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Abstract In 1985 Leland suggested an approach to price contingent claims under
proportional transaction costs. Its main idea is to use the classical Black–Scholes
formula with a suitably adjusted volatility for a periodical revision of the portfolio
whose terminal value approximates the pay-off. Unfortunately, if the transaction
costs rate does not depend on the number of revisions, the approximation error
does not converge to zero as the frequency of revisions tends to infinity. In the
present paper, we suggest a modification of Leland’s strategy ensuring that the
approximation error vanishes in the limit.
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1 Introduction

In his seminal paper [7] Leland suggested a modification of the Black–Scholes
approach to contingent claim pricing in the framework of a two-asset financial
market model with proportional transaction costs. The idea is the following: one
may use the Black–Scholes formula with an artificially enlarged volatility σ̂ instead
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of σ, the true one. The intuition behind is to compensate for transaction costs by
increasing volatility. A theoretical justification for this approach is based on the
replication principle. The terminal value of a self-financing portfolio, revised at
a sufficiently large number of dates {tk : k = 1, · · · , n}, should approximate the
terminal pay-off. Leland gave an explicit formula for the adjusted volatility σ̂ which
may depend on n, the number of revisions. His pricing methodology is of practical
importance: it is easy to implement.

However, a mathematical justification of this “approximate replication princi-
ple” turns out to be quite difficult to obtain.

The first rigorous result conjectured by Leland was obtained by Lott [9]: for the
call option the approximation error tends to zero in probability if the transaction
costs coefficients k = kn decrease to zero with the rate proportional to n−1/2 (in
this case σ̂ does not depend on n). On the other hand, the replication principle
fails to be true if k = k0 is a constant and the Leland strategy leads to a systematic
limiting error. This was observed by Kabanov and Safarian [6] who proved also
that the replication error tends to zero when k = kn decreases to zero with the
rate n−α, α ∈ (0, 1/2).

There are a number of studies treating the case α ∈ (0, 1/2) and, especially,
α = 1/2: for more general pay-off functions, non-uniform revision intervals, on the
asymptotics of the L2-norm of the approximation error, see papers [1], [2], [3], [4],
and the monograph [6].

The practically interesting case α = 0 (i.e., k0 is constant), where there is a
systematic error also attracted a lot of attention. Limit theorems were obtained
by Granditz and Schachinger [5] and Pergamenshchikov [10]. Zhao and Ziemba
[12], [13] provides a numerical study of the limiting error for practical values of
parameters. Sekine and Yano, [11] suggested some scheme to reduce it. In the
paper [10] it was suggested a modification of the Leland strategy for the call
option eliminating the limiting error. Unfortunately, the approach is based on the
explicit formulae and, seemingly, cannot be generalized for more general pay-off
functions.

Our modification of the Leland strategy has the following features:

1) we use the same enlarged volatility;

2) the initial value of the portfolio V n0 is exactly the same;

3) the only difference is at the revision dates ti; We apply not the modified
“delta” of the Black–Scholes formula with enlarged volatility, but correct it on the
basis of previous revisions, see the formula (2.3).

We show that the terminal values of portfolios for the proposed strategy con-
verge to the terminal pay-off. We believe that practitioners will benefit from the
suggested modification. Our strategy outperforms the conventional one even for a
small number of revision dates. The simulations presented in our paper show this
quite clearly.

2 Main Result

We consider the standard two asset model with time horizon T = 1 assuming that
it is specified under the martingale measure. The non risky asset is the numéraire
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and the price of the risky asset is given by the formula

St = S0 exp

{
−1

2

∫ t

0

σ2sds+

∫ t

0

σsdWs

}
,

that is dSt = σtStdWt where W is a Wiener process. We assume that σ(t) is a
strictly positive and continuous function on [0, 1] verifying

|σ(t)− σ(u)| ≤ µ|t− u|

where µ > 0 is a constant. In particular, we have σ(t) ∈ [σ1, σ2] where σ1 > 0. Note
that

St ∼ S0 exp{αtξ − α2
t /2}

where α2
t =

∫ t
0
σ2sds and ξ ∼ N (0, 1).

