCUSSION 4.1 Extension to other generalization models

K-anonymity is the very first generalization principle to achieve sanitization of data. Its main purpose is to prevent from identity disclosure. Other more sophisticated models have emerged in recent years to overcome shortcomings of K-anonymity, especially the attribute disclosure risk. Among the most popular generalization principles are ℓdiversity [START_REF] Machanavajjhala | Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity[END_REF] and t-closeness [START_REF] Li | t-closeness: Privacy beyond k-anonymity and l-diversity[END_REF].

As stated in [START_REF] Iwuchukwu | K-anonymization as spatial indexing: Toward scalable and incremental anonymization[END_REF] for the R + -tree, any BPAM would be able to incorporate constraints from the definition of the various existing generalization models in its anonymization process.

The only accommodation would be to redefine the assignment and splitting strategies such that both resulting blocks satisfy the generalization model. For instance, to make the anonymous release ℓ-diverse, it requires that at least ℓ sensitive values are "well represented" in each equivalence class. Thus, the algorithm would incorporate checking on sensitive values in its splitting decision to only create new ℓ-diverse blocks from old ones. And it would add constraint on assignment of a new point into an existing block such that the resulting block still satisfies the ℓ-diversity, otherwise the algorithm would locally redistribute points into blocks.

Many other models of anonymization exist in the literature, such like the ε-differential privacy [START_REF] Dwork | Differential privacy[END_REF] to prevent from probabilistic attacks, but they do not use generalization to preserve privacy of records and they are far from practical approaches for most of the current anonymization requirements in real-life. For a comprehensive review of anonymization models and algorithms, the reader is invited to refer [START_REF] Fung | Privacy-preserving data publishing: A survey on recent developments[END_REF].

Compaction procedure

In [START_REF] Iwuchukwu | K-anonymization as spatial indexing: Toward scalable and incremental anonymization[END_REF], the authors propose a compaction procedure that simply shrinks the envelop of each block to its MBB as shown on Figure 2. Consequently, the average volume of the blocks is minimized.

The R + -tree approach natively computes such MBBs for every block. However, top-down NHR-based BPAMs operate a decomposition of the space such that the union of all the blocks spans the entire space. Obviously, a compaction of each block would yield to a more accurate anonymous public release, and would still increase its quality. Thus, it can be considered as a straightforward improvement of top-down NHR-based BPAMs, even if computation of non hyperrectangular "MBB" such like those on Figure 3 must be carefully defined first.

CONCLUSIONS

In this communication, we advocated the use of Bucketed Point Access Methods for Privacy-Preserving Data Publishing tasks. We focused on the K-anonymity generalization model for data anonymization. We first reviewed the existing approaches based on multidimensional point partitioning. Then, we presented an almost comprehensive list of PAMs eligible to the PPDP task. We argued that Nested HyperRectangle-based BPAMs are the most promising structures to support PPDP. Then, we considered decomposable point and range queries against tabular representation of anonymous public releases, and we proposed a first attempt to answer such queries. Finally, we discussed about obvious extensions to various generalization models and compaction of NHRs to Minimum Bounding Boxes.

As a follow-on of that study, there could be many tracks to investigate. First, it is obvious that several instances of NHR-based BPAMs must be implemented and compared for K-anonymization. Next, extensions to other generalization models could be experimented as well. Besides, the development of a toolbox that supports search and analysis of nested hyperrectangular anonymous records would be highly valuable. Indeed, we argue that those shapes are the most sophisticated ones that could be managed by regular end-users. And finally, the definition of a compaction procedure for NHRs is also an interesting problem in the field of computational geometry.
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 23 Figure 2: Low quality binary partitioning of a set of 6 points into blocks of at least 3 points, following either (a) X-axis, or (b) Y-axis.
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 4 Figure 4: Example of a 2D data space partitioned with NHR-based BPAM into 7 nested regions {A, B, C, D, E, F, G}.

Figure 5 :

 5 Figure 5: Example of a sub-space spanned by a range query on the partitioning of Figure 4.

Table 1 :

 1 Example of a 3-Anonymous Public Release (with raw values into bracket).

	Id	Age	Zipcode	Gender Disease
	(1) [48-62] (62) 441XX (44120) * (F)	Flu
	(2) [48-62] (51) 441XX (44190) * (M)	Flu
	(3) [48-62] (48) 441XX (44100) * (M)	HIV
	(4) [59-77] (59) 444XX (44470) * (F)	Flu
	(5) [59-77] (77) 444XX (44420) * (M)	Gastritis
	(6) [59-77] (66) 444XX (44420) * (M)	HIV
	1/K.			
	Table 1 provides a toy example of a public release of 6 med-
	ical records following 3-anonymity, i.e. each public record
	is identical on quasi-identifiers (Age, Zip and Gender ) with
	at least 2 other records. For instance, records 1, 2, 3 from
	Table 1 belongs to the same equivalence class and are in-
	distinguishable one with each other. Pattern of the class is
	(Age=[48-62], Zip=441XX, Gender=*). Similarly, records
	4, 5, 6 form the second equivalence class.

Table 1

 1 

are cuboids in the 3dimensional space (Age, Zipcode, Gender) as shown by Figure

1

. As a point query example Q1, user would filter data to retrieve possible patient's record designated by Age=62 AND Zip:=44120 1 AND Gender:=F 2 and she would be returned the answer set {1, 2, 3} from Table

1

. Similarly, an example of a window query Q2 would yield to searching for patient's records satisfying Zip IN [4442X,4447X] AND Age>=50 AND Gender=*. It would then return the set {4, 5, 6}.

Table 2 :

 2 Comparison of index structures for multidimensional point data. HR stands for HyperRectangle, NHR is Nested HR, CP means Convex Polytope.

	Those structures are external or secondary
	storage structures and then, they can grow as much
	as the size of the data set requires to, without main
	memory limitations;

  ) is a false negative. To fix this wrong behavior, the above methodology for range searching first decomposes the query into 3 elementary queries Q (1) , Q (2) and Q (3) that span respectively the sub-part of D, region E and region G. Values of dimensional filters are given by the examination of bounds in each column of the equivalence classes. Next, Q (1) is computed as a point query (with range filters) and gives the intermediate result set {(A, 0), (D, 1)}. Then the answer is [D]. The process is repeated for Q (2) and Q (3) and it returns resp. [E] and [G]. Union of the 3 result sets is the answer to Q.

	5. Step 2 of point queries with
	range filters returns the intermediate result set {(A, 0), (D, 1), (E, 2), (G, 2)}, whereas step 3 gives {(E, 2), (G, 2)}. In the former result set, (A, 0) is a false positive, and in the later re-
	sult set, (D, 1