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Projectively Equivariant Quantization and Symbol

calculus in dimension 1|2

N. Mellouli ‡

23/06/2011

Abstract

The spaces of higher-order differential operators (in Dimension 1|2), which are
modules over the stringy Lie superalgebra K(2), are isomorphic to the correspond-
ing spaces of symbols as orthosymplectic modules in non resonant cases. Such an
osp (2|2)-equivariant quantization, which has been given in second-order differential
operators case, keeps existing and unique. We calculate its explicit formula that
provides extension in particular order cases.

1 Introduction and the main results

Let S1|2 be a supermanifold which is endowed with a projective structure (Susy-structure),
see [12], in dimension 1|2 and Dλ,µ

(
S1|2

)
the space of differential operators on S1|2 acting

from the space of λ-densities to the space of µ-densities where λ and µ are real or complex
numbers. The space Dλ,µ

(
S1|2

)
which is a module over the stringy superalgebra K(2), see

[6], is naturally filtrated and has an other finer filtration by the contact order of differential
operators. The space of symbols S

(
S1|2

)
, that is the graded module grDλµ

(
S1|2

)
, isn’t

isomorphic to the space Dλ,µ

(
S1|2

)
as K(2)-module. Therefore, we have restricted the

module structure on Dλµ

(
S1|2

)
to the orthosymplectic Lie superalgebra osp (2|2) that is

naturally embedded into K(2). We establish a canonical isomorphism between the space
of differential operators on S1|2 and the corresponding space of symbols. An explicit
expression of projectively equivariant quantization map is given in case of second order
differential operetors, see [12]. We extand calculus to symbols of higher order differential
operators.

2 Geometry of the supercircle S1|2

We have considered the supercircle S1|2 described in [12] by its graded commutative
algebra of complex-valued functions C∞

(
S1|2

)
, consisting of the following elements :

f (x, ξ1, ξ2) = f0(x) + ξ1 f1(x) + ξ2 f2(x) + ξ1ξ2 f12(x), (2.1)
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where x is the Fourier image of the angle parameter on S1, ξ1, ξ2 are odd Grassmann
coordinates and f0, f12, f1, f2 ∈ C∞(S) are functions with complex values. We have
defined the parity function p by setting p (x) = 0 and p (ξi) = 1.

The standard contact structure on S1|2, known as Susy-structure, is defined by the
data of a linear distribution

〈
D1, D2

〉
on S1|2 generated by the odd vector fields :

D1 = ∂ξ1 − ξ1∂x, D2 = ∂ξ2 − ξ2∂x. (2.2)

We would rather recall that every contact vector field can be expressed, for some function
f ∈ C∞

(
S1|2

)
, by

Xf = f∂x − (−1)p(f)
1

2

(
D1 (f)D1 +D2 (f)D2

)
(2.3)

The projective (conformal) structure on the supercircle S1|2, see [14], is defined by the
action of Lie superalgebra osp (2|2). The orthosymplectic algebra osp (2|2) is spanned
by the contact vector fields Xf with the contact Hamiltonians f which are elements of
{1, ξ1, ξ2, x, ξ1ξ2, xξ1, xξ2, x

2}. The embedding of osp (2|2) into K (2) is given by (2.3).
The subalgebra Aff (2|2) of osp (2|2), called the Affine Lie superalgebra, is spanned by
the contact vector fields Xf with the contact Hamiltonians f which are elements of
{1, ξ1, ξ2, x, ξ1ξ2}.

For any contact vector field, we have defined a family of differential operators of order
one on C∞

(
S1|2

)
:

Lλ
Xf

:= Xf + λf ′, (2.4)

where the parameter λ is an arbitrary complex number. Thus, we have obtained a family
of K (2)-modules on C∞

(
S1|2

)
noted by Fλ

(
S1|2

)
which are called the spaces of weighted

densities of weight λ.

3 Differential operators on the spaces of weighted

densities

In this section, we have introduced the space of differential operators acting on the spaces
of weighted densities. We have also presented the corresponding space of symbols on S1|2.
Those are detailed in [10, 7, 5, 2, 12].