By virtue of Black and Scholes, the price of the contingent claim G(S1) is the
initial value of the replicating portfolio

Vt = V0 +

∫ t

0

HrdSr = E(G(S1)|Ft) = C(t, St),

where

C(t, x) = EG(x exp{ρtξ − ρ
2
t /2}),

ρt =

∫ 1

t

σ2sds

and the replication strategy is Hr = Cx(r, Sr).
In the model with proportional transaction costs and a finite number of revi-

sions the current value of the portfolio process at time t is described as

V nt = V n0 +

∫ t

0

DnudSu −
∑
ti≤t

k0Sti |D
n
ti+1
−Dnti | (2.1)

where Dn is a piecewise constant process with Dn = Dnti on the interval ]ti−1, ti].
Here ti = tni , i ≤ n, are the revision dates and Dnti are Fti−1 -measurable random
variables. We assume that the transaction costs coefficient is a constant k0 > 0 and
the dates ti are defined by a strictly increasing function g ∈ C2[0, 1] with g(0) = 0,
g(1) = 1, so that ti = g( in ), i = 0, · · · , n. Let us denote by f the inverse of g. The
adjusted volatility depending on n is given by the formula

σ̂2t = σ2t + σtk0n
1
2

√
8/π
√
f ′(t) = σ2t + σtγn(t). (2.2)

We modify the usual Leland strategy (see [1], [2], [3]) by considering the process
Dn with Dnt = Dnti on t ∈]ti−1, ti] and

Dnti = Ĉx(ti−1, Sti−1)−
∫ ti−1

0

Ĉxt(tu, Su)du (2.3)

where the function Ĉ(t, x) is the solution of the Cauchy problem:

Ĉt(t, x) +
1

2
σ̂2t x

2Ĉxx(t, x) = 0, Ĉ(1, x) = G(x). (2.4)
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Its solution can be written as

Ĉ(t, x) =

∫ ∞
−∞

G(xeρy−ρ
2/2)ϕ(y)dy (2.5)

where ρ2 = (ρnt )2 =
∫ 1

t
σ̂2sds and ϕ is the standard Gaussian density.

Note that σ̂2s ≥ σ21 + cn
1
2 for a constant c > 0 and, therefore

ρ2 ≥ (σ21 + cn
1
2 )(1− t).

We shall use the following hypothesis on the cadence of revisions:

Assumption (R): g′ > 0, g ∈ C2[0, 1].

The basic example is g(t) = t but it could be interesting to concentrate re-
vision dates near the horizon date (see for example [3]) in order to increase the
convergence rate.

Note that there exists a constant c > 0 such that ∆ti = ti − ti−1 ≤ c n−1. We
shall repeatedly make use of results from [1] , [2] since Assumption (R) is stronger
than the similar one (G1) of these papers.

We use the abbreviations Ĥt = Ĉx(t, St) , ĥt = Ĉxx(t, St) and

Kn
t =

∑
tn
i
<t

∆Kn
tn
i

where ∆Kn
tn0

= 0 and for i ≥ 1,

∆Kn
tn
i

= −
∫ ti

ti−1

Ĉxt(tu, Su)du.

Our hypothesis on the payoff function is as follows (see [1], [2]):

Assumption (G): G is a continuous convex function on [0,∞), two-times differ-
entiable except at the points K1 < · · · < Kp where G′ and G′′ admit right and left
limits; |G′′(x)| ≤Mx−β for all x ≥ Kp where β ≥ 3/2.

Let K0 = 0 and Kp+1 =∞. Then G′, G′′ exist on each interval [Ki,Ki+1) and
are bounded while G verifies the inequality |G(x)| ≤ M(1 + x) for some constant
M . The function Ĉ(t, x) is continuous on [0, 1] × R. Standard examples of such
functions G satisfying Assumption (G) are the continuous convex functions which
are piecewise affine.

The main result of this paper is the following:

Theorem 2.1 Let k0 > 0. Suppose that assumption (R) and (G) hold. Then

P - lim
n
V n1 = G(S1). (2.6)

Remark 2.1 The proof is given in Appendix. If G is not convex, an approximation
error appears which is explicitly formulated in [1] and [2].
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Remark 2.2 From a practical viewpoint, it is more convenient to consider the mod-
ified hedging strategy defined by:

Dnti := Ĉx(ti−1, Sti−1)−
i−2∑
j=0

Ĉxt(tj , Stj )(tj+1 − tj).

Theorem 2.1 still holds with this latter. Indeed, using Taylor approximations and
using estimations from [1], [2] and [3], we can replace ∆Kn

tn
i

by

∆Kn
tn
i

= −Ĉxt(ti, Sti)∆ti, i ≥ 1.

To prove this, it suffices to study the additional residual terms appearing by such
a modification in the decomposition of the deviation V n1 − G(S1) we use in the
proof above. They involve the analysis of the differences∫ ti

ti−1

Ĉxt(tu, Su)du− Ĉxt(ti−1, Sti−1)∆ti.

We conclude by using a Taylor approximation and the bounds of the successive
derivatives we get from [1], [2] and [3].

3 Monte Carlo Simulations

This section presents an empirical study of the performance of Leland’s method
and the modified one. We consider the price process (St)t≥0 with σ = 0.2 and
S0 = 100. The transaction costs coefficient is k0 = 0.01, the strike price is K = 100.
The simulation of the price (St)t≥0 is obtained from N uniform subdivisions of
the interval [0, 1]. For convenience, we choose uniform revision dates. The sample
size is 5000. For different values of N = n and different convex payoff functions,
we compare the simulation of the gain V n1 − G(S1) with n = N , using the initial
Leland’s method and the modified one, by computing the empirical mean gainn
and the empirical standard deviation Sdn of V n1 −G(S1) . Moreover, we provide the

corresponding 95% confidence intervals In. We use the abbreviations gain
Mod
n or

gain
Lel
n to denote whether we use the modified Leland strategy or not. Recall that

the goal of Leland’s method is to replicate approximatively G(S1) by the terminal
wealth V n1 . Hence our goal is to obtain, if possible, a gain gainn ≥ 0.

3.1 The European Call

The payoff function is G(x) = (x−K)+. The solution of the Cauchy problem (2.4)
is given by

C(t, x) = xφ (d(t, x))−Kφ
(
d(t, x)− σ̂

√
1− t

)
,

d(t, x) =
ln(x/K)

σ̂
√

1− t
+
σ̂
√

1− t
2

where

φ(x) :=

∫ x

−∞
ϕ(y)dy.
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Leland’s strategy is defined by

Cx(t, x) = φ (d(t, x)) .

The modified Leland strategy is

Dnti := Cx(ti−1, Sti−1)−
i−2∑
j=0

Cxt(tj , Stj )(tj+1 − tj)

where

Cxt(t, x) =
1

σ̂
√

1− t

(
1

2

1

1− t ln(x/K)− 1

4
σ̂2
)
ϕ (d(t, x)) .

We obtain the following results:

n σ̂ gain
Mod
n gain

Lel
n IMod

n ILeln SdMod
n SdLeln

10 0.2238 0.1669 0.1063 [0.0155, 0.3182] [−0.0422, 0.2548] 5.46 5.36
100 0.2681 0.083 0.031 [0.0170, 0.1489] [−0.0169, 0.0789] 2.38 1.73
200 0.2917 0.046 0.003 [−0.0116, 0.1036] [−0.032, 0.0387] 2.08 1.29
500 0.3337 0.039 −0.016 [−0.012, 0.09] [−0.0387, 0.0067] 1.84 0.82
1000 0.3754 0.054 −0.006 [0.0032, 0.1047] [−0.0229, 0.0109] 1.83 0.6121

As we can notice, a trader using the suggested modified strategy can increase
in average his gain by 57% versus Leland’s strategy when n = 10.

3.2 The European Put

The payoff function is G(x) = (K−x)+. The solution of the Cauchy problem (2.4)
is given by

P (t, x) = xφ (d(t, x))−Kφ
(
d(t, x)− σ̂

√
1− t

)
− x+K,

d(t, x) =
ln(x/K)

σ̂
√

1− t
+
σ̂
√

1− t
2

.