For every integer or half-integer k, the space of differential operators of the form

A =
∑

ℓ+m
2
+n

2
≤k

aℓ,m,n∂
ℓ
x D

m

1 D
n

2 , (3.1)

where aℓ,m,n ∈ C∞
(
S1|2

)
and m,n ≤ 1, has been noted by Dk

λµ

(
S1|2

)
. This above K(2)-

module space has a K(2)-invariant finer filtration :

D0
λµ

(
S1|2

)
⊂ D

1

2

λµ

(
S1|2

)
⊂ D1

λµ

(
S1|2

)
⊂ ... ⊂ Dk

λµ

(
S1|2

)
⊂ D

k+ 1

2

λµ

(
S1|2

)
⊂ · · · (3.2)

that has been considered in papers [12, 5].
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We would rather remind that the orthosymplectic superalgebra osp (2|2) has been
acting on Dk

λµ

(
S1|2

)
. The action of contact field Xf of order one on a differential operator

A, see formula (2.3), is given by

£λµ
Xf

(A) = Lµ
Xf

◦ A− (−1)p(f)p(A)A ◦ Lλ
Xf

. (3.3)

3.1 Space of symbols of differential operators

The graded K (2)-module, which is associated with the finer filtration (3.2) and called the
space of symbols of differential operators, is defined by

grDλµ

(
S1|2

)
=

∞⊕

i=0

gr
i
2Dλµ

(
S1|2

)
, (3.4)

where grk Dλµ

(
S1|2

)
= Dk

λµ

(
S1|2

)
/D

k− 1

2

λµ

(
S1|2

)
for every integer or half-integer k.

The image of any differential operator through the natural projection

σpr : D
k
λµ

(
S1|2

)
→ grk Dλµ

(
S1|2

)
,

that is defined by the filtration (3.2), has been called the principal symbol.
Referring to [12], the stringy superalgebra K (2) keeps acting on the space of symbols.

Proposition 3.1. If k is an integer, then

grkDλµ

(
S1|2

)
= Fµ−λ−k

⊕
Fµ−λ−k (3.5)

Proof. By definition (see formula (3.1)), a given operator A ∈ Dk
λµ

(
S1|2

)
with integer k

is of the form
A = F1 ∂

k
x + F2 ∂

k−1
x D1D2 + · · · ,

where · · · stand for lower order terms. The principal symbol of A is then encoded by the
pair (F1, F2). From (3.3), we easily calculate the K(2)-action on the principal symbol:

LXf
(F1, F2) =

(
Lµ−λ−k
Xf

(F1) , L
µ−λ−k
Xf

(F2) .
)

In other words, both F1 and F2 transform as (µ− λ− k)-densities.

The situation is more complicated for half-integer k : the K (2)-action has been given
by

LXf
(F1, F2) = (Lµ−λ−k

Xf
(F1)−

1

2
D1D2 (f)F2, L

µ−λ−k
Xf

(F2) +
1

2
D1D2 (f)F1). (3.6)

Therefore, the spaces of symbols of half-integer contact order aren’t isomorphic to the
spaces of weighted densities.
Simplifying the notation as in [8, 3, 5, 12], the whole space of symbols grDλµ

(
S1|2

)
,

depending only on µ − λ, has been noted by Sµ−λ

(
S1|2

)
, and the space of symbols of

contact order k has been noted by Sk
µ−λ

(
S1|2

)
.

A linear map, Q : Sµ−λ

(
S1|2

)
→ Dλµ

(
S1|2

)
, is called a quantization map if it verifies

bijectivety and preserves the principal symbol of every differential operator.
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4 Projectively equivariant quantization on S1|2

The main result of this paper is the existence and uniqueness of an osp (2|2)-equivariant
quantization map in Dimension 1|2. We calculate its explicit formula.

For every m integer or half-integer, the space Dm
λµ

(
S1|2

)
is isomorphic to the cor-

responding space of symbols as an Aff (2|2)-module. We will show how to extend this
isomorphism to that of the osp (2|2)-modules.

4.1 The Divergence operators as Affine equivariant

Let us introduce new differential operators, which are called Divergence operators, on the
space of symbols Sµ−λ

(
S1|2

)
.

At first, we consider the case of differential operators of contact order k, where k is an
integer. We have assumed that the symbols of differential operators are homogeneous and
we have defined parity of the non vanished symbol (F1, F2) as p (F ) := p (F1) = p (F2).

4.1.1 The Divergence operators in case of integer contact order k

In this case, we define the Divergence as Affine equivariant differential operators on the
space of symbols Sµ−λ

(
S1|2

)
. In each component Sk

µ−λ

(
S1|2

)
, we have

DIV 2n+1 (F1, F2) = (−1)p(F )+1

(
k+2λ
k

∂n
xD2 (F2) + ∂n

xD1 (F1)
∂n
xD2 (F1)−

k+2λ
k

∂n
xD1 (F2)

)
, (4.1)

DIV 2n (F1, F2) =

(
∂n
x (F1)−

(k+2λ)n
k(2(µ−λ)+n−2k)

∂n−1
x D1D2 (F2)

(k+2λ)(k−n)
k(k−n+2λ)

∂n
x (F2) +

n(k−n)
(2(µ−λ)+n−2k)(k−n+2λ)

∂n−1
x D1D2 (F1)

)
(4.2)

and

div2k−(2n+1) =
(
∂k−n−1
x D1, ∂k−n−1

x D2

)
,

div2k−(2n) =
(
∂k−n
x , ∂k−n−1

x D1D2

)
.

Lemma 4.1. The Divergence operators (4.1) and (4.2) commute with the Aff (2|2)-action.

Proof. This is a direct consequence of projectively equivariant symbol calculus.
We are looking for the symbols:

DIV 2n+1 (F1, F2) =

(
c1∂

n
xD2 (F2) + c2∂

n
xD1 (F1)

c3∂
n
xD2 (F1) + c4∂

n
xD1 (F2)

)

and

DIV 2n (F1, F2) =

(
c5∂

n
x (F1) + c6∂

n−1
x D1D2 (F2)

c7∂
n
x (F2) + c8∂

n−1
x D1D2 (F1)

)

where ci(1 ≤ i ≤ 8) are arbitrary constants. From the commutation relation
[
LXf

, DIV
]

for f ∈ Aff (2|2) we easily get the Aff (2|2)-equivariance if Divergence operators .
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4.1.2 The Divergence operators in case of half-integer contact order k + 1
2

In this case, we also define the Divergence as Affine equivariant differential operators on

the space of symbols Sµ−λ

(
S1|2

)
. In each component S

k+ 1

2

µ−λ

(
S1|2

)
we have

DIV 2n+1 (F1, F2) = (−1)p(F ) 2 (µ− λ)− (2k + 1)

2 (µ− λ)− 2k

(
∂n
xD2 (F2) + ∂n

xD1 (F1)
k−n

k−n+2λ

(
∂n
xD2 (F1)− ∂n

xD1 (F2)
)
)
,

(4.3)

DIV 2n (F1, F2) =
2 (µ− λ)− (2k + 1)

2 (µ− λ)− 2k

(
2(µ−λ)+n−2k

2(µ−λ)+n−(2k+1)
∂n
x (F1)−

n
2(µ−λ)+n−(2k+1)

∂n−1
x D1D2 (F2)

2(µ−λ)+n−2k
2(µ−λ)+n−(2k+1)

∂n
x (F2) +

n
2(µ−λ)+n−(2k+1)

∂n−1
x D1D2 (F1)

)
,

(4.4)
and

div2k+1−(2n+1) =
(
∂k−n
x , ∂k−n−1

x D1D2

)
,

div2k+1−(2n) =
(
∂k−n
x D1, ∂k−n

x D2

)
.

Lemma 4.2. The Divergence operators (4.3) and (4.4) commute with the action of Affine
Lie superalgebra.

Proof. Straightforward calculus.

4.2 Staitement of the main result

Let us give the explicit formula of the projectively equivariant quantization map. We will
give the proof in the next section.

Theorem 4.3. The unique osp (2|2)-equivariant quantization map associates the following
differential operator with a symbol (F1, F2) ∈ Sk

µ−λ

(
S1|2

)
where k is (even or odd) integer

:

Q (F1, F2) =
k∑

n=0

( [
k
2

]
[
2n+1+(−1)k

4

]
)( [

k−1
2

]
+ 2λ[

2n+1−(−1)k

4

]
)

(
k − 2 (µ− λ)[

n+1
2

]
) DIV n (F1, F2) div

k−n (4.5)

provided µ − λ 6= 0, 1
2
, 1, 3

2
, 2...where DIV and div are defined in each particular case of

even or odd contact order : (4.1), (4.2), (4.3) and (4.4) and the coefficients are

(
n
m

)
=

n(n−1)..(n−m+1)
m!

.

Remark 4.4. This theorem keeps being achieved in the case of Dimension 1|1, see [5];
the divergence operators DIV and div are given by D.

5



4.3 Proof of theorem in case of k-differential operators

Proof. Let us first consider the case of k-differential operators where k is integer. The
quantization map 4.5 is, indeed, osp (2|2)-equivariant. Now, we are considering a differen-
tiable linear map Q : Sk

µ−λ

(
S1|2

)
→ Dk

λµ

(
S1|2

)
for k ≥ 1, preserving the principal symbol.