Leland’s strategy is defined by

Px(t, x) = φ (d(t, x))− 1.

The modified Leland strategy is

Dnti := Px(ti−1, Sti−1)−
i−2∑
j=0

Pxt(tj , Stj )(tj+1 − tj)

where

Pxt(t, x) =
1

σ̂
√

1− t

(
1

2

1

1− t ln(x/K)− 1

4
σ̂2
)
ϕ (d(t, x)) .

We obtain the following results:
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n σ̂ gain
Mod
n gain

Lel
n IMod

n ILeln SdMod
n SdLeln

10 0.2238 0.15 0.08 [0.0277, 0.2722] [−0.0378, 0.1978] 4.41 4.25
100 0.2681 0.069 0.05 [0.0091, 0.1288] [0.0092, 0.0907] 2.16 1.47
200 0.2917 0.01 −0.004 [−0.0432, 0.0632] [−0.0325, 0.0245] 1.92 1.03
500 0.3337 0.01 −0.031 [−0.0396, 0.0596] [−0.0509,−0.011] 1.79 0.72
1000 0.3754 0.01 −0.005 [−0.0387, 0.0587] [−0.0191, 0.0091] 1.76 0.51

These simulations show that the adjusted Leland portfolio not only approxi-
mately super-replicates the payoff but greatly outperforms the initial Leland one.
This is particularly significant for a small number of a revision dates.

4 Appendix

4.1 Proof of Theorem 2.1

By the Ito formula we get

Ĉx(t, St) = Ĉx(0, S0) +Mn
t +Ant (4.1)

where

Mn
t :=

∫ t

0

σuSuĈxx(u, Su)dWu,

Ant :=

∫ t

0

[
Ĉxt(u, Su) +

1

2
σ2uS

2
uĈxxx(u, Su)

]
du.

The process Mn is a square integrable martingale on [0, 1] by virtue of [1] (see also
[2]).

We note ∆Hn
ti = Hn

ti+ −H
n
ti−, ∆Kn

ti = Kn
ti+ −K

n
ti− and we set the difference

V n1 −G(S1) in a convenient way.

Lemma 4.1 We have V n1 −G(S1) = Fn1 + Fn2 + Fn3 where

Fn1 :=

∫ 1

0

(Hn
t − Ĥt)dSt − k0|∆Hn

tn +∆Kn
tn |Stn , (4.2)

Fn2 :=
1

2

∫ 1

0

σtγn(t)S2
t |Ĉxx(t, St)|dt− k0

n−1∑
i=1

|∆Hn
ti +∆Kn

ti |Sti , (4.3)

Fn3 :=

∫ 1

0

Kn
t dSt. (4.4)

We recall the next result deduced from Lemma 4.8 [2] (see also [1]):
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Lemma 4.2 We have the following equality

∫ t

s

Ĉxt(u, Su)du =

∫ ρ2s

ρ2t

Ĉxt(u, Su)σ̂−2
u dx,

where u = u(x, n) is defined by x = ρ2u and verifies limn→∞ u(x, n) = 1. Moreover,

Cxt(u, Su)σ̂−2
u =

1

2x

∫ ∞
−∞

G′(Sue
√
xy+x/2)(−y2 −

√
xy + 1)ϕ(y)dy

satisfies the following inequality

|Ĉxt(u, Su)σ̂−2
u |du ≤ cE1(x, Su)

where

E1(x, y) =
1

x
e−x/8

 p∑
j=1

| ln(y/Kj)|√
x

exp

{
−

ln2(y/Kj)

2x

}
+
√
x+ x

 .

Corollary 4.3 Assume that we have two sequences {tkn : k = 0, · · · , n}n∈N and

{skn : k = 0, · · · , n}n∈N in [0, 1] such that ρtkn and ρskn respectively converge to

a ∈ [0,∞] and b ∈ [0,∞]. Then,

lim
n→∞

∫ tkn

skn

Ĉxt(u, Su)du =

∫ b

a

E∞1 (x, S1)dx <∞, a.s.

where

E∞1 (x, S) :=
1

2x

∫ ∞
−∞

G′(Se
√
xy+x/2)(−y2 −

√
xy + 1)ϕ(y)dy.