Such a map is of the form :

Q (F1, F2) = F1∂
k
x + F2∂

k−1
x D1D2 + ...

+Q̃
(2ℓ)
1 (F1) + Q̃

(2ℓ+1)
1 (F1)

+Q̃
(2ℓ)
2 (F2) + Q̃

(2ℓ+1)
2 (F2)

..+
(
C2k,1∂

k
x (F1) + C2k,2∂

k−1
x D1D2 (F2)

)

where Q̃
(m)
1 and Q̃

(m)
2 are differential operators with coefficients in Fµ−λ

(
S1|2

)
, see (3.1).

We obtain the following :
a) This map commutes with the action of the vector fields D1, D2 ∈ osp (2|2), where

Di = ∂ξi + ξi∂x, if and only if the differential operators Q̃
(m)
1 and Q̃

(m)
2 are with constant

coefficients.
b) This map commutes with the linear vector fields Xξ1, Xξ2 , Xx if and only if the

differential operators Q̃
(m)
1 and Q̃

(m)
2 are of contact order m

2
in addition to the form






Q̃
(2ℓ+1)
1 (F1) = C2ℓ+1,1∂

ℓ
xD1 (F1) ∂

k−ℓ−1
x D1 + C2ℓ+1,3∂

ℓ
xD2 (F1) ∂

k−ℓ−1
x D2

Q̃
(2ℓ)
1 (F1) = C2ℓ,1∂

ℓ
x (F1) ∂

k−ℓ
x + C2ℓ,3∂

ℓ−1
x D1D2 (F1) ∂

k−ℓ−1
x D1D2

Q̃
(2ℓ+1)
2 (F2) = C2ℓ+1,2∂

ℓ
xD2 (F2) ∂

k−ℓ−1
x D1 + C2ℓ+1,4∂

ℓ
xD1 (F2) ∂

k−ℓ−1
x D2

Q̃
(2ℓ)
2 (F2) = C2ℓ,2∂

ℓ−1
x D1D2 (F2) ∂

k−ℓ
x + C2ℓ,4∂

ℓ
x (F2) ∂

k−ℓ−1
x D1D2

where the coefficients Cm,i(i = 1, 2, 3, 4) are arbitrary constants.
Note that the vector field Xxξi is the commutation relation [Xξi, Xx2] , i = 1, 2, so it

is sufficient to impose the equivariance with respect to the vector field Xx2 to meet the
whole condition of osp (2|2)-equivariance.

d) The above quantization map commutes with the action of Xx2 if and only if any
the coefficients Cm,i verify the following conditions :




ℓ (ℓ− 1 + 2 (µ− λ− k))C2ℓ,1 = − (k − ℓ+ 1) (k − ℓ+ 2λ)C2ℓ−2,1

(ℓ+ 1) (ℓ+ 2 (µ− λ− k))C2ℓ,2 = (k − ℓ+ 2λ)

(
(−1)p(F ) (C2ℓ−1,2 − C2ℓ−1,4)

− (k − ℓ+ 1)C2ℓ−2,2

)

(ℓ+ 1) (ℓ+ 2 (µ− λ− k))C2ℓ,3 = − (k − ℓ)

(
(−1)p(F ) (C2ℓ−1,1 + C2ℓ−1,3)
+ (k − ℓ+ 2λ+ 1)C2ℓ−2,3

)

ℓ (ℓ− 1 + 2 (µ− λ− k))C2ℓ,4 = − (k − ℓ) (k − ℓ+ 2λ+ 1)C2ℓ−2,4

(ℓ + 1) (ℓ+ 2 (µ− λ− k))C2ℓ+1,1 = (k − ℓ)
(
(−1)p(F )C2ℓ,1 − (k − ℓ+ 2λ)C2ℓ−1,1

)

(ℓ + 1) (ℓ+ 2 (µ− λ− k))C2ℓ+1,2 = (k − ℓ+ 2λ)
(
(−1)p(F )C2ℓ,4 − (k − ℓ)C2ℓ−1,2

)

(ℓ + 1) (ℓ+ 2 (µ− λ− k))C2ℓ+1,3 = (k − ℓ)
(
(−1)p(F )C2ℓ,1 − (k − ℓ+ 2λ)C2ℓ−1,3

)

(ℓ + 1) (ℓ+ 2 (µ− λ− k))C2ℓ+1,4 = − (k − ℓ+ 2λ)
(
(−1)p(F )C2ℓ,4 + (k − ℓ)C2ℓ−1,4

)
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If µ−λ 6= 0, 1
2
, 1, 3

2
, 2..., this system has been solved and the solutions are the following:






C2ℓ,2 =





k − 1
ℓ− 1









k + 2λ
ℓ+ 1









−2 (µ− λ− k)
ℓ+ 1





C2ℓ,3 = −





k
ℓ+ 1









k + 2λ− 1
ℓ− 1









−2 (µ− λ− k)
ℓ + 1





and






C2ℓ,1 =
(k+2λ−ℓ)(2(µ−λ−k)+ℓ)

ℓ(k−ℓ)
C2ℓ,3,

C2ℓ,4 = − (k−ℓ)(2(µ−λ−k)+ℓ)
ℓ(k−ℓ+2λ)

C2l,2,

C2ℓ+1,1 = (−1)p(F ) (k+2λ−ℓ)
ℓ

C2ℓ,3,

C2ℓ+1,2 = − (−1)p(F ) (k−ℓ)
ℓ

C2ℓ,2,

C2ℓ+1,3 = (−1)p(F ) (k+2λ−ℓ)
ℓ

C2ℓ,3

C2ℓ+1,4 = (−1)p(F ) (k−ℓ)
ℓ

C2ℓ,2

.

That allows us to obtain the formula (4.5).

4.4 Proof of theorem in case of
(
k + 1

2

)
-differential operators

Proof. In the case of
(
k + 1

2

)
-differential operators where k is integer, we get an Aff (2|2)-

equivariant quantization map by a straightforward calculation which is given by

Q (F1, F2) = F1∂
k
xD1 + F2∂

k
xD2 + ...

+Q̃
(2ℓ)
1 (F1) + Q̃

(2ℓ+1)
1 (F1)

+Q̃
(2ℓ)
2 (F2) + Q̃

(2ℓ+1)
2 (F2)

..+
(
C2k+1,1∂

k
xD1 (F1) + C2k+1,2∂

k
xD2 (F2)

)

where the m
2
-differential operators Q̃

(m)
1 and Q̃

(m)
2 have the form :





Q̃
(2ℓ)
1 (F1) = C2ℓ,1∂

ℓ
x (F1) ∂

k−ℓ
x D1 + C2ℓ,3∂

ℓ−1
x D1D2 (F1) ∂

k−ℓ
x D2

Q̃
(2ℓ+1)
1 (F1) = C2ℓ+1,1∂

ℓ
xD1 (F1) ∂

k−ℓ
x + C2ℓ+1,3∂

ℓ
xD2 (F1) ∂

k−ℓ−1
x D1D2

Q̃
(2ℓ)
2 (F2) = C2ℓ,2∂

ℓ−1
x D1D2 (F2) ∂

k−ℓ
x D1 + C2ℓ,4∂

ℓ
x (F2) ∂

k−ℓ
x D2

Q̃
(2ℓ+1)
2 (F2) = C2ℓ+1,2∂

ℓ
xD2 (F2) ∂

k−ℓ
x + C2ℓ+1,4∂

ℓ
xD1 (F2) ∂

k−ℓ−1
x D1D2

The above quantization map commutes with the action ofXx2 if and only if the coefficients
Cm,j(j = 1, 2, 3, 4) verify the following system of linear equations :
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






C2ℓ,1

− (ℓ+ 1)

(
ℓ+ 2

(
µ− λ
−k − 1

2

))
C2ℓ,2


 =




(k − ℓ+ 1) (k − ℓ+ 2λ+ 1)C2ℓ−2,2

+ (−1)p(F ) (k − ℓ+ 1)C2ℓ−1,2

+C2ℓ,4

− (−1)p(F ) (k − ℓ+ 2λ+ 1)C2ℓ−1,4






 (ℓ+ 1)