Proof. We apply Lemma 4.2 with the change of variable x = ρ2u. Recall that
0 ≤ 1 − u ≤ c x n−1/2 so that u → 1 as n → ∞ for a given x ≥ 0. We can apply
the Lebesgue theorem by dominating the function E1(x, Su) whether x ≤ 1 or not
because x ≤ 1 implies that u is sufficiently near from 1 independently of x for n ≥
n0. Indeed, outside of the null-set ∪i{S1 = Ki}, we have 0 < a ≤ | ln(Su/Kj)| ≤ b

for some constants a, b (depending on ω) provided that u is sufficiently near one.2

Lemma 4.4 We have

P - lim
n
Fn1 = 0. (4.5)

Proof. The first term in (4.2) converges to 0; the proof is given in [1], [2]. We split
the second term into two terms:

k0|∆Hn
tn +∆Kn

tn |Stn ≤ k0|∆Hn
tn |Stn + k0|∆Kn

tn |Stn

where k0|∆Hn
tn |Stn converges to 0 by virtue of [1], [2] whereas the second term

converges to 0 because of Corollary 4.3.2
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We write Fn2 =
∑5
i=1 L

n
i with the summands

Ln1 =
1

2

∫ 1

0

σtγn(t)S2
t |ĥt|dt−

1

2

∫ 1

0

n−1∑
i=1

σti−1γn(ti−1)S2
ti−1
|ĥti−1 |I]ti−1,ti](t)dt

Ln2 =

n−1∑
i=1

|ĥti−1 |S
2
ti−1

(
1

2
σti−1γn(ti−1)∆ti − k0σti−1 n

1/2
√
∆tif ′(ti−1)|∆Wti |

)
,

Ln3 = k0

n−1∑
i=1

σti−1S
2
ti−1
|ĥti−1 |n

1/2
√
∆tif ′(ti−1|∆Wti | − k0

n−1∑
i=1

Sti−1 |∆Mti |,

Ln4 = k0

n−1∑
i=1

Sti−1 |∆Mti | − k0
n−1∑
i=1

Sti−1 |∆H
n
ti +∆Kn

ti |,

Ln5 = −k0
n−1∑
i=1

∆Sti |∆H
n
ti +∆Kn

ti |

where we use the abbreviations ∆Wti = Wti −Wti−1 , etc.
We recall from [1], [2] the following lemmas.
Set

θ1(x, S1) :=
1√
x

∫ ∞
−∞

G′(S1e
√
xy+x/2)yϕ(y)dy.

Lemma 4.5 Both terms whose difference defines Ln1 converge almost surely, as n →
∞, to J0 defined by the formula

J0 =
1

2
S1

∫ ∞
0

|θ1(x, S1)| dx (4.6)

Therefore, Ln1 → 0 a.s.

Lemma 4.6 We have P -limn L
n
2 = 0.

Lemma 4.7 We have P -limn L
n
3 = 0.

The only main difference between the analyze of Fn2 in this paper and [2] (or
[1]) is due to the sequence Ln4 .

Lemma 4.8 We have P -limn L
n
4 = 0.

Proof. Using the inequality ||a1| − |a2|| ≤ |a1 − a2| we obtain that

|L4
n| ≤ k0

n−1∑
i=1

Sti−1 |∆Ati +∆K̂ti |

≤ k0

∫ 1

0

σ2uS
2
u|Ĉxxx(u, Su)|du.
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Using Lemma 4.13 and the change of variable x = ρ2u, we deduce:∫ 1

0

σ2uS
2
u|Ĉxxx(u, Su)|du ≤ cn−1/2

∫ ρ20

0

E2(x)dx

where

E2(x) =
1

x3/2

p∑
j=1

exp

{
−

ln2(Su/Kj)

2x

}
+

1

x2
e−x/8.

Thus,

k0

∫ 1

0

σ2uS
2
u|Ĉxxx(u, Su)|du→ 0.