(
ℓ+ 2

(
µ− λ
−k − 1

2

))
C2ℓ,3

+C2ℓ,4



 =




C2l,1

+ (−1)p(F ) (k − ℓ+ 1)C2ℓ−1,1

− (k − ℓ+ 1) (k − ℓ+ 2λ+ 1)C2ℓ−2,3

+ (−1)p(F ) (k − ℓ+ 2λ+ 1)C2ℓ−1,3




(
ℓ
(
ℓ− 1 + 2

(
µ− λ− k − 1

2

))
C2ℓ,1

−C2ℓ,2

)
= − (k − ℓ+ 1) (k − ℓ+ 2λ+ 1)C2ℓ−2,1

(
C2ℓ,3

+ℓ
(
ℓ− 1 + 2

(
µ− λ− k − 1

2

))
C2ℓ,4

)
= − (k − ℓ+ 1) (k − ℓ+ 2λ+ 1)C2ℓ−2,4




C2ℓ+1,1

+ (ℓ+ 1)

(
ℓ+ 2

(
µ− λ
−k − 1

2

))
C2ℓ+1,2


 = − (k − ℓ+ 2λ)

(
(−1)p(F )C2ℓ,4

+ (k − ℓ+ 1)C2ℓ−1,2

)




C2ℓ+1,2

+ (ℓ+ 1)

(
ℓ+ 2

(
µ− λ
−k − 1

2

))
C2ℓ+1,1


 = − (k − ℓ+ 2λ)

(
(−1)p(F )C2ℓ,1

+ (k − ℓ+ 1)C2ℓ−1,1

)




C2ℓ+1,3

− (ℓ+ 1)

(
ℓ+ 2

(
µ− λ
−k − 1

2

))
C2ℓ+1,4


 = (k − ℓ)

(
(k − ℓ+ 2λ+ 1)C2ℓ−1,4

− (−1)p(F )C2ℓ,4

)




C2ℓ+1,4

− (ℓ+ 1)

(
ℓ+ 2

(
µ− λ
−k − 1

2

))
C2ℓ+1,3



 = (k − ℓ)

(
(−1)p(F )C2ℓ,1

+ (k − ℓ+ 2λ+ 1)C2ℓ−1,3

)

By solving this system, we obtain the formula (4.5).
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26, Birkhäuser Boston, Boston, MA, 1997.

[2] Conley C., Conformal symbols and the action of contact vector fields over the super-
line, J.Reine Angrew. Math. 633(2009), 115-163.

[3] Duval C., Lecomte P., Ovsienko V., Conformally equivariant quantization: existence
and uniqueness, Ann. Inst. Fourier bf 49 (1999), 1999–2029.

8



[4] Fregier, Y., Mathonet, P., Poncin, N., Decomposition of symmetric tensor fields in the
presence of a flat contact projective structure, J. Nonlinear Math. Phys. 15 (2008),
252–269.

[5] Gargoubi, H., Mellouli, N., Ovsienko, V., Differential operators on supercircle: con-
formally equivariant quantization and symbol calculus, Lett. Math. Phys. 79 (2007),
51–65.

[6] Grozman P., Leites D., Shchepochkina I., Lie superalgebras of string theories, Acta
Math. Vietnam., 26 (2001), 27–63.

[7] Grozman P., Leites D., Shchepochkina I., Invariant operators on supermanifolds and
standard models, in: Multiple facets of quantization and supersymmetry, Editors
M. Olshanetski and A. Vainstein, World Sci. Publ River Edge, NJ, 2002, 508–555;
math.RT/0202193.

[8] Lecomte P., Ovsienko V., Projectively equivariant symbol calculus, Lett. Math.
Phys., 49 (1999), 173–196, math.DG/9809061.

[9] Leites D., Supermanifold theory, Petrozavodsk, 1983 (in Russian).

[10] Leites D., Kochetkov Yu., Weintrob A., New invariant differential operators on su-
permanifolds and pseudo-(co)homology, Lecture Notes in Pure and Appl. Math., Vol
134, Dekker, NewYork., 1991, 217–238.

[11] Michel, J-P, Duval, C. On the projective geometry of the supercircle: a unified
construction of the super cross-ratio and Schwarzian derivative, Int. Math. Res. Not.
IMRN 2008, no. 14, 47 pp.

[12] Mellouli N., Second-order Conformally Equivariant Quantization in Dimension 12,
Sigma 5 (2009), 111.

[13] Ovsienko V., Vector fields in the presence of a contact structure, Enseign. Math. (2)
52, (2006), 215–229; math.DG/0511499.

[14] Ovsienko V., Ovsienko O., Chekanov Yu., Classification of contact-projective struc-
tures on the supercircle, Russian Math. Surveys, 44 (1989), no. 3, 212–213.

[15] Shchepochkina I., How to realize Lie algebras by vector fields. Theoret. Math. Phys.
147 (2006), 821–838; math.RT/0509472

9