Indeed, the reasoning is similar to that of Corollary 4.3. We have 0 ≤ 1− u ≤
c x n−1/2 so that u → 1 as n → ∞. One can apply the Lebesgue theorem by
dominating the function E2 independently of n whether x ≤ 1 or not since x ≤ 1
implies that u is sufficiently near from 1 independently of x for n ≥ n0.2

Lemma 4.9 We have P -limn L
n
5 = 0.

Proof. Since maxi |∆Sti | → 0 as n → ∞, it suffices to verify that the sequence
k0
∑n
i=1 |∆Ĥti | is bounded in probability. But this follows from the preceding

lemmas.2

Inspecting the formulations of above lemmas, we observe that all terms Lnj → 0
in probability and, hence, Fn2 converges to 0 in probability.

Lemma 4.10 We have P -limn F
n
3 = 0.

Proof. We rewrite Fn3 as

Fn3 =

n∑
i=1

Kn
ti∆Sti ,

= −
n−1∑
i=1

Sti
(
Kn
ti+1
−Kn

ti

)
−Kn

t1S0 +Kn
1 S1. (4.7)

Recall that Kn
t1 = 0 and

Kn
1 = −

∫ tn−1

0

Ĉxt(tu, Su)du

which converges a.s. to −
∫∞
0
E1(x, S1)dx by virtue of Corollary 4.3. The first term

on the right hand side of (4.7) can be seen as

Pn =

n−1∑
i=1

∫ ti

ti−1

Ĉxt(tu, Su)Stidu =

∫ tn−1

0

Ĉxt(tu, Su)Sudu+ P̃n

where

lim
n→∞

∫ tn−1

0

Ĉxt(tu, Su)Sudu = S1

∫ ∞
0

E∞1 (x, S1)dx
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by virtue of the same reasoning used in Corollary 4.3. Moreover, P̃n is defined as
follows

P̃n :=

n−1∑
i=2

∫ ti

ti−1

Ĉxt(tu, Su) (Sti − Su) du.

Since supu Su <∞ a.s., P̃n ≤ c(ω)P
n

a.s.(ω) where

P
n

:=

n−1∑
i=2

∫ ti

ti−1

|Ĉxt(tu, Su)| |Sti/Su − 1| du.

Recall that E (Sti/Su − 1)2 ≤ c∆ti and Sti/Su− 1 is independent of Su because of
the increments of the Wiener process. Using Lemma 4.13, it follows the inequality

‖Pn‖1 ≤
c√
n

∫ tn−1

0

du

1− u ≤
c lnn√
n

proving that P̃n → 0 a.s.2
From above, we can conclude about Theorem 2.1.

4.2 Auxiliary Results

In the following, we only recall some properties satisfied by the solution of the
Cauchy problem (2.4) we need in the proof of Theorem 2.1. For more details, see
[1], [2].

Lemma 4.11 Let Ĉ(t, x) is given by (2.5). Then

∂k+1Ĉ(t, x)

∂xk+1
=

1

ρkxk

∫ ∞
−∞

G′(xeρy+ρ
2/2)Pk(y)ϕ(y)dy, k ≥ 0,

where Pk(y) = yk+ak(ρ)yk+ · · ·+a0(ρ) is a polynomial of degree k whose coefficients

ai(ρ) are polynomials in ρ of degree k − 1.

In particular, we deduce that |Ĉx(t, x)| ≤ ||G′||∞ and we have the following
expression:

Lemma 4.12 Let Ĉ(t, x) is given by (2.5). Then

Ĉtx(t, x) =
σ̂2t
2ρ2

∫ ∞
−∞

G′(xeρy+ρ
2/2)(−y2 − ρy + 1)ϕ(y)dy (4.1)

Lemma 4.13 There exists a constant c such that

|Ĉtx(t, x)| ≤ cσ̂2e−
ρ2

8

x1/2ρ2

(
L(x, ρ) + ρ+ ρ2

)
where

L(x, ρ) =

p∑
j=1

| ln(x/Kj)|
ρ

exp

{
−

ln2(x/Kj)

2ρ2

}
.



12 Emmanuel Denis

References
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